metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{1,5,9-Tris[(2S)-2-hy­droxy­prop­yl]-1,5,9-tri­aza­cyclo­dodeca­ne}zinc(II) dinitrate monohydrate

aDepartment of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
*Correspondence e-mail: rcluckay@sun.ac.za

(Received 27 January 2010; accepted 18 February 2010; online 24 February 2010)

In the title compound, [Zn(C18H39N3O3)](NO3)2·H2O, the coordination geometry around the central ZnII atom is distorted octa­hedral. The hydroxyl groups in the macrocyclic ligand and water mol­ecules are engaged in O—H⋯O hydrogen bonding, which forms two-dimensional corrugated sheets comprising 34-membered rings. Neighbouring sheets are connected by C—H⋯O inter­actions.

Related literature

For the synthesis, see: Richman & Atkins (1974[Richman, J. E. & Atkins, T. J. (1974). J. Am. Chem. Soc. 96, 2268-2270.]); Sabatini & Fabrizzi (1979[Sabatini, L. & Fabrizzi, L. (1979). Inorg. Chem. 18, 438-444.]). For background to aza­macrocycles, see: Skerlj et al. (2002[Skerlj, R. T., Nan, S., Zhou, Y. & Bridger, G. J. (2002). Tetrahedron Lett. 43, 7569-7571.]). For the use of functionalised macrocycles in the synthesis of metal-chelating agents for medical applications, see: Sheng et al. (2007[Sheng, X., Lu, X., Zhang, J., Chen, Y., Lu, G., Shao, Y., Liu, F. & Xu, Q. (2007). J. Org. Chem. 72, 1799-1802.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C18H39N3O3)](NO3)2·H2O

  • Mr = 552.93

  • Orthorhombic, P 21 21 21

  • a = 10.1558 (10) Å

  • b = 15.4883 (15) Å

  • c = 15.7498 (15) Å

  • V = 2477.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.05 mm−1

  • T = 100 K

  • 0.16 × 0.15 × 0.11 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.497, Tmax = 0.890

  • 14715 measured reflections

  • 5102 independent reflections

  • 4378 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.113

  • S = 1.05

  • 5102 reflections

  • 325 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.83 e Å−3

  • Δρmin = −0.47 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2219 Friedel pairs

  • Flack parameter: −0.003 (15)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O10 0.86 (1) 1.80 (1) 2.652 (5) 171 (5)
O2—H2⋯O4 0.84 (1) 1.80 (2) 2.624 (5) 166 (5)
O3—H3⋯O6 0.85 (1) 2.06 (2) 2.853 (4) 156 (5)
O3—H3⋯O7 0.85 (1) 2.54 (3) 3.199 (4) 135 (4)
O4—H4C⋯O8i 0.85 (1) 1.86 (4) 2.641 (7) 153 (8)
O4—H4D⋯O5ii 0.84 (1) 1.86 (2) 2.689 (5) 170 (8)
C9—H9B⋯O10iii 0.99 2.39 3.184 (6) 137
Symmetry codes: (i) x-1, y, z; (ii) [-x+{\script{1\over 2}}, -y, z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Atwood & Barbour, 2003[Atwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3-8.]; Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Azamacrocycles and some of their N-substituted derivatives are of synthetic interest due to their unique binding properties with metal ions. The addition of different pendant arms can enhance the selectivity of the azamacrocycle for a metal cation, depending on the cavity size and on the nature of the substitutents (Skerlj et al., 2002). The design and synthesis of polyazamacrocycles bearing flexible pendant arms from the cyclic framework provides chemists with an opportunity to design macrocycles tailored for a specific function. This is especially the case because the pendant arms provide additional coordination sites for metal ions.

Functionalised macrocycles have been successfully employed in the synthesis of metal-chelating agents for medical applications owing to the kinetic inertness of the complexes which makes them resistant to decomplexation (Sheng et al., 2007).

In the title compound (Fig. 1), the ZnII atom is octahedrally coordinated. Small distortions cause the N—Zn—N angles to exceed 90° while the O—Zn—O angles measure less than 90°. The dicationic complex exhibits near C3-symmetry with exception of the propylene groups in which the central CH2 group adopts a different conformation in each sector.

The three hydroxyl groups are all engaged in hydrogen bonds. The O1—H1 and O3—H3 groups form hydrogen bonds (Table 1) with the two asymmetric nitrate counter anions and the O2—H2 group with the water molecule. This water molecule itself forms two hydrogen bonds with two other complexes. The hydrogen bonding results in the formation of two-dimensional corrugated sheets parallel to the ac plane. Three adjacent complex units are linked to form 34-membered rings which include ten hydrogen bonds (Fig. 2). Neighbouring sheets are loosely connected by C—H···O interactions involving one of the CH2 groups of the triazacyclododecane.

The configuration at C11, C14 and C17 is (S), resulting from utilisation of enantiopure (S)-methyloxirane in the synthetic process which is supported by anomalous scattering.

Related literature top

For the synthesis, see: Richman & Atkins (1974); Sabatini & Fabrizzi (1979). For background to azamacrocycles, see: Skerlj et al. (2002). For the use of functionalised macrocycles in the synthesis of metal-chelating agents for medical applications, see: Sheng et al. (2007).

Experimental top

The chiral macrocyclic ligand 1,5,9-tris[(2S)-2-hydroxypropyl]-1,5,9-triazacyclododecane was prepared by treating three equivalents and a slight excess of (S)-methyloxirane with 1,5,9-triazacyclododecane in absolute ethanol. This solution was stirred at room temperature for 3 days. 1,5,9-Triazacyclododecane was prepared using a modified method of Richman & Atkins (1974) and Sabatini & Fabrizzi (1979).

One equivalent of Zn(NO3)2.6H2O was dissolved in ethanol at 333 K with stirring. The ligand was added to the solution and it was stirred overnight. The powder which formed was filtered off and dissolved in a small quantity of N,N-dimethylformamide whereupon diethyl ether vapour was slowly diffused into the solution in a sealed container. Single crystals were obtained the next day.

Refinement top

Alkyl H atoms were positioned geometrically (C–H = 1.00, 0.99 and 0.98 Å for CH, CH2 and CH3 groups, respectively) and allowed to ride on their parent atoms. Hydroxyl and water O–H distances were restrained to 0.85 (1) Å and additional restraint H4···H5 distance restraint of 1.37 (1) Å was applied to the water molecule. Uiso(H) values were set at 1.2 times Ueq(C,O) except for methyl groups where Uiso(H) was set at 1.5 times Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Atwood & Barbour, 2003; Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the infinite sheet formed by hydrogen bonds (dashed lines).
{1,5,9-Tris[(2S)-2-hydroxypropyl]-1,5,9-triazacyclododecane}zinc(II) dinitrate monohydrate top
Crystal data top
[Zn(C18H39N3O3)](NO3)2·H2OF(000) = 1176
Mr = 552.93Dx = 1.482 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2897 reflections
a = 10.1558 (10) Åθ = 2.4–21.4°
b = 15.4883 (15) ŵ = 1.05 mm1
c = 15.7498 (15) ÅT = 100 K
V = 2477.4 (4) Å3Block, colourless
Z = 40.16 × 0.15 × 0.11 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
5102 independent reflections
Radiation source: fine-focus sealed tube4378 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω–scansθmax = 26.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1210
Tmin = 0.497, Tmax = 0.890k = 1912
14715 measured reflectionsl = 1819
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0571P)2 + 0.2902P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
5102 reflectionsΔρmax = 0.83 e Å3
325 parametersΔρmin = 0.47 e Å3
6 restraintsAbsolute structure: Flack (1983), 2219 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.003 (15)
Crystal data top
[Zn(C18H39N3O3)](NO3)2·H2OV = 2477.4 (4) Å3
Mr = 552.93Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.1558 (10) ŵ = 1.05 mm1
b = 15.4883 (15) ÅT = 100 K
c = 15.7498 (15) Å0.16 × 0.15 × 0.11 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
5102 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
4378 reflections with I > 2σ(I)
Tmin = 0.497, Tmax = 0.890Rint = 0.042
14715 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113Δρmax = 0.83 e Å3
S = 1.05Δρmin = 0.47 e Å3
5102 reflectionsAbsolute structure: Flack (1983), 2219 Friedel pairs
325 parametersAbsolute structure parameter: 0.003 (15)
6 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.36584 (4)0.27731 (2)0.26347 (3)0.02956 (13)
O10.5352 (2)0.20359 (16)0.24231 (17)0.0361 (6)
H10.579 (4)0.180 (3)0.282 (2)0.054*
O20.3145 (3)0.17597 (18)0.34919 (18)0.0384 (7)
H20.253 (4)0.141 (3)0.337 (3)0.058*
O30.2876 (3)0.18319 (16)0.16470 (18)0.0335 (6)
H30.333 (4)0.163 (3)0.124 (2)0.050*
N10.4853 (3)0.3643 (2)0.1868 (2)0.0351 (8)
N20.4049 (4)0.3366 (2)0.3861 (2)0.0445 (9)
N30.1732 (3)0.32353 (18)0.2361 (2)0.0350 (7)
C10.5873 (4)0.4178 (3)0.2327 (3)0.0461 (11)
H1A0.66520.38110.24410.055*
H1B0.61580.46540.19490.055*
C20.5404 (5)0.4553 (3)0.3145 (4)0.0617 (15)
H2A0.60200.50130.33250.074*
H2B0.45300.48200.30550.074*
C30.5301 (6)0.3898 (3)0.3834 (4)0.0608 (14)
H3A0.53910.42000.43850.073*
H3B0.60560.34980.37810.073*
C40.2927 (6)0.3893 (3)0.4213 (3)0.0554 (13)
H4A0.33060.43770.45430.067*
H4B0.24310.35260.46160.067*
C50.1959 (5)0.4264 (3)0.3581 (3)0.0497 (12)
H5A0.13770.46750.38830.060*
H5B0.24570.45950.31500.060*
C60.1110 (4)0.3611 (3)0.3131 (3)0.0459 (11)
H6A0.08970.31380.35310.055*
H6B0.02720.38910.29650.055*
C70.1678 (4)0.3901 (3)0.1664 (3)0.0421 (11)
H7A0.08370.38260.13540.051*
H7B0.16560.44800.19310.051*
C80.2779 (5)0.3893 (3)0.1023 (3)0.0446 (11)
H8A0.25030.42330.05220.054*
H8B0.29230.32910.08340.054*
C90.4068 (4)0.4252 (3)0.1350 (3)0.0454 (12)
H9A0.46060.44370.08580.054*
H9B0.38800.47710.16960.054*
C100.5550 (4)0.3027 (2)0.1298 (3)0.0341 (9)
H10A0.61910.33480.09450.041*
H10B0.49030.27530.09130.041*
C110.6259 (4)0.2340 (2)0.1788 (3)0.0376 (9)
H110.70490.25970.20720.045*
C120.6688 (4)0.1599 (3)0.1224 (3)0.0455 (11)
H12A0.71480.11650.15660.068*
H12B0.72810.18160.07810.068*
H12C0.59120.13360.09590.068*
C130.4320 (5)0.2628 (3)0.4426 (3)0.0487 (12)
H13A0.43760.28390.50180.058*
H13B0.51850.23770.42740.058*
C140.3291 (5)0.1933 (3)0.4378 (3)0.0445 (12)
H140.24410.21580.46090.053*
C150.3691 (6)0.1138 (3)0.4862 (3)0.0534 (12)
H15A0.30160.06910.47940.080*
H15B0.37830.12800.54660.080*
H15C0.45330.09240.46430.080*
C160.0934 (4)0.2471 (3)0.2103 (3)0.0402 (11)
H16A0.00490.26690.19250.048*
H16B0.08210.20870.26000.048*
C170.1541 (4)0.1966 (2)0.1393 (3)0.0379 (10)
H170.15190.23160.08600.046*
C180.0816 (5)0.1124 (3)0.1254 (3)0.0467 (11)
H18A0.12210.08100.07810.070*
H18B0.01090.12450.11200.070*
H18C0.08650.07730.17710.070*
O40.1292 (4)0.0583 (3)0.3391 (3)0.0907 (15)
H4C0.048 (2)0.071 (4)0.335 (5)0.136*
H4D0.136 (7)0.009 (2)0.360 (5)0.136*
N40.3691 (4)0.1325 (2)0.0369 (2)0.0342 (7)
O50.3483 (3)0.10720 (19)0.11152 (19)0.0468 (7)
O60.3717 (4)0.08361 (19)0.0223 (2)0.0583 (9)
O70.3868 (4)0.21105 (19)0.0261 (2)0.0575 (9)
N50.7946 (4)0.1494 (2)0.3579 (2)0.0411 (9)
O80.8856 (6)0.1023 (4)0.3790 (4)0.143 (3)
O90.8147 (4)0.2251 (3)0.3530 (2)0.0804 (13)
O100.6844 (5)0.1216 (3)0.3546 (3)0.1017 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0250 (2)0.0255 (2)0.0382 (2)0.00091 (18)0.00286 (18)0.00223 (18)
O10.0246 (13)0.0392 (15)0.0447 (16)0.0011 (11)0.0036 (12)0.0023 (13)
O20.0355 (18)0.0408 (17)0.0388 (16)0.0051 (13)0.0048 (13)0.0042 (13)
O30.0261 (15)0.0302 (15)0.0442 (17)0.0022 (11)0.0004 (12)0.0033 (12)
N10.0268 (18)0.0218 (15)0.057 (2)0.0059 (13)0.0024 (16)0.0041 (15)
N20.049 (2)0.0370 (19)0.048 (2)0.0009 (16)0.0025 (17)0.0158 (17)
N30.0273 (17)0.0231 (15)0.055 (2)0.0008 (12)0.0035 (15)0.0006 (15)
C10.033 (2)0.031 (2)0.075 (3)0.0117 (16)0.005 (2)0.015 (2)
C20.048 (3)0.053 (3)0.084 (4)0.015 (2)0.005 (3)0.029 (3)
C30.064 (4)0.051 (3)0.068 (3)0.014 (3)0.010 (3)0.021 (3)
C40.057 (3)0.046 (3)0.062 (3)0.006 (2)0.009 (3)0.019 (2)
C50.051 (3)0.035 (2)0.063 (3)0.010 (2)0.011 (2)0.011 (2)
C60.033 (3)0.037 (2)0.068 (3)0.0029 (19)0.015 (2)0.001 (2)
C70.032 (3)0.028 (2)0.067 (3)0.0011 (17)0.001 (2)0.004 (2)
C80.045 (3)0.032 (2)0.057 (3)0.003 (2)0.001 (2)0.013 (2)
C90.039 (3)0.028 (2)0.069 (3)0.0013 (18)0.011 (2)0.009 (2)
C100.024 (2)0.028 (2)0.050 (2)0.0027 (15)0.0077 (18)0.0040 (17)
C110.0243 (19)0.033 (2)0.055 (2)0.0011 (19)0.0043 (19)0.0034 (18)
C120.037 (3)0.034 (2)0.065 (3)0.0043 (18)0.018 (2)0.000 (2)
C130.049 (3)0.058 (3)0.040 (2)0.010 (2)0.000 (2)0.004 (2)
C140.049 (3)0.046 (3)0.038 (2)0.015 (2)0.0092 (19)0.0030 (19)
C150.060 (3)0.059 (3)0.041 (2)0.021 (3)0.006 (3)0.007 (2)
C160.024 (2)0.033 (2)0.063 (3)0.0032 (15)0.0017 (18)0.0051 (18)
C170.030 (2)0.032 (2)0.051 (2)0.0083 (17)0.0076 (19)0.0090 (17)
C180.032 (2)0.039 (2)0.069 (3)0.0074 (19)0.008 (2)0.007 (2)
O40.035 (2)0.079 (3)0.158 (4)0.013 (2)0.012 (3)0.078 (3)
N40.0195 (16)0.0394 (18)0.044 (2)0.0012 (16)0.0005 (16)0.0069 (15)
O50.0343 (18)0.0569 (19)0.0492 (18)0.0012 (15)0.0107 (14)0.0112 (14)
O60.066 (2)0.0463 (18)0.063 (2)0.003 (2)0.002 (2)0.0054 (16)
O70.065 (2)0.0386 (18)0.069 (2)0.0065 (18)0.0138 (17)0.0132 (15)
N50.030 (2)0.043 (2)0.050 (2)0.0103 (17)0.0000 (17)0.0067 (17)
O80.106 (5)0.204 (6)0.119 (4)0.114 (5)0.005 (3)0.032 (4)
O90.099 (3)0.074 (3)0.068 (2)0.049 (2)0.020 (2)0.013 (2)
O100.085 (4)0.063 (3)0.157 (5)0.021 (2)0.065 (3)0.043 (3)
Geometric parameters (Å, º) top
Zn1—O12.091 (3)C7—H7B0.99
Zn1—N32.128 (3)C8—C91.512 (7)
Zn1—O22.135 (3)C8—H8A0.99
Zn1—N22.174 (3)C8—H8B0.99
Zn1—N12.179 (3)C9—H9A0.99
Zn1—O32.275 (3)C9—H9B0.99
O1—C111.439 (5)C10—C111.500 (5)
O1—H10.855 (10)C10—H10A0.99
O2—C141.428 (5)C10—H10B0.99
O2—H20.844 (10)C11—C121.516 (6)
O3—C171.429 (5)C11—H111.00
O3—H30.849 (10)C12—H12A0.98
N1—C91.480 (5)C12—H12B0.98
N1—C101.489 (5)C12—H12C0.98
N1—C11.510 (5)C13—C141.502 (7)
N2—C131.474 (6)C13—H13A0.99
N2—C41.508 (6)C13—H13B0.99
N2—C31.516 (6)C14—C151.505 (5)
N3—C61.485 (5)C14—H141.00
N3—C161.491 (5)C15—H15A0.98
N3—C71.508 (5)C15—H15B0.98
C1—C21.492 (7)C15—H15C0.98
C1—H1A0.99C16—C171.497 (6)
C1—H1B0.99C16—H16A0.99
C2—C31.488 (8)C16—H16B0.99
C2—H2A0.99C17—C181.513 (5)
C2—H2B0.99C17—H171.00
C3—H3A0.99C18—H18A0.98
C3—H3B0.99C18—H18B0.98
C4—C51.513 (7)C18—H18C0.98
C4—H4A0.99O4—H4C0.848 (10)
C4—H4B0.99O4—H4D0.842 (10)
C5—C61.506 (7)N4—O61.201 (4)
C5—H5A0.99N4—O71.242 (4)
C5—H5B0.99N4—O51.257 (4)
C6—H6A0.99N5—O91.193 (5)
C6—H6B0.99N5—O101.200 (5)
C7—C81.505 (7)N5—O81.224 (6)
C7—H7A0.99
O1—Zn1—N3155.21 (12)C8—C7—H7A108.0
O1—Zn1—O284.28 (11)N3—C7—H7A108.0
N3—Zn1—O298.67 (12)C8—C7—H7B108.0
O1—Zn1—N2102.81 (12)N3—C7—H7B108.0
N3—Zn1—N2101.87 (14)H7A—C7—H7B107.3
O2—Zn1—N278.08 (13)C7—C8—C9114.3 (4)
O1—Zn1—N177.96 (11)C7—C8—H8A108.7
N3—Zn1—N1101.06 (13)C9—C8—H8A108.7
O2—Zn1—N1160.27 (12)C7—C8—H8B108.7
N2—Zn1—N197.44 (14)C9—C8—H8B108.7
O1—Zn1—O380.11 (10)H8A—C8—H8B107.6
N3—Zn1—O375.89 (11)N1—C9—C8114.8 (3)
O2—Zn1—O382.88 (10)N1—C9—H9A108.6
N2—Zn1—O3160.28 (12)C8—C9—H9A108.6
N1—Zn1—O3102.22 (12)N1—C9—H9B108.6
C11—O1—Zn1117.3 (2)C8—C9—H9B108.6
C11—O1—H1109 (3)H9A—C9—H9B107.5
Zn1—O1—H1123 (3)N1—C10—C11111.9 (3)
C14—O2—Zn1117.0 (2)N1—C10—H10A109.2
C14—O2—H2114 (3)C11—C10—H10A109.2
Zn1—O2—H2121 (3)N1—C10—H10B109.2
C17—O3—Zn1115.4 (2)C11—C10—H10B109.2
C17—O3—H3111 (3)H10A—C10—H10B107.9
Zn1—O3—H3124 (3)O1—C11—C10106.4 (3)
C9—N1—C10109.4 (3)O1—C11—C12110.1 (3)
C9—N1—C1106.5 (3)C10—C11—C12111.9 (3)
C10—N1—C1108.3 (3)O1—C11—H11109.5
C9—N1—Zn1113.5 (2)C10—C11—H11109.5
C10—N1—Zn1101.7 (2)C12—C11—H11109.5
C1—N1—Zn1117.1 (3)C11—C12—H12A109.5
C13—N2—C4109.8 (4)C11—C12—H12B109.5
C13—N2—C3106.4 (4)H12A—C12—H12B109.5
C4—N2—C3110.4 (4)C11—C12—H12C109.5
C13—N2—Zn1104.1 (2)H12A—C12—H12C109.5
C4—N2—Zn1114.7 (3)H12B—C12—H12C109.5
C3—N2—Zn1111.0 (3)N2—C13—C14113.3 (4)
C6—N3—C16107.6 (3)N2—C13—H13A108.9
C6—N3—C7108.1 (3)C14—C13—H13A108.9
C16—N3—C7108.9 (3)N2—C13—H13B108.9
C6—N3—Zn1111.0 (3)C14—C13—H13B108.9
C16—N3—Zn1106.7 (2)H13A—C13—H13B107.7
C7—N3—Zn1114.3 (2)O2—C14—C13104.8 (3)
C2—C1—N1114.0 (4)O2—C14—C15111.7 (3)
C2—C1—H1A108.7C13—C14—C15111.9 (4)
N1—C1—H1A108.7O2—C14—H14109.4
C2—C1—H1B108.7C13—C14—H14109.4
N1—C1—H1B108.7C15—C14—H14109.4
H1A—C1—H1B107.6C14—C15—H15A109.5
C3—C2—C1112.8 (4)C14—C15—H15B109.5
C3—C2—H2A109.0H15A—C15—H15B109.5
C1—C2—H2A109.0C14—C15—H15C109.5
C3—C2—H2B109.0H15A—C15—H15C109.5
C1—C2—H2B109.0H15B—C15—H15C109.5
H2A—C2—H2B107.8N3—C16—C17113.3 (3)
C2—C3—N2116.7 (4)N3—C16—H16A108.9
C2—C3—H3A108.1C17—C16—H16A108.9
N2—C3—H3A108.1N3—C16—H16B108.9
C2—C3—H3B108.1C17—C16—H16B108.9
N2—C3—H3B108.1H16A—C16—H16B107.7
H3A—C3—H3B107.3O3—C17—C16104.9 (3)
N2—C4—C5117.0 (4)O3—C17—C18112.2 (3)
N2—C4—H4A108.0C16—C17—C18111.0 (4)
C5—C4—H4A108.0O3—C17—H17109.6
N2—C4—H4B108.0C16—C17—H17109.6
C5—C4—H4B108.0C18—C17—H17109.6
H4A—C4—H4B107.3C17—C18—H18A109.5
C6—C5—C4115.3 (4)C17—C18—H18B109.5
C6—C5—H5A108.5H18A—C18—H18B109.5
C4—C5—H5A108.5C17—C18—H18C109.5
C6—C5—H5B108.5H18A—C18—H18C109.5
C4—C5—H5B108.5H18B—C18—H18C109.5
H5A—C5—H5B107.5H4C—O4—H4D108.6 (18)
N3—C6—C5113.8 (4)O6—N4—O7120.6 (3)
N3—C6—H6A108.8O6—N4—O5122.2 (3)
C5—C6—H6A108.8O7—N4—O5117.2 (3)
N3—C6—H6B108.8O9—N5—O10120.6 (4)
C5—C6—H6B108.8O9—N5—O8118.4 (5)
H6A—C6—H6B107.7O10—N5—O8120.2 (5)
C8—C7—N3117.1 (3)
N3—Zn1—O1—C1177.9 (4)N1—Zn1—N3—C16128.7 (3)
O2—Zn1—O1—C11176.2 (3)O3—Zn1—N3—C1628.7 (2)
N2—Zn1—O1—C11107.5 (3)O1—Zn1—N3—C777.0 (4)
N1—Zn1—O1—C1112.5 (3)O2—Zn1—N3—C7172.1 (3)
O3—Zn1—O1—C1192.4 (3)N2—Zn1—N3—C7108.3 (3)
O1—Zn1—O2—C14104.3 (3)N1—Zn1—N3—C78.2 (3)
N3—Zn1—O2—C14100.6 (3)O3—Zn1—N3—C791.8 (3)
N2—Zn1—O2—C140.2 (3)C9—N1—C1—C286.1 (5)
N1—Zn1—O2—C1478.5 (5)C10—N1—C1—C2156.4 (4)
O3—Zn1—O2—C14175.0 (3)Zn1—N1—C1—C242.3 (5)
O1—Zn1—O3—C17177.9 (3)N1—C1—C2—C374.1 (5)
N3—Zn1—O3—C174.1 (2)C1—C2—C3—N283.4 (5)
O2—Zn1—O3—C1796.7 (3)C13—N2—C3—C2165.0 (4)
N2—Zn1—O3—C1781.7 (4)C4—N2—C3—C275.9 (5)
N1—Zn1—O3—C17102.6 (3)Zn1—N2—C3—C252.4 (5)
O1—Zn1—N1—C9151.3 (3)C13—N2—C4—C5141.8 (4)
N3—Zn1—N1—C93.4 (3)C3—N2—C4—C5101.2 (5)
O2—Zn1—N1—C9177.6 (3)Zn1—N2—C4—C525.1 (5)
N2—Zn1—N1—C9107.1 (3)N2—C4—C5—C668.2 (6)
O3—Zn1—N1—C974.4 (3)C16—N3—C6—C5167.2 (4)
O1—Zn1—N1—C1033.9 (2)C7—N3—C6—C575.3 (5)
N3—Zn1—N1—C10120.8 (2)Zn1—N3—C6—C550.8 (4)
O2—Zn1—N1—C1060.2 (5)C4—C5—C6—N385.8 (5)
N2—Zn1—N1—C10135.5 (2)C6—N3—C7—C8148.8 (4)
O3—Zn1—N1—C1043.0 (3)C16—N3—C7—C894.5 (4)
O1—Zn1—N1—C183.8 (3)Zn1—N3—C7—C824.7 (5)
N3—Zn1—N1—C1121.5 (3)N3—C7—C8—C974.6 (5)
O2—Zn1—N1—C157.6 (5)C10—N1—C9—C878.7 (4)
N2—Zn1—N1—C117.8 (3)C1—N1—C9—C8164.5 (4)
O3—Zn1—N1—C1160.8 (3)Zn1—N1—C9—C834.1 (5)
O1—Zn1—N2—C1355.6 (3)C7—C8—C9—N180.5 (5)
N3—Zn1—N2—C13122.1 (3)C9—N1—C10—C11174.5 (3)
O2—Zn1—N2—C1325.6 (3)C1—N1—C10—C1169.8 (4)
N1—Zn1—N2—C13134.9 (3)Zn1—N1—C10—C1154.1 (3)
O3—Zn1—N2—C1340.8 (5)Zn1—O1—C11—C1013.1 (4)
O1—Zn1—N2—C4175.5 (3)Zn1—O1—C11—C12134.6 (3)
N3—Zn1—N2—C42.2 (3)N1—C10—C11—O146.0 (4)
O2—Zn1—N2—C494.3 (3)N1—C10—C11—C12166.3 (3)
N1—Zn1—N2—C4105.2 (3)C4—N2—C13—C1473.0 (4)
O3—Zn1—N2—C479.1 (5)C3—N2—C13—C14167.5 (4)
O1—Zn1—N2—C358.5 (3)Zn1—N2—C13—C1450.2 (4)
N3—Zn1—N2—C3123.8 (3)Zn1—O2—C14—C1324.9 (4)
O2—Zn1—N2—C3139.7 (3)Zn1—O2—C14—C15146.3 (3)
N1—Zn1—N2—C320.8 (3)N2—C13—C14—O250.5 (5)
O3—Zn1—N2—C3154.9 (3)N2—C13—C14—C15171.8 (3)
O1—Zn1—N3—C6160.4 (3)C6—N3—C16—C17173.2 (3)
O2—Zn1—N3—C665.3 (3)C7—N3—C16—C1769.8 (4)
N2—Zn1—N3—C614.2 (3)Zn1—N3—C16—C1754.0 (4)
N1—Zn1—N3—C6114.4 (3)Zn1—O3—C17—C1621.4 (3)
O3—Zn1—N3—C6145.7 (3)Zn1—O3—C17—C18142.0 (3)
O1—Zn1—N3—C1643.5 (4)N3—C16—C17—O349.3 (4)
O2—Zn1—N3—C1651.7 (3)N3—C16—C17—C18170.7 (3)
N2—Zn1—N3—C16131.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O100.86 (1)1.80 (1)2.652 (5)171 (5)
O2—H2···O40.84 (1)1.80 (2)2.624 (5)166 (5)
O3—H3···O60.85 (1)2.06 (2)2.853 (4)156 (5)
O3—H3···O70.85 (1)2.54 (3)3.199 (4)135 (4)
O4—H4C···O8i0.85 (1)1.86 (4)2.641 (7)153 (8)
O4—H4D···O5ii0.84 (1)1.86 (2)2.689 (5)170 (8)
C9—H9B···O10iii0.992.393.184 (6)137
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y, z+1/2; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C18H39N3O3)](NO3)2·H2O
Mr552.93
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)10.1558 (10), 15.4883 (15), 15.7498 (15)
V3)2477.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.05
Crystal size (mm)0.16 × 0.15 × 0.11
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.497, 0.890
No. of measured, independent and
observed [I > 2σ(I)] reflections
14715, 5102, 4378
Rint0.042
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.113, 1.05
No. of reflections5102
No. of parameters325
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.83, 0.47
Absolute structureFlack (1983), 2219 Friedel pairs
Absolute structure parameter0.003 (15)

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Atwood & Barbour, 2003; Barbour, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O100.86 (1)1.80 (1)2.652 (5)171 (5)
O2—H2···O40.84 (1)1.80 (2)2.624 (5)166 (5)
O3—H3···O60.85 (1)2.06 (2)2.853 (4)156 (5)
O3—H3···O70.85 (1)2.54 (3)3.199 (4)135 (4)
O4—H4C···O8i0.85 (1)1.86 (4)2.641 (7)153 (8)
O4—H4D···O5ii0.84 (1)1.86 (2)2.689 (5)170 (8)
C9—H9B···O10iii0.992.393.184 (6)137
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y, z+1/2; (iii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the National Research Foundation (NRF) of South Africa for financial support and Dr Catharine Esterhuysen for useful comments.

References

First citationAtwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3–8.  Web of Science CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRichman, J. E. & Atkins, T. J. (1974). J. Am. Chem. Soc. 96, 2268–2270.  CrossRef CAS Web of Science Google Scholar
First citationSabatini, L. & Fabrizzi, L. (1979). Inorg. Chem. 18, 438–444.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheng, X., Lu, X., Zhang, J., Chen, Y., Lu, G., Shao, Y., Liu, F. & Xu, Q. (2007). J. Org. Chem. 72, 1799–1802.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSkerlj, R. T., Nan, S., Zhou, Y. & Bridger, G. J. (2002). Tetrahedron Lett. 43, 7569–7571.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds