organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(2,4-Di­chloro­phen­yl)-3-(4-nitro­phen­yl)-1,2,4-oxa­diazole

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSyngene International Ltd, Biocon Park, Plot No. 2 & 3, Bommasandra 4th Phase, Jigani Link Rd, Bangalore 560 100, India, cDepartment of Chemistry, Organic Chemistry Division, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India, and dDepartment of Printing, Manipal Institute of Technology, Manipal 576 104, India
*Correspondence e-mail: hkfun@usm.my

(Received 20 March 2010; accepted 24 March 2010; online 28 April 2010)

In the title compound, C14H7Cl2N3O3, the dichloro­phenyl and nitro­phenyl rings form dihedral angles of 5.4 (2) and 4.0 (2)°, respectively, with the oxadiazole ring. The nitro group is twisted out of the attached benzene ring by a dihedral angle of 10.4 (3)°. In the crystal, mol­ecules are linked into a chain along the a axis by C—H⋯N hydrogen bonds.

Related literature

For the biological activity of heterocyclic compounds including oxadiazo­les, see: Andersen et al. (1994[Andersen, K. E., Jørgensen, A. S. & Braestrup, C. (1994). Eur. J. Med. Chem. 29, 393-399.]); Showell et al. (1991[Showell, G. A., Gibbons, T. L., Kneen, C. O., MacLeod, A. M., Merchant, K., Saunders, J., Freedman, S. B., Patel, S. & Baker, R. (1991). J. Med. Chem. 34, 1086-1094.]); Watjen et al. (1989[Watjen, F., Baker, R., Engelstoff, M., Herbert, R., MacLeod, A., Knight, A., Merchant, K., Moseley, J., Saunders, J., Swain, C. J., Wong, E. & Springer, J. P. (1989). J. Med. Chem. 32, 2282-2291.]); Swain et al. (1991[Swain, C. J., Baker, R., Kneen, C., Moseley, J., Saunders, J., Seward, E. M., Stevenson, G., Beer, M., Stanton, J. & Watling, K. (1991). J. Med. Chem. 34, 140-151.]); Clitherow et al. (1996[Clitherow, J. W., Beswick, P., Irving, W. J., Scopes, D. I. C., Barnes, J. C., Clapham, J., Brown, J. D., Evans, D. J. & Hayes, A. G. (1996). Bioorg. Med. Chem. Lett. 6, 833-838.]); Isloor et al. (2010[Isloor, A. M., Kalluraya, B. & Pai, K. S. (2010). Eur. J. Med. Chem. 45, 825-830.]); Chandrakantha et al. (2010[Chandrakantha, B., Shetty, P., Nambiyar, V., Isloor, N. & Isloor, A. M. (2010). Eur. J. Med. Chem. 45, 1206-1210.]). For related structures, see: Wang et al. (2006[Wang, H.-B., Liu, Z.-Q., Wang, H.-B. & Yan, X.-C. (2006). Acta Cryst. E62, o4715-o4716.]); Fun et al. (2010a[Fun, H.-K., Rosli, M. M., Rai, S., Isloor, A. M. & Shetty, P. (2010a). Acta Cryst. E66, o772.],b[Fun, H.-K., Rosli, M. M., Rai, S., Isloor, A. M. & Shetty, P. (2010b). Acta Cryst. E66, o851.]).

[Scheme 1]

Experimental

Crystal data
  • C14H7Cl2N3O3

  • Mr = 336.13

  • Orthorhombic, P c a 21

  • a = 13.5272 (5) Å

  • b = 6.5362 (2) Å

  • c = 15.6880 (5) Å

  • V = 1387.08 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 296 K

  • 0.37 × 0.11 × 0.04 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2 , SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.843, Tmax = 0.980

  • 9845 measured reflections

  • 2658 independent reflections

  • 2029 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.091

  • S = 1.06

  • 2658 reflections

  • 199 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1243 Friedel pairs

  • Flack parameter: −0.01 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯N1i 0.93 2.54 3.338 (5) 144
Symmetry code: (i) [x+{\script{1\over 2}}, -y, z].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 , SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 , SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Heterocyclic compounds are becoming increasingly important in recent years due to their pharmacological activities (Isloor et al., 2010). Nitrogen- and oxygen-containing five/six-membered heterocyclic compounds are of enormous significance in the field of medicinal chemistry (Chandrakantha et al., 2010). Oxadiazoles play a very vital role in the preparation of various biologically active drugs with anti-inflammatory (Andersen et al., 1994), anti-cancer (Showell et al., 1991), anti-HIV (Watjen et al., 1989), anti-diabetic and anti-microbial (Swain et al., 1991) activities. The results of biological studies showed that oxadiazole derivatives also possess maximum anti-inflammatory, analgesic and minimum ulcerogenic and lipid per-oxidation (Clitherow et al., 1996) properties.

Bond lengths and angles in the title molecule (Fig.1) are within the normal range and comparable to those observed in related structures (Wang et al., 2006; Fun et al., 2010a,b). The oxadiazole ring (C7/C8/N1/N2/O1) forms dihedral angles of 5.4 (2)° and 4.0 (2)°, respectively, with with the C1–C6 and C9–C14 benzene rings. The plane of the nitro group is twisted out of the C9–C14 benzene ring by a dihedral of 10.4 (3)°.

In the crystal structure (Fig. 2), the molecules are connected by intermolecular C13—H13A···N1 hydrogen bonds (Table 1) forming chains along the a axis.

Related literature top

For the biological activity of heterocyclic compounds including oxadiazoles, see: Andersen et al. (1994); Showell et al. (1991); Watjen et al. (1989); Swain et al. (1991); Clitherow et al. (1996); Isloor et al. (2010); Chandrakantha et al. (2010). For related structures, see: Wang et al. (2006); Fun et al. (2010a,b).

Experimental top

The title compound was prepared by heating a solution of 2,4-dichlorobenzoyl chloride (1.15 g, 0.02 mol) and N'-hydroxy-4-nitrobenzamidine (1 g, 0.02 mol) in pyridine (30 ml). The reaction mixture was heated at 114°C for 1.5 h and concentrated under vacuum. Further purification was done by column chromatography. The solid obtained was recrystallized using dichloromethane (yield: 1.0 g (55%), m.p 458-461 K).

Refinement top

H atoms were positioned geometrically with C-H = 0.93 Å and were refined using a riding model with Uiso(H) = 1.2Ueq(C).

Structure description top

Heterocyclic compounds are becoming increasingly important in recent years due to their pharmacological activities (Isloor et al., 2010). Nitrogen- and oxygen-containing five/six-membered heterocyclic compounds are of enormous significance in the field of medicinal chemistry (Chandrakantha et al., 2010). Oxadiazoles play a very vital role in the preparation of various biologically active drugs with anti-inflammatory (Andersen et al., 1994), anti-cancer (Showell et al., 1991), anti-HIV (Watjen et al., 1989), anti-diabetic and anti-microbial (Swain et al., 1991) activities. The results of biological studies showed that oxadiazole derivatives also possess maximum anti-inflammatory, analgesic and minimum ulcerogenic and lipid per-oxidation (Clitherow et al., 1996) properties.

Bond lengths and angles in the title molecule (Fig.1) are within the normal range and comparable to those observed in related structures (Wang et al., 2006; Fun et al., 2010a,b). The oxadiazole ring (C7/C8/N1/N2/O1) forms dihedral angles of 5.4 (2)° and 4.0 (2)°, respectively, with with the C1–C6 and C9–C14 benzene rings. The plane of the nitro group is twisted out of the C9–C14 benzene ring by a dihedral of 10.4 (3)°.

In the crystal structure (Fig. 2), the molecules are connected by intermolecular C13—H13A···N1 hydrogen bonds (Table 1) forming chains along the a axis.

For the biological activity of heterocyclic compounds including oxadiazoles, see: Andersen et al. (1994); Showell et al. (1991); Watjen et al. (1989); Swain et al. (1991); Clitherow et al. (1996); Isloor et al. (2010); Chandrakantha et al. (2010). For related structures, see: Wang et al. (2006); Fun et al. (2010a,b).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) chains along the a axis. H atoms not involved in the interactions have been omitted.
5-(2,4-Dichlorophenyl)-3-(4-nitrophenyl)-1,2,4-oxadiazole top
Crystal data top
C14H7Cl2N3O3F(000) = 680
Mr = 336.13Dx = 1.610 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2389 reflections
a = 13.5272 (5) Åθ = 2.6–30.1°
b = 6.5362 (2) ŵ = 0.48 mm1
c = 15.6880 (5) ÅT = 296 K
V = 1387.08 (8) Å3Plate, colourless
Z = 40.37 × 0.11 × 0.04 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2658 independent reflections
Radiation source: fine-focus sealed tube2029 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
φ and ω scansθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1316
Tmin = 0.843, Tmax = 0.980k = 78
9845 measured reflectionsl = 1719
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0361P)2 + 0.1623P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2658 reflectionsΔρmax = 0.24 e Å3
199 parametersΔρmin = 0.22 e Å3
1 restraintAbsolute structure: Flack (1983), 1243 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (7)
Crystal data top
C14H7Cl2N3O3V = 1387.08 (8) Å3
Mr = 336.13Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 13.5272 (5) ŵ = 0.48 mm1
b = 6.5362 (2) ÅT = 296 K
c = 15.6880 (5) Å0.37 × 0.11 × 0.04 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2658 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2029 reflections with I > 2σ(I)
Tmin = 0.843, Tmax = 0.980Rint = 0.045
9845 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.091Δρmax = 0.24 e Å3
S = 1.06Δρmin = 0.22 e Å3
2658 reflectionsAbsolute structure: Flack (1983), 1243 Friedel pairs
199 parametersAbsolute structure parameter: 0.01 (7)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.37074 (7)1.17134 (15)0.20371 (7)0.0672 (3)
Cl20.08039 (7)0.73697 (16)0.34239 (10)0.0814 (4)
O10.15793 (17)0.3687 (4)0.41360 (18)0.0643 (8)
O20.3673 (2)0.6615 (5)0.6679 (2)0.0975 (12)
O30.5067 (2)0.5915 (5)0.6109 (2)0.0959 (11)
N10.1636 (2)0.1879 (5)0.4615 (2)0.0653 (10)
N20.3154 (2)0.2966 (4)0.4278 (2)0.0454 (7)
N30.4200 (3)0.5541 (5)0.6249 (2)0.0646 (9)
C10.3731 (2)0.6429 (5)0.3289 (2)0.0515 (10)
H1A0.41980.54720.34630.062*
C20.4043 (3)0.8143 (5)0.2848 (3)0.0562 (10)
H2A0.47090.83460.27290.067*
C30.3342 (3)0.9546 (5)0.2589 (2)0.0478 (9)
C40.2351 (3)0.9269 (5)0.2767 (2)0.0493 (9)
H4A0.18881.02330.25940.059*
C50.2060 (2)0.7551 (5)0.3204 (2)0.0484 (9)
C60.2735 (2)0.6087 (4)0.3481 (2)0.0417 (8)
C70.2522 (2)0.4235 (5)0.3964 (2)0.0423 (8)
C80.2581 (3)0.1536 (5)0.4676 (2)0.0434 (8)
C90.2984 (2)0.0278 (5)0.5105 (2)0.0411 (8)
C100.2372 (2)0.1701 (5)0.5499 (2)0.0463 (9)
H10A0.16920.14930.55010.056*
C110.2759 (3)0.3416 (5)0.5887 (2)0.0491 (10)
H11A0.23500.43570.61580.059*
C120.3767 (3)0.3693 (5)0.5861 (2)0.0457 (9)
C130.4388 (3)0.2323 (5)0.5472 (2)0.0547 (10)
H13A0.50660.25590.54580.066*
C140.3995 (2)0.0590 (5)0.5103 (2)0.0508 (9)
H14A0.44110.03690.48510.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0778 (7)0.0595 (6)0.0642 (6)0.0179 (5)0.0002 (6)0.0100 (6)
Cl20.0403 (4)0.0675 (6)0.1363 (11)0.0026 (5)0.0083 (7)0.0236 (7)
O10.0468 (14)0.0596 (15)0.086 (2)0.0041 (12)0.0112 (14)0.0228 (15)
O20.089 (2)0.0758 (19)0.127 (3)0.0000 (18)0.006 (2)0.045 (2)
O30.070 (2)0.094 (2)0.124 (3)0.0193 (18)0.001 (2)0.035 (2)
N10.0445 (17)0.0621 (19)0.089 (3)0.0045 (15)0.0144 (19)0.0230 (19)
N20.0442 (16)0.0428 (15)0.0493 (18)0.0004 (14)0.0019 (15)0.0026 (15)
N30.066 (2)0.061 (2)0.066 (2)0.0007 (19)0.007 (2)0.0065 (19)
C10.046 (2)0.0437 (19)0.065 (3)0.0046 (14)0.0124 (19)0.0034 (18)
C20.051 (2)0.054 (2)0.065 (3)0.0046 (18)0.015 (2)0.009 (2)
C30.061 (2)0.044 (2)0.038 (2)0.0077 (17)0.0005 (18)0.0042 (17)
C40.050 (2)0.0450 (19)0.053 (2)0.0004 (16)0.0104 (18)0.0052 (18)
C50.0418 (18)0.0520 (19)0.052 (2)0.0054 (16)0.0026 (17)0.0072 (19)
C60.0440 (18)0.0357 (15)0.046 (2)0.0000 (13)0.0014 (17)0.0082 (18)
C70.0402 (18)0.0428 (17)0.044 (2)0.0013 (16)0.0029 (17)0.0085 (17)
C80.0472 (19)0.0424 (17)0.040 (2)0.0011 (17)0.0037 (19)0.0072 (16)
C90.0462 (19)0.0400 (17)0.0370 (19)0.0007 (15)0.0012 (17)0.0081 (16)
C100.0367 (18)0.052 (2)0.050 (2)0.0023 (16)0.0099 (17)0.0048 (18)
C110.054 (2)0.0464 (19)0.047 (2)0.0071 (16)0.0106 (19)0.0000 (18)
C120.050 (2)0.0432 (19)0.043 (2)0.0008 (16)0.0008 (17)0.0002 (17)
C130.045 (2)0.059 (2)0.060 (3)0.0018 (18)0.0032 (19)0.006 (2)
C140.044 (2)0.053 (2)0.055 (2)0.0082 (16)0.0048 (18)0.0032 (19)
Geometric parameters (Å, º) top
Cl1—C31.732 (3)C4—C51.373 (5)
Cl2—C51.739 (3)C4—H4A0.93
O1—C71.352 (4)C5—C61.392 (4)
O1—N11.403 (4)C6—C71.458 (4)
O2—N31.207 (4)C8—C91.468 (4)
O3—N31.218 (4)C9—C141.384 (4)
N1—C81.302 (5)C9—C101.390 (4)
N2—C71.289 (4)C10—C111.378 (4)
N2—C81.366 (4)C10—H10A0.93
N3—C121.474 (5)C11—C121.377 (5)
C1—C21.383 (5)C11—H11A0.93
C1—C61.398 (4)C12—C131.371 (5)
C1—H1A0.93C13—C141.379 (5)
C2—C31.380 (5)C13—H13A0.93
C2—H2A0.93C14—H14A0.93
C3—C41.381 (5)
C7—O1—N1106.2 (2)N2—C7—O1112.3 (3)
C8—N1—O1103.8 (3)N2—C7—C6127.0 (3)
C7—N2—C8103.8 (3)O1—C7—C6120.7 (3)
O2—N3—O3123.6 (4)N1—C8—N2113.9 (3)
O2—N3—C12118.2 (3)N1—C8—C9122.5 (3)
O3—N3—C12118.2 (4)N2—C8—C9123.5 (3)
C2—C1—C6122.1 (3)C14—C9—C10119.4 (3)
C2—C1—H1A119.0C14—C9—C8119.0 (3)
C6—C1—H1A119.0C10—C9—C8121.6 (3)
C3—C2—C1118.4 (3)C11—C10—C9121.0 (3)
C3—C2—H2A120.8C11—C10—H10A119.5
C1—C2—H2A120.8C9—C10—H10A119.5
C2—C3—C4121.3 (3)C10—C11—C12118.0 (3)
C2—C3—Cl1119.6 (3)C10—C11—H11A121.0
C4—C3—Cl1119.1 (3)C12—C11—H11A121.0
C5—C4—C3119.1 (3)C13—C12—C11122.3 (3)
C5—C4—H4A120.4C13—C12—N3118.4 (3)
C3—C4—H4A120.4C11—C12—N3119.3 (3)
C4—C5—C6122.0 (3)C12—C13—C14119.2 (3)
C4—C5—Cl2115.8 (3)C12—C13—H13A120.4
C6—C5—Cl2122.1 (3)C14—C13—H13A120.4
C5—C6—C1117.0 (3)C13—C14—C9120.1 (3)
C5—C6—C7127.1 (3)C13—C14—H14A120.0
C1—C6—C7115.8 (3)C9—C14—H14A120.0
C7—O1—N1—C80.2 (4)O1—N1—C8—N20.1 (4)
C6—C1—C2—C30.3 (5)O1—N1—C8—C9177.5 (3)
C1—C2—C3—C40.4 (5)C7—N2—C8—N10.2 (4)
C1—C2—C3—Cl1179.9 (3)C7—N2—C8—C9177.7 (3)
C2—C3—C4—C50.6 (5)N1—C8—C9—C14176.5 (4)
Cl1—C3—C4—C5179.9 (3)N2—C8—C9—C140.8 (5)
C3—C4—C5—C60.7 (5)N1—C8—C9—C102.4 (5)
C3—C4—C5—Cl2178.3 (3)N2—C8—C9—C10179.7 (3)
C4—C5—C6—C10.6 (5)C14—C9—C10—C110.0 (5)
Cl2—C5—C6—C1178.0 (3)C8—C9—C10—C11178.9 (3)
C4—C5—C6—C7178.5 (3)C9—C10—C11—C121.0 (5)
Cl2—C5—C6—C71.0 (5)C10—C11—C12—C130.6 (5)
C2—C1—C6—C50.4 (5)C10—C11—C12—N3178.3 (3)
C2—C1—C6—C7178.8 (3)O2—N3—C12—C13171.1 (4)
C8—N2—C7—O10.3 (4)O3—N3—C12—C139.9 (6)
C8—N2—C7—C6179.1 (3)O2—N3—C12—C119.9 (5)
N1—O1—C7—N20.4 (4)O3—N3—C12—C11169.0 (4)
N1—O1—C7—C6179.1 (3)C11—C12—C13—C140.8 (6)
C5—C6—C7—N2174.0 (4)N3—C12—C13—C14179.7 (3)
C1—C6—C7—N25.0 (5)C12—C13—C14—C91.8 (6)
C5—C6—C7—O15.3 (5)C10—C9—C14—C131.4 (6)
C1—C6—C7—O1175.6 (3)C8—C9—C14—C13177.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···N1i0.932.543.338 (5)144
Symmetry code: (i) x+1/2, y, z.

Experimental details

Crystal data
Chemical formulaC14H7Cl2N3O3
Mr336.13
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)296
a, b, c (Å)13.5272 (5), 6.5362 (2), 15.6880 (5)
V3)1387.08 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.48
Crystal size (mm)0.37 × 0.11 × 0.04
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.843, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
9845, 2658, 2029
Rint0.045
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.091, 1.06
No. of reflections2658
No. of parameters199
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.22
Absolute structureFlack (1983), 1243 Friedel pairs
Absolute structure parameter0.01 (7)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···N1i0.932.543.338 (5)144
Symmetry code: (i) x+1/2, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

AMI is grateful to Professor Sandeep Sancheti, Director, National Institute of Technology-Karnataka, India, for providing research facilities and encouragement. HKF and MMR thank Universiti Sains Malaysia for the Research University Golden Goose Grant (No. 1001/PFIZIK/811012).

References

First citationAndersen, K. E., Jørgensen, A. S. & Braestrup, C. (1994). Eur. J. Med. Chem. 29, 393–399.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2 , SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandrakantha, B., Shetty, P., Nambiyar, V., Isloor, N. & Isloor, A. M. (2010). Eur. J. Med. Chem. 45, 1206–1210.  Web of Science CrossRef CAS PubMed Google Scholar
First citationClitherow, J. W., Beswick, P., Irving, W. J., Scopes, D. I. C., Barnes, J. C., Clapham, J., Brown, J. D., Evans, D. J. & Hayes, A. G. (1996). Bioorg. Med. Chem. Lett. 6, 833–838.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Rosli, M. M., Rai, S., Isloor, A. M. & Shetty, P. (2010a). Acta Cryst. E66, o772.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Rosli, M. M., Rai, S., Isloor, A. M. & Shetty, P. (2010b). Acta Cryst. E66, o851.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIsloor, A. M., Kalluraya, B. & Pai, K. S. (2010). Eur. J. Med. Chem. 45, 825–830.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShowell, G. A., Gibbons, T. L., Kneen, C. O., MacLeod, A. M., Merchant, K., Saunders, J., Freedman, S. B., Patel, S. & Baker, R. (1991). J. Med. Chem. 34, 1086–1094.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwain, C. J., Baker, R., Kneen, C., Moseley, J., Saunders, J., Seward, E. M., Stevenson, G., Beer, M., Stanton, J. & Watling, K. (1991). J. Med. Chem. 34, 140–151.  CrossRef PubMed CAS Web of Science Google Scholar
First citationWang, H.-B., Liu, Z.-Q., Wang, H.-B. & Yan, X.-C. (2006). Acta Cryst. E62, o4715–o4716.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWatjen, F., Baker, R., Engelstoff, M., Herbert, R., MacLeod, A., Knight, A., Merchant, K., Moseley, J., Saunders, J., Swain, C. J., Wong, E. & Springer, J. P. (1989). J. Med. Chem. 32, 2282–2291.  CSD CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds