organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(6-Chloro-2-methyl-4-phenyl-3-quinol­yl)-3-(4-eth­oxy­phen­yl)prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India
*Correspondence e-mail: hkfun@usm.my

(Received 4 January 2010; accepted 11 January 2010; online 16 January 2010)

In the title compound, C27H22ClNO2, the phenyl substituent on the quinoline ring system is almost perpendicular to it [dihedral angle = 88.2 (1)°]. The quinoline ring system and the ethoxy­phenyl ring are oriented at dihedral angles of 79.5 (1) and 17.6 (3)°, respectively, with respect to the almost planar [r.m.s. deviation= 0.037 (3) Å] –C(=O)—C=C– linkage. In the crystal, the inversion-related mol­ecules exist as C—H⋯O hydrogen-bonded R22(8) dimers.

Related literature

For the biological activity of chalcone derivatives, see: Dimmock et al. (1999[Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1149.]); Zi & Simoneau (2005[Zi, X. & Simoneau, A. R. (2005). Cancer Res. 658, 3479-3486.]); Yamazaki et al. (2002[Yamazaki, S., Morita, T. & Endo, H. (2002). Cancer Lett. 183, 23-30.]). For a related structure, see: Wu et al. (2006[Wu, Y.-C., Liu, L., Li, H.-J., Wang, D. & Chen, Y.-J. (2006). J. Org. Chem. 71, 6592-6595.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C27H22ClNO2

  • Mr = 427.91

  • Monoclinic, P 21 /c

  • a = 16.2086 (5) Å

  • b = 13.4760 (4) Å

  • c = 10.5450 (3) Å

  • β = 105.128 (2)°

  • V = 2223.49 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 296 K

  • 0.52 × 0.14 × 0.07 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.]) Tmin = 0.905, Tmax = 0.986

  • 39732 measured reflections

  • 6511 independent reflections

  • 2360 reflections with I > 2σ(I)

  • Rint = 0.110

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.169

  • S = 1.00

  • 6511 reflections

  • 282 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21A⋯O2i 0.93 2.57 3.493 (3) 172
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcones are open chain flavonoids possessing a variety of biological activities such as antioxidant, anti-inflammation, antimicrobial, antiprotozoal, antiulcer, as well as other activities (Dimmock et al., 1999). More importantly, chalcones have shown several anticancer activities as inhibitors of cancer cell proliferation, carcinogenesis and metastasis (Zi & Simoneau, 2005; Yamazaki et al., 2002). We report here the crystal structure of the title chalcone derivative.

In the title molecule (Fig. 1), the quinoline ring system (C1/N1/C2–C9) is essentially planar with a maximum deviation of 0.026 (2) Å for atom C2. The C10–C15 and C19–C24 rings form dihedral angles of 88.2 (1)° and 67.8 (1)°, respectively, with the quinoline ring system. The ethoxy group is almost coplanar with the attached ring [C26—O2—C22—C23 = 1.8 (4)° and C22—O2—C26—C27 = -171.7 (3)°]. Bond lengths (Allen et al., 1987) and angles show normal values.

In the crystal packing (Fig. 2), pairs of intermolecular C21—H21A···O2 hydrogen bonds (Table 1) form dimers with neighbouring molecules, generating R22(8) ring motifs (Bernstein et al., 1995). The dimers are stacked down the c axis (Fig. 2).

Related literature top

For the biological activity of chalcone derivatives, see: Dimmock et al. (1999); Zi & Simoneau (2005); Yamazaki et al. (2002). For a related structure, see: Wu et al. (2006). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of 3-acetyl-6-chloro-2-methyl-4-phenylquinoline (2.95 g, 0.01 mmol), 4-ethoxybenzaldehyde (1.50 g, 0.01 mmol) and a catalytic amount of KOH in distilled ethanol was stirred for 12 h. The resulting mixture was concentrated to remove the ethanol and then poured onto ice and neutralized with diluted acetic acid. The resultant solid was filtered, dried and purified by column chromatography using a 1:1 mixture of ethylacetate and petroleum ether (m.p 401–403 K).

Refinement top

H atoms were positioned geometrically [C–H = 0.93–0.97 Å] and refined using a riding model, with Uiso(H) = 1.2-1.5Ueq(C). A rotating group model was used for the methyl groups. The ratio of observed to unique reflections is low (36%), and the value of Rint is greater than 0.10, probably due to the poor diffraction quality of the crystal.

Structure description top

Chalcones are open chain flavonoids possessing a variety of biological activities such as antioxidant, anti-inflammation, antimicrobial, antiprotozoal, antiulcer, as well as other activities (Dimmock et al., 1999). More importantly, chalcones have shown several anticancer activities as inhibitors of cancer cell proliferation, carcinogenesis and metastasis (Zi & Simoneau, 2005; Yamazaki et al., 2002). We report here the crystal structure of the title chalcone derivative.

In the title molecule (Fig. 1), the quinoline ring system (C1/N1/C2–C9) is essentially planar with a maximum deviation of 0.026 (2) Å for atom C2. The C10–C15 and C19–C24 rings form dihedral angles of 88.2 (1)° and 67.8 (1)°, respectively, with the quinoline ring system. The ethoxy group is almost coplanar with the attached ring [C26—O2—C22—C23 = 1.8 (4)° and C22—O2—C26—C27 = -171.7 (3)°]. Bond lengths (Allen et al., 1987) and angles show normal values.

In the crystal packing (Fig. 2), pairs of intermolecular C21—H21A···O2 hydrogen bonds (Table 1) form dimers with neighbouring molecules, generating R22(8) ring motifs (Bernstein et al., 1995). The dimers are stacked down the c axis (Fig. 2).

For the biological activity of chalcone derivatives, see: Dimmock et al. (1999); Zi & Simoneau (2005); Yamazaki et al. (2002). For a related structure, see: Wu et al. (2006). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. Part of the crystal packing of the title compound, viewed along the c axis.
(E)-1-(6-Chloro-2-methyl-4-phenyl-3-quinolyl)-3-(4-ethoxyphenyl)prop- 2-en-1-one top
Crystal data top
C27H22ClNO2F(000) = 896
Mr = 427.91Dx = 1.278 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2856 reflections
a = 16.2086 (5) Åθ = 2.5–19.7°
b = 13.4760 (4) ŵ = 0.20 mm1
c = 10.5450 (3) ÅT = 296 K
β = 105.128 (2)°Plate, colourless
V = 2223.49 (11) Å30.52 × 0.14 × 0.07 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6511 independent reflections
Radiation source: fine-focus sealed tube2360 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.110
φ and ω scansθmax = 30.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2222
Tmin = 0.905, Tmax = 0.986k = 1819
39732 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0605P)2]
where P = (Fo2 + 2Fc2)/3
6511 reflections(Δ/σ)max = 0.001
282 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C27H22ClNO2V = 2223.49 (11) Å3
Mr = 427.91Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.2086 (5) ŵ = 0.20 mm1
b = 13.4760 (4) ÅT = 296 K
c = 10.5450 (3) Å0.52 × 0.14 × 0.07 mm
β = 105.128 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6511 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2360 reflections with I > 2σ(I)
Tmin = 0.905, Tmax = 0.986Rint = 0.110
39732 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.169H-atom parameters constrained
S = 1.00Δρmax = 0.16 e Å3
6511 reflectionsΔρmin = 0.16 e Å3
282 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.16190 (5)0.67801 (6)0.88581 (7)0.0828 (3)
O10.64844 (13)0.61168 (16)0.6171 (2)0.0913 (7)
O20.56628 (11)0.02725 (14)0.68435 (17)0.0742 (5)
N10.83573 (15)0.60187 (15)1.01410 (19)0.0652 (6)
C10.76675 (18)0.57733 (18)0.9210 (3)0.0636 (7)
C20.91019 (17)0.61647 (17)0.9804 (2)0.0561 (6)
C30.98340 (19)0.64653 (18)1.0782 (2)0.0681 (8)
H3A0.97960.65361.16430.082*
C41.05818 (18)0.66517 (19)1.0508 (2)0.0669 (8)
H4A1.10520.68551.11690.080*
C51.06500 (16)0.65382 (17)0.9211 (2)0.0598 (7)
C60.99656 (16)0.62385 (17)0.8232 (2)0.0571 (7)
H6A1.00230.61570.73830.068*
C70.91777 (16)0.60528 (16)0.8499 (2)0.0516 (6)
C80.84261 (17)0.57688 (16)0.7512 (2)0.0533 (6)
C90.76818 (16)0.56417 (18)0.7873 (2)0.0568 (6)
C100.84861 (15)0.56255 (19)0.6129 (2)0.0535 (6)
C110.83198 (18)0.6399 (2)0.5248 (3)0.0722 (8)
H11A0.81490.70110.54990.087*
C120.8408 (2)0.6264 (3)0.3979 (3)0.0832 (9)
H12A0.82960.67890.33860.100*
C130.86553 (19)0.5372 (3)0.3599 (3)0.0793 (9)
H13A0.87110.52870.27510.095*
C140.88206 (19)0.4605 (2)0.4470 (3)0.0809 (9)
H14A0.89900.39940.42130.097*
C150.87381 (17)0.4728 (2)0.5731 (2)0.0696 (8)
H15A0.88540.42000.63180.084*
C160.68610 (18)0.5431 (2)0.6824 (3)0.0674 (7)
C170.65339 (17)0.4419 (2)0.6605 (3)0.0714 (8)
H17A0.60500.43110.59170.086*
C180.68782 (17)0.3647 (2)0.7317 (3)0.0701 (8)
H18A0.73690.37700.79850.084*
C190.65760 (16)0.2617 (2)0.7177 (3)0.0647 (7)
C200.59824 (17)0.2271 (2)0.6052 (2)0.0719 (8)
H20A0.57830.26960.53440.086*
C210.56885 (17)0.1309 (2)0.5978 (3)0.0703 (8)
H21A0.52910.10920.52240.084*
C220.59809 (16)0.0660 (2)0.7018 (2)0.0630 (7)
C230.65787 (18)0.0995 (2)0.8127 (3)0.0750 (8)
H23A0.67820.05700.88350.090*
C240.68682 (17)0.1947 (2)0.8180 (3)0.0747 (8)
H24A0.72800.21530.89230.090*
C250.68576 (19)0.5650 (2)0.9637 (3)0.0906 (10)
H25A0.68870.60491.04010.136*
H25B0.67900.49650.98420.136*
H25C0.63790.58550.89400.136*
C260.5940 (2)0.0967 (2)0.7886 (3)0.0938 (10)
H26A0.57250.07770.86270.113*
H26B0.65600.09770.81710.113*
C270.5619 (2)0.1949 (3)0.7416 (4)0.1204 (13)
H27A0.57870.24200.81190.181*
H27B0.58530.21420.67050.181*
H27C0.50070.19300.71150.181*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0758 (5)0.1044 (6)0.0655 (5)0.0208 (4)0.0137 (4)0.0139 (4)
O10.0965 (16)0.0922 (16)0.0772 (14)0.0004 (12)0.0081 (12)0.0054 (12)
O20.0882 (13)0.0688 (13)0.0590 (11)0.0121 (10)0.0075 (10)0.0023 (10)
N10.0898 (17)0.0651 (15)0.0463 (12)0.0059 (12)0.0280 (12)0.0022 (11)
C10.0804 (19)0.0612 (18)0.0541 (16)0.0052 (14)0.0260 (15)0.0026 (13)
C20.0806 (18)0.0504 (15)0.0389 (13)0.0023 (13)0.0184 (13)0.0007 (11)
C30.094 (2)0.0725 (19)0.0371 (14)0.0044 (16)0.0162 (14)0.0061 (12)
C40.081 (2)0.0707 (19)0.0420 (15)0.0070 (15)0.0034 (13)0.0071 (12)
C50.0687 (16)0.0581 (16)0.0504 (15)0.0073 (13)0.0117 (13)0.0033 (12)
C60.0786 (18)0.0543 (16)0.0388 (13)0.0073 (13)0.0163 (13)0.0064 (11)
C70.0695 (17)0.0473 (14)0.0390 (13)0.0068 (12)0.0156 (12)0.0027 (11)
C80.0747 (17)0.0473 (15)0.0399 (13)0.0062 (12)0.0183 (12)0.0037 (11)
C90.0734 (17)0.0563 (16)0.0447 (14)0.0080 (13)0.0225 (13)0.0049 (12)
C100.0654 (15)0.0565 (16)0.0392 (13)0.0126 (13)0.0149 (11)0.0048 (12)
C110.103 (2)0.0622 (18)0.0529 (16)0.0086 (15)0.0231 (15)0.0024 (14)
C120.114 (3)0.087 (2)0.0502 (17)0.0144 (19)0.0245 (16)0.0127 (16)
C130.098 (2)0.097 (2)0.0477 (16)0.0237 (19)0.0279 (15)0.0128 (17)
C140.110 (2)0.082 (2)0.0560 (17)0.0013 (18)0.0304 (16)0.0156 (16)
C150.098 (2)0.0667 (19)0.0445 (15)0.0004 (16)0.0189 (14)0.0033 (13)
C160.0715 (18)0.079 (2)0.0556 (17)0.0056 (16)0.0246 (14)0.0067 (15)
C170.0646 (17)0.086 (2)0.0619 (17)0.0129 (16)0.0134 (14)0.0095 (16)
C180.0642 (17)0.087 (2)0.0605 (17)0.0086 (16)0.0194 (14)0.0137 (16)
C190.0628 (16)0.074 (2)0.0585 (17)0.0095 (14)0.0173 (13)0.0157 (15)
C200.0791 (19)0.077 (2)0.0561 (16)0.0072 (16)0.0119 (14)0.0001 (14)
C210.0769 (18)0.075 (2)0.0530 (16)0.0084 (15)0.0059 (14)0.0069 (15)
C220.0636 (16)0.073 (2)0.0526 (16)0.0015 (14)0.0158 (13)0.0058 (14)
C230.0748 (19)0.088 (2)0.0554 (17)0.0078 (16)0.0048 (14)0.0013 (15)
C240.0687 (18)0.088 (2)0.0593 (17)0.0090 (16)0.0017 (14)0.0070 (17)
C250.097 (2)0.116 (3)0.0730 (19)0.0114 (19)0.0472 (17)0.0061 (18)
C260.103 (2)0.094 (3)0.073 (2)0.0185 (19)0.0026 (18)0.0186 (19)
C270.141 (3)0.099 (3)0.119 (3)0.012 (2)0.029 (2)0.034 (2)
Geometric parameters (Å, º) top
Cl1—C51.737 (3)C13—H13A0.93
O1—C161.217 (3)C14—C151.382 (3)
O2—C221.352 (3)C14—H14A0.93
O2—C261.424 (3)C15—H15A0.93
N1—C11.323 (3)C16—C171.460 (4)
N1—C21.359 (3)C17—C181.319 (4)
C1—C91.427 (3)C17—H17A0.93
C1—C251.504 (4)C18—C191.467 (4)
C2—C31.414 (3)C18—H18A0.93
C2—C71.421 (3)C19—C241.376 (4)
C3—C41.341 (3)C19—C201.398 (3)
C3—H3A0.93C20—C211.376 (4)
C4—C51.408 (3)C20—H20A0.93
C4—H4A0.93C21—C221.386 (3)
C5—C61.365 (3)C21—H21A0.93
C6—C71.400 (3)C22—C231.385 (3)
C6—H6A0.93C23—C241.362 (4)
C7—C81.432 (3)C23—H23A0.93
C8—C91.367 (3)C24—H24A0.93
C8—C101.500 (3)C25—H25A0.96
C9—C161.518 (4)C25—H25B0.96
C10—C111.375 (3)C25—H25C0.96
C10—C151.376 (3)C26—C271.460 (4)
C11—C121.395 (4)C26—H26A0.97
C11—H11A0.93C26—H26B0.97
C12—C131.360 (4)C27—H27A0.96
C12—H12A0.93C27—H27B0.96
C13—C141.362 (4)C27—H27C0.96
C22—O2—C26118.2 (2)C14—C15—H15A119.7
C1—N1—C2118.6 (2)O1—C16—C17120.8 (3)
N1—C1—C9122.4 (2)O1—C16—C9119.0 (3)
N1—C1—C25116.1 (2)C17—C16—C9120.2 (3)
C9—C1—C25121.5 (2)C18—C17—C16124.4 (3)
N1—C2—C3119.0 (2)C18—C17—H17A117.8
N1—C2—C7123.1 (2)C16—C17—H17A117.8
C3—C2—C7118.0 (3)C17—C18—C19127.5 (3)
C4—C3—C2122.0 (2)C17—C18—H18A116.2
C4—C3—H3A119.0C19—C18—H18A116.2
C2—C3—H3A119.0C24—C19—C20117.1 (3)
C3—C4—C5119.6 (2)C24—C19—C18120.3 (2)
C3—C4—H4A120.2C20—C19—C18122.6 (3)
C5—C4—H4A120.2C21—C20—C19120.9 (3)
C6—C5—C4120.8 (3)C21—C20—H20A119.6
C6—C5—Cl1119.7 (2)C19—C20—H20A119.6
C4—C5—Cl1119.5 (2)C20—C21—C22120.5 (2)
C5—C6—C7120.3 (2)C20—C21—H21A119.7
C5—C6—H6A119.8C22—C21—H21A119.7
C7—C6—H6A119.8O2—C22—C23125.1 (3)
C6—C7—C2119.3 (2)O2—C22—C21116.0 (2)
C6—C7—C8123.3 (2)C23—C22—C21118.8 (3)
C2—C7—C8117.4 (2)C24—C23—C22119.9 (3)
C9—C8—C7118.5 (2)C24—C23—H23A120.0
C9—C8—C10122.7 (2)C22—C23—H23A120.0
C7—C8—C10118.8 (2)C23—C24—C19122.7 (2)
C8—C9—C1120.1 (2)C23—C24—H24A118.6
C8—C9—C16119.3 (2)C19—C24—H24A118.6
C1—C9—C16120.4 (2)C1—C25—H25A109.5
C11—C10—C15118.8 (2)C1—C25—H25B109.5
C11—C10—C8120.5 (2)H25A—C25—H25B109.5
C15—C10—C8120.6 (2)C1—C25—H25C109.5
C10—C11—C12119.9 (3)H25A—C25—H25C109.5
C10—C11—H11A120.1H25B—C25—H25C109.5
C12—C11—H11A120.1O2—C26—C27108.7 (2)
C13—C12—C11120.6 (3)O2—C26—H26A109.9
C13—C12—H12A119.7C27—C26—H26A109.9
C11—C12—H12A119.7O2—C26—H26B109.9
C12—C13—C14119.6 (3)C27—C26—H26B109.9
C12—C13—H13A120.2H26A—C26—H26B108.3
C14—C13—H13A120.2C26—C27—H27A109.5
C13—C14—C15120.4 (3)C26—C27—H27B109.5
C13—C14—H14A119.8H27A—C27—H27B109.5
C15—C14—H14A119.8C26—C27—H27C109.5
C10—C15—C14120.7 (3)H27A—C27—H27C109.5
C10—C15—H15A119.7H27B—C27—H27C109.5
C2—N1—C1—C91.0 (4)C7—C8—C10—C1586.0 (3)
C2—N1—C1—C25178.4 (2)C15—C10—C11—C120.0 (4)
C1—N1—C2—C3177.5 (2)C8—C10—C11—C12177.7 (3)
C1—N1—C2—C70.9 (4)C10—C11—C12—C130.2 (4)
N1—C2—C3—C4177.9 (2)C11—C12—C13—C140.2 (5)
C7—C2—C3—C40.6 (4)C12—C13—C14—C150.0 (5)
C2—C3—C4—C50.6 (4)C11—C10—C15—C140.2 (4)
C3—C4—C5—C60.2 (4)C8—C10—C15—C14177.9 (3)
C3—C4—C5—Cl1180.0 (2)C13—C14—C15—C100.2 (4)
C4—C5—C6—C71.0 (4)C8—C9—C16—O179.3 (3)
Cl1—C5—C6—C7179.20 (18)C1—C9—C16—O196.4 (3)
C5—C6—C7—C21.0 (4)C8—C9—C16—C17100.5 (3)
C5—C6—C7—C8177.8 (2)C1—C9—C16—C1783.8 (3)
N1—C2—C7—C6178.6 (2)O1—C16—C17—C18176.1 (3)
C3—C2—C7—C60.2 (3)C9—C16—C17—C184.1 (4)
N1—C2—C7—C80.3 (3)C16—C17—C18—C19178.4 (2)
C3—C2—C7—C8178.7 (2)C17—C18—C19—C24163.6 (3)
C6—C7—C8—C9177.6 (2)C17—C18—C19—C2015.7 (4)
C2—C7—C8—C91.3 (3)C24—C19—C20—C211.9 (4)
C6—C7—C8—C102.3 (3)C18—C19—C20—C21177.4 (3)
C2—C7—C8—C10178.9 (2)C19—C20—C21—C220.4 (4)
C7—C8—C9—C11.2 (3)C26—O2—C22—C231.8 (4)
C10—C8—C9—C1179.0 (2)C26—O2—C22—C21179.7 (3)
C7—C8—C9—C16174.6 (2)C20—C21—C22—O2179.1 (3)
C10—C8—C9—C165.2 (4)C20—C21—C22—C230.5 (4)
N1—C1—C9—C80.0 (4)O2—C22—C23—C24178.4 (3)
C25—C1—C9—C8179.4 (2)C21—C22—C23—C240.0 (4)
N1—C1—C9—C16175.7 (2)C22—C23—C24—C191.6 (4)
C25—C1—C9—C163.7 (4)C20—C19—C24—C232.5 (4)
C9—C8—C10—C1188.1 (3)C18—C19—C24—C23176.8 (3)
C7—C8—C10—C1191.7 (3)C22—O2—C26—C27171.7 (3)
C9—C8—C10—C1594.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21A···O2i0.932.573.493 (3)172
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC27H22ClNO2
Mr427.91
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)16.2086 (5), 13.4760 (4), 10.5450 (3)
β (°) 105.128 (2)
V3)2223.49 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.52 × 0.14 × 0.07
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.905, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
39732, 6511, 2360
Rint0.110
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.169, 1.00
No. of reflections6511
No. of parameters282
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.16

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21A···O2i0.932.573.493 (3)172
Symmetry code: (i) x+1, y, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and TSH thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant No. 1001/PFIZIK/811012. VV is grateful to the DST–India for funding through the Young Scientist Scheme (Fast Track Proposal).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.  Google Scholar
First citationDimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149.  Web of Science PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, Y.-C., Liu, L., Li, H.-J., Wang, D. & Chen, Y.-J. (2006). J. Org. Chem. 71, 6592–6595.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYamazaki, S., Morita, T. & Endo, H. (2002). Cancer Lett. 183, 23–30.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZi, X. & Simoneau, A. R. (2005). Cancer Res. 658, 3479–3486.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds