organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o803-o804

2′-Methyl-3,5-di­phenyl­spiro­[4,6-dioxa-2-aza­bi­cyclo­[3.2.0]hept-2-ene-7,4′-iso­quinoline]-1′,3′(2′H,4′H)-dione

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bSchool of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: hkfun@usm.my

(Received 3 March 2010; accepted 8 March 2010; online 13 March 2010)

In the title compound, C25H18N2O4, the tetra­hydro­pyridine ring adopts a distorted envelope conformation with the spiro C atom at the flap position [deviation = 0.470 (2) Å]. The dihydro–oxazole ring is planar (r.m.s. deviation = 0.013 Å) and it makes dihedral angles of 73.43 (8) and 4.24 (8)° with the two attached phenyl rings. The dihedral angle between oxetane and oxazole planes is 67.44 (9)°. In the crystal structure, C—H⋯O hydrogen bonds link neighbouring mol­ecules into zigzag chains along the b axis and these chains are linked via C—H⋯π inter­actions.

Related literature

For general background to and applications of isoquinolinedione derivatives, see: Hall et al. (1994[Hall, I. H., Chapman, J. M. & Wong, O. T. (1994). Anticancer Drugs, 5, 75-82.]); Malamas & Hohman (1994[Malamas, M. S. & Hohman, T. C. (1994). J. Med. Chem. 37, 2043-2058.]); Nan et al. (2004[Nan, F. J., Li, J., Chen, Y. H., Zhang, Y. H., Gu, M. & Zhang, H. J. (2004). PCT Int. Appl. WO 2004111010 A1.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For related structures, see: Fun et al. (2010[Fun, H.-K., Goh, J. H., Yu, H. & Zhang, Y. (2010). Acta Cryst. E66, o724-o725.]); Wang et al. (2000[Wang, X.-L., Tian, J.-Z., Ling, K.-Q. & Xu, J.-H. (2000). Res. Chem. Intermed. 26, 679-689.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C25H18N2O4

  • Mr = 410.41

  • Monoclinic, P 21 /c

  • a = 13.3142 (3) Å

  • b = 8.0366 (2) Å

  • c = 19.1913 (5) Å

  • β = 109.882 (1)°

  • V = 1931.09 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.79 mm−1

  • T = 100 K

  • 0.27 × 0.26 × 0.25 mm

Data collection
  • Bruker SMART APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.815, Tmax = 0.830

  • 32042 measured reflections

  • 3254 independent reflections

  • 3227 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.150

  • S = 1.35

  • 3254 reflections

  • 353 parameters

  • All H-atom parameters refined

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.88 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C13–C18 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17A⋯O1i 0.97 (2) 2.51 (2) 3.213 (2) 129 (1)
C23—H23ACg1ii 0.96 (2) 2.66 (2) 3.5904 (18) 166 (2)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y-{\script{3\over 2}}, z-{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

1,3,4(2H)-Isoquinolinetrione derivatives have a variety of biological activities and are synthetic precursors for many naturally occuring alkaloids. On the other hand, the N-analogues of homophthalic anhydride, 1,3-isoquinolinedione and its derivatives, have a wide range of biological activities and their structural modifications with the aim of finding new drugs and medicine have drawn increasing research interests (Malamas & Hohman, 1994; Hall et al., 1994). Some substituted 1,3,4(2H)-isoquinolinetrione and their derivatives have been reported to treat neurodegenerative diseases, especially as the medicine for Alzhermer's disease, apoplexy and brain ischernic injuries (Nan et al., 2004). The crystal structure of Z-2-methyl-3'-phenyl-spiro[isoquinoline-4,2'-oxirane]-1,3-dione has been reported (Wang et al., 2000). In view of the importance of the title compound as a caspase inhibitor, this paper reports its crystal structure.

In the title isoquinoline-1,3-dione derivative (Fig. 1), the dihydro-oxazole ring (C10/C11/O4/C12/N2) is essentially planar, with a maximum deviation of 0.019 (1) Å at atom O4. The oxazole ring makes dihedral angles of 73.43 (8) and 4.24 (8)°, respectively, with C13–C18 and C19–C24 benzene rings attached to it. The tetrahydropyridine ring of the tetrahydroisoquinoline ring system adopts a distorted envelope conformation with spiro carbon C9 as the flap; the puckering amplitude Q = 0.352 (2) Å; θ = 108.2 (3)° and ϕ = 287.0 (3)° (Cremer & Pople, 1975). The oxetane plane (C9-C11/O3) is inclined at a dihedral angle of 67.44 (9)° with the oxazole ring. Bond lengths (Allen et al., 1987) and angles are normal and comparable to those observed in related isoquinoline-1,3-dione structures (Fun et al., 2010; Wang et al., 2000).

In the crystal structure (Fig. 2), intermolecular C17—H17A···O1 hydrogen bonds (Table 1) link the molecules into zigzag chains along the b axis. The adjacent chains are cross-linked by intermolecular C—H···π interactions (Table 1) involving the C13-C18 benzene ring (centroid Cg1).

Related literature top

For general background to and applications of isoquinoline derivatives, see: Hall et al. (1994); Malamas & Hohman (1994); Nan et al. (2004). For ring conformations, see: Cremer & Pople (1975). For related structures, see: Fun et al. (2010); Wang et al. (2000). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was obtained from the reaction between 1,3,4(2H)-isoquinolinetrione (189 mg, 1 mmol) and 2,5-diphenyloxazole (440 mg, 2 mmol). The compound was purified by flash column chromatography in ethyl acetate and petroleum ether. X-ray quality single crystals of the title compound were obtained by slow evaporation of a chloroform solution.

Refinement top

All the H atoms were located in a difference Fourier map [C–H = 0.95 (2)–1.021 (18) Å] and allowed to refine freely. The highest residual electron density peak is located at 0.75 Å from H10A and the deepest hole is located at 0.86 Å from C18.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the c axis, showing a hydrogen-bonded (dashed lines) chain along the b axis. H atoms not involved in the interactions have been omitted for clarity.
2'-Methyl-3,5-diphenylspiro[4,6-dioxa-2-azabicyclo[3.2.0]hept- 2-ene-7,4'-isoquinoline]-1',3'(2'H,4'H)-dione top
Crystal data top
C25H18N2O4F(000) = 856
Mr = 410.41Dx = 1.412 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 9894 reflections
a = 13.3142 (3) Åθ = 3.5–64.6°
b = 8.0366 (2) ŵ = 0.79 mm1
c = 19.1913 (5) ÅT = 100 K
β = 109.882 (1)°Block, colourless
V = 1931.09 (8) Å30.27 × 0.26 × 0.25 mm
Z = 4
Data collection top
Bruker SMART APEX DUO CCD area-detector
diffractometer
3254 independent reflections
Radiation source: fine-focus sealed tube3227 reflections with I > 2σ(I)
None monochromatorRint = 0.018
ϕ and ω scansθmax = 65.0°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1515
Tmin = 0.815, Tmax = 0.830k = 98
32042 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047All H-atom parameters refined
wR(F2) = 0.150 w = 1/[σ2(Fo2) + (0.0926P)2 + 0.3391P]
where P = (Fo2 + 2Fc2)/3
S = 1.35(Δ/σ)max = 0.001
3254 reflectionsΔρmax = 0.80 e Å3
353 parametersΔρmin = 0.88 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.052 (3)
Crystal data top
C25H18N2O4V = 1931.09 (8) Å3
Mr = 410.41Z = 4
Monoclinic, P21/cCu Kα radiation
a = 13.3142 (3) ŵ = 0.79 mm1
b = 8.0366 (2) ÅT = 100 K
c = 19.1913 (5) Å0.27 × 0.26 × 0.25 mm
β = 109.882 (1)°
Data collection top
Bruker SMART APEX DUO CCD area-detector
diffractometer
3254 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3227 reflections with I > 2σ(I)
Tmin = 0.815, Tmax = 0.830Rint = 0.018
32042 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.150All H-atom parameters refined
S = 1.35Δρmax = 0.80 e Å3
3254 reflectionsΔρmin = 0.88 e Å3
353 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.67405 (9)0.09357 (15)0.23596 (6)0.0292 (3)
O20.98657 (9)0.36419 (16)0.27093 (6)0.0317 (3)
O30.62301 (8)0.07638 (12)0.08429 (5)0.0200 (3)
O40.65067 (8)0.12787 (13)0.00309 (5)0.0197 (3)
N10.83241 (10)0.22292 (16)0.25592 (7)0.0219 (3)
N20.82562 (9)0.07527 (14)0.06914 (6)0.0185 (3)
C10.73931 (12)0.14769 (18)0.21089 (8)0.0210 (4)
C20.90196 (12)0.31220 (19)0.22920 (8)0.0225 (4)
C30.86313 (11)0.34634 (18)0.14836 (8)0.0206 (4)
C40.91327 (12)0.4707 (2)0.12193 (9)0.0253 (4)
C50.87765 (13)0.5082 (2)0.04699 (9)0.0265 (4)
C60.79084 (13)0.42300 (19)0.00134 (9)0.0244 (4)
C70.74074 (12)0.29813 (19)0.02473 (8)0.0216 (4)
C80.77731 (11)0.25907 (18)0.09976 (8)0.0187 (4)
C90.73081 (11)0.11985 (18)0.13037 (8)0.0190 (4)
C100.76955 (11)0.06240 (18)0.12152 (8)0.0182 (4)
C110.65008 (12)0.09381 (18)0.07673 (8)0.0193 (4)
C120.75508 (11)0.10798 (17)0.00665 (8)0.0182 (4)
C130.58169 (11)0.21713 (18)0.09854 (8)0.0194 (4)
C140.59034 (13)0.3863 (2)0.08529 (9)0.0247 (4)
C150.53327 (13)0.5023 (2)0.11064 (9)0.0278 (4)
C160.46778 (12)0.4499 (2)0.14951 (9)0.0263 (4)
C170.45793 (12)0.2815 (2)0.16149 (8)0.0246 (4)
C180.51465 (11)0.1653 (2)0.13609 (8)0.0219 (4)
C190.77737 (12)0.12908 (17)0.06280 (8)0.0192 (4)
C200.88379 (12)0.12115 (18)0.05944 (9)0.0215 (4)
C210.90942 (13)0.13662 (19)0.12331 (9)0.0259 (4)
C220.82889 (14)0.1618 (2)0.19087 (9)0.0286 (4)
C230.72301 (13)0.1716 (2)0.19467 (9)0.0284 (4)
C240.69684 (12)0.15463 (18)0.13063 (8)0.0229 (4)
C250.85260 (14)0.2178 (2)0.33612 (8)0.0267 (4)
H4A0.9730 (17)0.530 (3)0.1601 (11)0.038 (5)*
H5A0.9128 (16)0.594 (3)0.0298 (11)0.030 (5)*
H6A0.7619 (14)0.453 (2)0.0564 (10)0.023 (4)*
H7A0.6790 (15)0.241 (2)0.0100 (10)0.027 (4)*
H10A0.8042 (13)0.122 (2)0.1680 (10)0.017 (4)*
H14A0.6366 (16)0.421 (3)0.0580 (11)0.036 (5)*
H15A0.5374 (16)0.622 (3)0.0998 (11)0.036 (5)*
H16A0.4261 (15)0.531 (3)0.1681 (10)0.030 (5)*
H17A0.4124 (15)0.243 (2)0.1881 (10)0.025 (4)*
H18A0.5091 (14)0.049 (3)0.1448 (10)0.025 (4)*
H20A0.9383 (15)0.105 (2)0.0121 (10)0.022 (4)*
H21A0.9834 (15)0.124 (2)0.1203 (9)0.023 (4)*
H22A0.8479 (17)0.174 (3)0.2372 (12)0.042 (6)*
H23A0.6682 (16)0.191 (3)0.2414 (11)0.031 (5)*
H24A0.6219 (16)0.159 (2)0.1330 (10)0.029 (5)*
H25A0.7977 (15)0.286 (2)0.3470 (10)0.027 (4)*
H25B0.8482 (14)0.103 (3)0.3493 (10)0.028 (5)*
H25C0.9243 (16)0.267 (2)0.3603 (11)0.030 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0334 (7)0.0323 (7)0.0290 (6)0.0065 (5)0.0198 (5)0.0034 (5)
O20.0214 (6)0.0460 (8)0.0256 (6)0.0050 (5)0.0051 (5)0.0069 (5)
O30.0174 (6)0.0182 (6)0.0238 (6)0.0004 (4)0.0060 (4)0.0003 (4)
O40.0182 (6)0.0235 (6)0.0182 (5)0.0023 (4)0.0074 (4)0.0009 (4)
N10.0231 (7)0.0252 (7)0.0186 (6)0.0023 (5)0.0085 (5)0.0009 (5)
N20.0191 (6)0.0170 (6)0.0201 (6)0.0012 (4)0.0076 (5)0.0001 (5)
C10.0239 (8)0.0185 (8)0.0226 (8)0.0023 (6)0.0107 (6)0.0005 (6)
C20.0205 (8)0.0240 (8)0.0237 (8)0.0023 (6)0.0085 (6)0.0035 (6)
C30.0201 (7)0.0204 (8)0.0232 (8)0.0018 (6)0.0099 (6)0.0028 (6)
C40.0229 (8)0.0223 (8)0.0323 (9)0.0032 (6)0.0117 (7)0.0030 (6)
C50.0290 (8)0.0207 (8)0.0346 (9)0.0006 (6)0.0172 (7)0.0047 (6)
C60.0285 (8)0.0227 (8)0.0255 (8)0.0051 (6)0.0138 (7)0.0038 (6)
C70.0225 (8)0.0209 (8)0.0226 (8)0.0016 (6)0.0092 (6)0.0012 (6)
C80.0185 (7)0.0172 (7)0.0219 (7)0.0021 (5)0.0090 (6)0.0008 (5)
C90.0178 (7)0.0192 (7)0.0209 (7)0.0002 (5)0.0077 (6)0.0009 (5)
C100.0191 (7)0.0181 (7)0.0182 (7)0.0002 (5)0.0073 (6)0.0006 (5)
C110.0207 (8)0.0192 (7)0.0184 (7)0.0012 (6)0.0074 (6)0.0003 (5)
C120.0179 (7)0.0145 (7)0.0228 (8)0.0002 (5)0.0076 (6)0.0011 (5)
C130.0165 (7)0.0216 (8)0.0188 (7)0.0017 (6)0.0045 (6)0.0008 (6)
C140.0260 (8)0.0246 (8)0.0265 (8)0.0016 (6)0.0130 (7)0.0026 (6)
C150.0311 (9)0.0211 (8)0.0321 (9)0.0044 (6)0.0116 (7)0.0007 (6)
C160.0237 (8)0.0283 (9)0.0270 (8)0.0067 (6)0.0085 (6)0.0033 (6)
C170.0187 (7)0.0312 (9)0.0253 (8)0.0020 (6)0.0095 (6)0.0011 (6)
C180.0188 (7)0.0226 (8)0.0242 (8)0.0005 (6)0.0071 (6)0.0006 (6)
C190.0231 (8)0.0137 (7)0.0217 (8)0.0001 (5)0.0089 (6)0.0002 (5)
C200.0222 (8)0.0196 (8)0.0229 (8)0.0010 (6)0.0078 (6)0.0002 (6)
C210.0269 (9)0.0239 (8)0.0316 (9)0.0013 (6)0.0158 (7)0.0024 (6)
C220.0371 (9)0.0284 (9)0.0253 (8)0.0032 (7)0.0172 (7)0.0053 (6)
C230.0310 (9)0.0319 (9)0.0213 (8)0.0032 (7)0.0074 (7)0.0059 (6)
C240.0226 (8)0.0216 (8)0.0246 (8)0.0006 (6)0.0081 (6)0.0018 (6)
C250.0304 (9)0.0319 (10)0.0190 (8)0.0065 (7)0.0100 (7)0.0008 (6)
Geometric parameters (Å, º) top
O1—C11.2083 (18)C11—C131.499 (2)
O2—C21.2130 (19)C12—C191.470 (2)
O3—C111.4343 (17)C13—C181.388 (2)
O3—C91.4495 (17)C13—C141.395 (2)
O4—C121.3777 (17)C14—C151.391 (2)
O4—C111.4421 (16)C14—H14A0.98 (2)
N1—C11.386 (2)C15—C161.392 (2)
N1—C21.399 (2)C15—H15A0.99 (2)
N1—C251.4702 (18)C16—C171.386 (2)
N2—C121.2741 (19)C16—H16A1.00 (2)
N2—C101.4453 (18)C17—C181.389 (2)
C1—C91.5269 (19)C17—H17A0.966 (18)
C2—C31.485 (2)C18—H18A0.96 (2)
C3—C41.390 (2)C19—C241.392 (2)
C3—C81.394 (2)C19—C201.398 (2)
C4—C51.386 (2)C20—C211.385 (2)
C4—H4A1.00 (2)C20—H20A0.960 (19)
C5—C61.391 (2)C21—C221.388 (2)
C5—H5A0.95 (2)C21—H21A0.972 (19)
C6—C71.389 (2)C22—C231.389 (2)
C6—H6A1.021 (18)C22—H22A1.01 (2)
C7—C81.390 (2)C23—C241.393 (2)
C7—H7A0.979 (19)C23—H23A0.96 (2)
C8—C91.4925 (19)C24—H24A0.98 (2)
C9—C101.5810 (19)C25—H25A0.99 (2)
C10—C111.550 (2)C25—H25B0.97 (2)
C10—H10A0.979 (17)C25—H25C0.99 (2)
C11—O3—C993.49 (10)C13—C11—C10124.00 (12)
C12—O4—C11105.73 (10)N2—C12—O4118.61 (12)
C1—N1—C2123.94 (12)N2—C12—C19124.45 (13)
C1—N1—C25116.55 (12)O4—C12—C19116.93 (12)
C2—N1—C25119.32 (12)C18—C13—C14119.65 (14)
C12—N2—C10106.25 (12)C18—C13—C11120.36 (13)
O1—C1—N1121.37 (14)C14—C13—C11119.86 (13)
O1—C1—C9122.31 (14)C15—C14—C13120.04 (14)
N1—C1—C9115.96 (12)C15—C14—H14A120.9 (12)
O2—C2—N1121.09 (14)C13—C14—H14A119.0 (12)
O2—C2—C3122.78 (14)C14—C15—C16120.06 (15)
N1—C2—C3116.04 (13)C14—C15—H15A120.1 (12)
C4—C3—C8120.25 (14)C16—C15—H15A119.8 (12)
C4—C3—C2118.33 (14)C17—C16—C15119.76 (14)
C8—C3—C2121.42 (13)C17—C16—H16A119.0 (11)
C5—C4—C3119.85 (14)C15—C16—H16A121.2 (11)
C5—C4—H4A124.3 (12)C16—C17—C18120.30 (14)
C3—C4—H4A115.8 (12)C16—C17—H17A120.8 (11)
C4—C5—C6119.90 (14)C18—C17—H17A118.9 (11)
C4—C5—H5A118.7 (12)C13—C18—C17120.17 (14)
C6—C5—H5A121.4 (12)C13—C18—H18A119.1 (11)
C7—C6—C5120.48 (14)C17—C18—H18A120.8 (11)
C7—C6—H6A118.8 (10)C24—C19—C20119.76 (14)
C5—C6—H6A120.7 (10)C24—C19—C12122.41 (13)
C6—C7—C8119.63 (14)C20—C19—C12117.82 (13)
C6—C7—H7A119.3 (11)C21—C20—C19120.39 (15)
C8—C7—H7A121.1 (11)C21—C20—H20A121.0 (11)
C7—C8—C3119.88 (13)C19—C20—H20A118.6 (11)
C7—C8—C9122.08 (13)C20—C21—C22119.69 (15)
C3—C8—C9117.98 (13)C20—C21—H21A119.2 (10)
O3—C9—C8113.43 (11)C22—C21—H21A121.0 (10)
O3—C9—C1111.72 (11)C21—C22—C23120.34 (15)
C8—C9—C1112.99 (12)C21—C22—H22A119.5 (12)
O3—C9—C1090.15 (10)C23—C22—H22A120.2 (12)
C8—C9—C10117.26 (11)C22—C23—C24120.14 (15)
C1—C9—C10109.26 (11)C22—C23—H23A119.7 (11)
N2—C10—C11106.14 (11)C24—C23—H23A120.2 (11)
N2—C10—C9113.93 (11)C19—C24—C23119.68 (14)
C11—C10—C984.25 (10)C19—C24—H24A119.7 (11)
N2—C10—H10A113.8 (10)C23—C24—H24A120.6 (11)
C11—C10—H10A120.1 (10)N1—C25—H25A108.7 (11)
C9—C10—H10A115.3 (10)N1—C25—H25B107.2 (11)
O3—C11—O4111.43 (11)H25A—C25—H25B110.9 (15)
O3—C11—C13113.89 (12)N1—C25—H25C106.5 (11)
O4—C11—C13110.76 (11)H25A—C25—H25C110.3 (15)
O3—C11—C1091.97 (10)H25B—C25—H25C113.0 (16)
O4—C11—C10103.17 (11)
C2—N1—C1—O1168.82 (14)C8—C9—C10—C11119.42 (13)
C25—N1—C1—O16.1 (2)C1—C9—C10—C11110.37 (12)
C2—N1—C1—C918.0 (2)C9—O3—C11—O4108.01 (12)
C25—N1—C1—C9167.07 (13)C9—O3—C11—C13125.81 (12)
C1—N1—C2—O2174.06 (14)C9—O3—C11—C103.03 (10)
C25—N1—C2—O211.1 (2)C12—O4—C11—O394.44 (12)
C1—N1—C2—C39.2 (2)C12—O4—C11—C13137.68 (12)
C25—N1—C2—C3165.64 (13)C12—O4—C11—C103.02 (14)
O2—C2—C3—C414.3 (2)N2—C10—C11—O3110.49 (11)
N1—C2—C3—C4162.41 (13)C9—C10—C11—O32.79 (9)
O2—C2—C3—C8166.92 (14)N2—C10—C11—O42.06 (14)
N1—C2—C3—C816.4 (2)C9—C10—C11—O4115.34 (11)
C8—C3—C4—C50.1 (2)N2—C10—C11—C13128.72 (14)
C2—C3—C4—C5178.67 (13)C9—C10—C11—C13118.01 (14)
C3—C4—C5—C61.0 (2)C10—N2—C12—O42.00 (16)
C4—C5—C6—C71.3 (2)C10—N2—C12—C19179.06 (13)
C5—C6—C7—C80.5 (2)C11—O4—C12—N23.43 (17)
C6—C7—C8—C30.6 (2)C11—O4—C12—C19177.55 (11)
C6—C7—C8—C9176.45 (13)O3—C11—C13—C1812.07 (19)
C4—C3—C8—C70.9 (2)O4—C11—C13—C18138.61 (13)
C2—C3—C8—C7177.82 (13)C10—C11—C13—C1898.05 (17)
C4—C3—C8—C9176.28 (13)O3—C11—C13—C14172.03 (13)
C2—C3—C8—C95.0 (2)O4—C11—C13—C1445.49 (17)
C11—O3—C9—C8122.99 (12)C10—C11—C13—C1477.85 (19)
C11—O3—C9—C1107.89 (12)C18—C13—C14—C151.0 (2)
C11—O3—C9—C102.97 (10)C11—C13—C14—C15174.94 (13)
C7—C8—C9—O323.27 (19)C13—C14—C15—C160.3 (2)
C3—C8—C9—O3159.58 (12)C14—C15—C16—C171.4 (2)
C7—C8—C9—C1151.74 (13)C15—C16—C17—C181.2 (2)
C3—C8—C9—C131.12 (17)C14—C13—C18—C171.1 (2)
C7—C8—C9—C1079.82 (17)C11—C13—C18—C17174.77 (12)
C3—C8—C9—C1097.33 (15)C16—C17—C18—C130.0 (2)
O1—C1—C9—O319.88 (19)N2—C12—C19—C24175.95 (14)
N1—C1—C9—O3166.99 (12)O4—C12—C19—C245.1 (2)
O1—C1—C9—C8149.23 (14)N2—C12—C19—C203.4 (2)
N1—C1—C9—C837.65 (17)O4—C12—C19—C20175.55 (12)
O1—C1—C9—C1078.29 (17)C24—C19—C20—C210.8 (2)
N1—C1—C9—C1094.83 (14)C12—C19—C20—C21178.63 (13)
C12—N2—C10—C110.22 (14)C19—C20—C21—C220.7 (2)
C12—N2—C10—C991.04 (14)C20—C21—C22—C230.0 (2)
O3—C9—C10—N2102.37 (12)C21—C22—C23—C240.6 (2)
C8—C9—C10—N214.29 (18)C20—C19—C24—C230.2 (2)
C1—C9—C10—N2144.50 (12)C12—C19—C24—C23179.18 (14)
O3—C9—C10—C112.76 (9)C22—C23—C24—C190.5 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C13–C18 benzene ring.
D—H···AD—HH···AD···AD—H···A
C17—H17A···O1i0.97 (2)2.51 (2)3.213 (2)129 (1)
C23—H23A···Cg1ii0.96 (2)2.66 (2)3.5904 (18)166 (2)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y3/2, z3/2.

Experimental details

Crystal data
Chemical formulaC25H18N2O4
Mr410.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.3142 (3), 8.0366 (2), 19.1913 (5)
β (°) 109.882 (1)
V3)1931.09 (8)
Z4
Radiation typeCu Kα
µ (mm1)0.79
Crystal size (mm)0.27 × 0.26 × 0.25
Data collection
DiffractometerBruker SMART APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.815, 0.830
No. of measured, independent and
observed [I > 2σ(I)] reflections
32042, 3254, 3227
Rint0.018
(sin θ/λ)max1)0.588
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.150, 1.35
No. of reflections3254
No. of parameters353
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.80, 0.88

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C13–C18 benzene ring.
D—H···AD—HH···AD···AD—H···A
C17—H17A···O1i0.97 (2)2.51 (2)3.213 (2)129 (1)
C23—H23A···Cg1ii0.96 (2)2.66 (2)3.5904 (18)166 (2)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y3/2, z3/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7576-2009.

Acknowledgements

HKF and JHG thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). Financial support from the Ministry of Science and Technology of China of the Austria–China Cooperation project (grant No. 2007DFA41590) is acknowledged. JHG also thanks USM for the award of a USM fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFun, H.-K., Goh, J. H., Yu, H. & Zhang, Y. (2010). Acta Cryst. E66, o724–o725.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHall, I. H., Chapman, J. M. & Wong, O. T. (1994). Anticancer Drugs, 5, 75–82.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMalamas, M. S. & Hohman, T. C. (1994). J. Med. Chem. 37, 2043–2058.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationNan, F. J., Li, J., Chen, Y. H., Zhang, Y. H., Gu, M. & Zhang, H. J. (2004). PCT Int. Appl. WO 2004111010 A1.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-L., Tian, J.-Z., Ling, K.-Q. & Xu, J.-H. (2000). Res. Chem. Intermed. 26, 679–689.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o803-o804
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds