metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{2-eth­­oxy-6-[2-(iso­propyl­ammonio)ethyl­imino­meth­yl]phenolato}di­thio­cyanato­nickel(II)

aDepartment of Chemistry, Huzhou University, Huzhou 313000, People's Republic of China
*Correspondence e-mail: chenyi_wang@163.com

(Received 30 December 2009; accepted 30 December 2009; online 9 January 2010)

In the mononuclear title complex, [Ni(NCS)2(C14H22N2O2)2], the Ni atom lies on an inversion centre. It is chelated by the phenolate O and imine N atoms from two zwitterionic Schiff base ligands, and is also coordinated by the N atoms from two thio­cyanate ligands, giving a slightly distorted octa­hedral geometry. Intra­molecular N—H⋯O and N—H⋯N hydrogen bonds are observed.

Related literature

For related structures, see: Ali et al. (2004[Ali, H. M., Khamis, N. A. & Yamin, B. M. (2004). Acta Cryst. E60, m1708-m1709.]); Sarı et al. (2006[Sarı, M., Atakol, O., Svoboda, I. & Fuess, H. (2006). Acta Cryst. E62, m563-m565.]); Gomes et al. (2000[Gomes, L., Sousa, C., Freire, C. & de Castro, B. (2000). Acta Cryst. C56, 1201-1203.]); Su et al. (2006[Su, Y.-Q., Wang, P., He, Y.-F. & Liu, L.-M. (2006). Acta Cryst. E62, m2673-m2675.]); Wang (2007[Wang, C.-Y. (2007). Acta Cryst. E63, m1076-m1077.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(NCS)2(C14H22N2O2)2]

  • Mr = 675.54

  • Monoclinic, C 2/c

  • a = 24.958 (3) Å

  • b = 14.016 (2) Å

  • c = 9.613 (2) Å

  • β = 91.73 (2)°

  • V = 3361.2 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.74 mm−1

  • T = 298 K

  • 0.32 × 0.30 × 0.30 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.797, Tmax = 0.808

  • 9655 measured reflections

  • 3553 independent reflections

  • 2395 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.115

  • S = 1.03

  • 3553 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O1 2.0104 (18)
Ni1—N1 2.076 (2)
Ni1—N3 2.180 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯N3 0.90 2.34 3.113 (3) 144
N2—H2A⋯O2i 0.90 2.53 3.273 (3) 141
N2—H2A⋯O1i 0.90 1.79 2.584 (3) 145
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of our investigations into novel urease inhibitors, we have synthesized the title compound, a new NiII complex. The Ni atom lies on an inversion centre; it is chelated by the phenolate O and imine N atoms from two Schiff base ligands, and is coordinated by the N atoms from two thiocyanate ligands (Fig. 1). While the three trans angles at Ni centre are 180° by symmetry, the other angles are close to 90°, ranging from 88.35 (9) to 91.65 (9)°, indicating a slightly distorted octahedral coordination. The Ni—O and Ni—N bond lengths (Table 1) are typical and are comparable with those observed in other similar nickel(II) complexes (Ali et al., 2004; Sarı et al., 2006; Gomes et al., 2000; Su et al., 2006) and the nickel(II) complex we reported previously (Wang, 2007). The amine N atoms of the Schiff base ligands are protonated and take no part in the coordination to the Ni atom.

Related literature top

For related structures, see: Ali et al. (2004); Sarı et al. (2006); Gomes et al. (2000); Su et al. (2006); Wang (2007).

Experimental top

3-Ethoxysalicylaldehyde (0.2 mmol, 33.2 mg) and N-isopropylethane-1,2-diamine (0.2 mmol, 20.4 mg) were dissolved in MeOH (10 ml). The mixture was stirred at room temperature for 10 min to give a clear yellow solution. To this solution was added an aqueous solution (2 ml) of ammonium thiocyanate (0.2 mmol, 15.2 mg) and an aqueous solution (3 ml) of Ni(CH3COO)2.4H2O (0.1 mmol, 24.9 mg) with stirring. The resulting mixture was stirred for another 10 min at room temperature. After keeping the filtrate in air for three days, green block-shaped crystals were formed at the bottom of the vessel.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C–H distances in the range 0.93–0.98 Å, N–H distance of 0.90 Å, and with Uiso(H) set at 1.2Ueq(C,N) and 1.5Ueq(methyl C).

Structure description top

As part of our investigations into novel urease inhibitors, we have synthesized the title compound, a new NiII complex. The Ni atom lies on an inversion centre; it is chelated by the phenolate O and imine N atoms from two Schiff base ligands, and is coordinated by the N atoms from two thiocyanate ligands (Fig. 1). While the three trans angles at Ni centre are 180° by symmetry, the other angles are close to 90°, ranging from 88.35 (9) to 91.65 (9)°, indicating a slightly distorted octahedral coordination. The Ni—O and Ni—N bond lengths (Table 1) are typical and are comparable with those observed in other similar nickel(II) complexes (Ali et al., 2004; Sarı et al., 2006; Gomes et al., 2000; Su et al., 2006) and the nickel(II) complex we reported previously (Wang, 2007). The amine N atoms of the Schiff base ligands are protonated and take no part in the coordination to the Ni atom.

For related structures, see: Ali et al. (2004); Sarı et al. (2006); Gomes et al. (2000); Su et al. (2006); Wang (2007).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Unlabelled atoms are at the symmetry position (1/2 - x, 1/2 - y, -z).
Bis{2-ethoxy-6-[2- (isopropylammonio)ethyliminomethyl]phenolato}dithiocyanatonickel(II) top
Crystal data top
[Ni(NCS)2(C14H22N2O2)2]F(000) = 1432
Mr = 675.54Dx = 1.335 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1966 reflections
a = 24.958 (3) Åθ = 2.6–24.0°
b = 14.016 (2) ŵ = 0.74 mm1
c = 9.613 (2) ÅT = 298 K
β = 91.73 (2)°Block, green
V = 3361.2 (9) Å30.32 × 0.30 × 0.30 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3553 independent reflections
Radiation source: fine-focus sealed tube2395 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω scanθmax = 26.8°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2231
Tmin = 0.797, Tmax = 0.808k = 1717
9655 measured reflectionsl = 1211
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0479P)2 + 1.6478P]
where P = (Fo2 + 2Fc2)/3
3553 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Ni(NCS)2(C14H22N2O2)2]V = 3361.2 (9) Å3
Mr = 675.54Z = 4
Monoclinic, C2/cMo Kα radiation
a = 24.958 (3) ŵ = 0.74 mm1
b = 14.016 (2) ÅT = 298 K
c = 9.613 (2) Å0.32 × 0.30 × 0.30 mm
β = 91.73 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3553 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2395 reflections with I > 2σ(I)
Tmin = 0.797, Tmax = 0.808Rint = 0.046
9655 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.03Δρmax = 0.56 e Å3
3553 reflectionsΔρmin = 0.36 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.25000.25000.00000.03705 (17)
O10.18825 (7)0.33463 (12)0.0484 (2)0.0439 (5)
O20.12016 (8)0.42012 (14)0.2074 (2)0.0484 (5)
S10.37620 (4)0.37891 (7)0.36139 (11)0.0705 (3)
N10.27311 (9)0.35271 (15)0.1418 (2)0.0377 (5)
N20.38216 (9)0.29760 (16)0.0841 (2)0.0432 (6)
H2A0.36860.23810.08590.052*
H2B0.36640.32930.01490.052*
N30.30222 (10)0.31802 (17)0.1565 (3)0.0497 (6)
C10.22283 (11)0.48279 (19)0.0372 (3)0.0372 (6)
C20.18949 (10)0.42827 (19)0.0487 (3)0.0359 (6)
C30.15393 (11)0.4786 (2)0.1343 (3)0.0394 (6)
C40.15390 (12)0.5763 (2)0.1397 (3)0.0471 (7)
H40.13140.60770.20010.057*
C50.18746 (12)0.6288 (2)0.0548 (3)0.0503 (8)
H50.18750.69510.05880.060*
C60.22023 (12)0.5825 (2)0.0339 (3)0.0450 (7)
H60.24120.61790.09330.054*
C70.25761 (10)0.43974 (19)0.1374 (3)0.0384 (6)
H70.27010.47980.20640.046*
C80.30827 (11)0.3277 (2)0.2564 (3)0.0443 (7)
H8A0.29840.36560.33770.053*
H8B0.30320.26100.28030.053*
C90.36703 (12)0.3451 (2)0.2178 (3)0.0490 (8)
H9A0.38920.32060.29090.059*
H9B0.37350.41310.20960.059*
C100.44096 (12)0.2910 (2)0.0492 (4)0.0541 (8)
H100.45890.26350.12920.065*
C110.44931 (14)0.2249 (3)0.0734 (4)0.0694 (10)
H11A0.43160.25040.15240.104*
H11B0.48700.21890.09490.104*
H11C0.43470.16330.05080.104*
C120.46405 (16)0.3893 (3)0.0211 (6)0.1071 (17)
H12A0.46030.42750.10370.161*
H12B0.50130.38370.00530.161*
H12C0.44510.41890.05290.161*
C130.08606 (12)0.4648 (2)0.3028 (3)0.0563 (9)
H13A0.06040.50530.25310.068*
H13B0.10700.50440.36680.068*
C140.05710 (14)0.3895 (3)0.3819 (4)0.0724 (11)
H14A0.03560.35170.31830.109*
H14B0.03440.41930.44820.109*
H14C0.08270.34930.42990.109*
C150.33283 (12)0.3433 (2)0.2408 (3)0.0438 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0367 (3)0.0311 (3)0.0435 (3)0.0001 (2)0.0046 (2)0.0003 (2)
O10.0428 (12)0.0310 (10)0.0586 (13)0.0001 (8)0.0105 (10)0.0010 (9)
O20.0490 (12)0.0497 (12)0.0474 (12)0.0007 (10)0.0132 (10)0.0036 (10)
S10.0687 (6)0.0665 (6)0.0751 (7)0.0097 (5)0.0174 (5)0.0083 (5)
N10.0360 (13)0.0375 (13)0.0394 (13)0.0004 (10)0.0017 (10)0.0029 (10)
N20.0396 (14)0.0363 (13)0.0540 (15)0.0037 (10)0.0075 (11)0.0004 (12)
N30.0552 (17)0.0441 (15)0.0498 (16)0.0005 (12)0.0023 (13)0.0015 (12)
C10.0383 (16)0.0340 (15)0.0390 (15)0.0023 (12)0.0022 (12)0.0009 (12)
C20.0353 (15)0.0330 (15)0.0392 (15)0.0026 (11)0.0020 (12)0.0011 (12)
C30.0392 (16)0.0421 (17)0.0367 (15)0.0039 (12)0.0022 (12)0.0033 (12)
C40.0515 (18)0.0445 (18)0.0454 (18)0.0079 (14)0.0017 (14)0.0082 (14)
C50.064 (2)0.0304 (15)0.0558 (19)0.0057 (14)0.0067 (17)0.0038 (14)
C60.0498 (18)0.0369 (16)0.0484 (18)0.0005 (14)0.0011 (14)0.0022 (13)
C70.0379 (16)0.0380 (16)0.0393 (15)0.0030 (12)0.0011 (12)0.0033 (12)
C80.0449 (17)0.0471 (17)0.0414 (16)0.0045 (13)0.0074 (13)0.0014 (13)
C90.0470 (18)0.0500 (18)0.0506 (18)0.0039 (14)0.0127 (15)0.0082 (15)
C100.0353 (17)0.0579 (19)0.069 (2)0.0005 (14)0.0072 (15)0.0005 (17)
C110.056 (2)0.082 (3)0.070 (3)0.0115 (18)0.0030 (18)0.006 (2)
C120.071 (3)0.073 (3)0.174 (5)0.030 (2)0.037 (3)0.016 (3)
C130.0446 (19)0.074 (2)0.0501 (19)0.0021 (16)0.0076 (15)0.0172 (17)
C140.057 (2)0.105 (3)0.056 (2)0.021 (2)0.0162 (18)0.013 (2)
C150.0463 (18)0.0356 (16)0.0499 (19)0.0018 (13)0.0070 (15)0.0019 (14)
Geometric parameters (Å, º) top
Ni1—O1i2.0104 (18)C5—C61.363 (4)
Ni1—O12.0104 (18)C5—H50.93
Ni1—N12.076 (2)C6—H60.93
Ni1—N1i2.076 (2)C7—H70.93
Ni1—N3i2.180 (3)C8—C91.522 (4)
Ni1—N32.180 (3)C8—H8A0.97
O1—C21.313 (3)C8—H8B0.97
O2—C31.383 (3)C9—H9A0.97
O2—C131.416 (3)C9—H9B0.97
S1—C151.639 (3)C10—C111.508 (5)
N1—C71.281 (3)C10—C121.515 (5)
N1—C81.471 (3)C10—H100.98
N2—C91.486 (4)C11—H11A0.96
N2—C101.499 (3)C11—H11B0.96
N2—H2A0.90C11—H11C0.96
N2—H2B0.90C12—H12A0.96
N3—C151.153 (4)C12—H12B0.96
C1—C61.400 (4)C12—H12C0.96
C1—C21.414 (4)C13—C141.500 (4)
C1—C71.448 (4)C13—H13A0.97
C2—C31.416 (4)C13—H13B0.97
C3—C41.370 (4)C14—H14A0.96
C4—C51.397 (4)C14—H14B0.96
C4—H40.93C14—H14C0.96
O1i—Ni1—O1180N1—C7—H7116.3
O1i—Ni1—N191.56 (8)C1—C7—H7116.3
O1—Ni1—N188.44 (8)N1—C8—C9111.8 (2)
O1i—Ni1—N1i88.44 (8)N1—C8—H8A109.3
O1—Ni1—N1i91.56 (8)C9—C8—H8A109.3
N1—Ni1—N1i180N1—C8—H8B109.3
O1i—Ni1—N3i91.65 (9)C9—C8—H8B109.3
O1—Ni1—N3i88.35 (9)H8A—C8—H8B107.9
N1—Ni1—N3i91.28 (9)N2—C9—C8110.9 (2)
N1i—Ni1—N3i88.72 (9)N2—C9—H9A109.5
O1i—Ni1—N388.35 (9)C8—C9—H9A109.5
O1—Ni1—N391.65 (9)N2—C9—H9B109.5
N1—Ni1—N388.72 (9)C8—C9—H9B109.5
N1i—Ni1—N391.28 (9)H9A—C9—H9B108.0
N3i—Ni1—N3180N2—C10—C11108.9 (2)
C2—O1—Ni1124.91 (16)N2—C10—C12110.4 (3)
C3—O2—C13117.0 (2)C11—C10—C12112.1 (3)
C7—N1—C8116.0 (2)N2—C10—H10108.4
C7—N1—Ni1123.30 (19)C11—C10—H10108.4
C8—N1—Ni1120.69 (17)C12—C10—H10108.4
C9—N2—C10116.3 (2)C10—C11—H11A109.5
C9—N2—H2A108.2C10—C11—H11B109.5
C10—N2—H2A108.2H11A—C11—H11B109.5
C9—N2—H2B108.2C10—C11—H11C109.5
C10—N2—H2B108.2H11A—C11—H11C109.5
H2A—N2—H2B107.4H11B—C11—H11C109.5
C15—N3—Ni1171.7 (2)C10—C12—H12A109.5
C6—C1—C2119.8 (3)C10—C12—H12B109.5
C6—C1—C7117.4 (3)H12A—C12—H12B109.5
C2—C1—C7122.6 (2)C10—C12—H12C109.5
O1—C2—C1123.6 (2)H12A—C12—H12C109.5
O1—C2—C3119.0 (2)H12B—C12—H12C109.5
C1—C2—C3117.4 (2)O2—C13—C14109.0 (3)
C4—C3—O2124.9 (3)O2—C13—H13A109.9
C4—C3—C2121.4 (3)C14—C13—H13A109.9
O2—C3—C2113.7 (2)O2—C13—H13B109.9
C3—C4—C5120.2 (3)C14—C13—H13B109.9
C3—C4—H4119.9H13A—C13—H13B108.3
C5—C4—H4119.9C13—C14—H14A109.5
C6—C5—C4119.8 (3)C13—C14—H14B109.5
C6—C5—H5120.1H14A—C14—H14B109.5
C4—C5—H5120.1C13—C14—H14C109.5
C5—C6—C1121.2 (3)H14A—C14—H14C109.5
C5—C6—H6119.4H14B—C14—H14C109.5
C1—C6—H6119.4N3—C15—S1179.7 (3)
N1—C7—C1127.3 (3)
Symmetry code: (i) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N30.902.343.113 (3)144
N2—H2A···O2i0.902.533.273 (3)141
N2—H2A···O1i0.901.792.584 (3)145
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Ni(NCS)2(C14H22N2O2)2]
Mr675.54
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)24.958 (3), 14.016 (2), 9.613 (2)
β (°) 91.73 (2)
V3)3361.2 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.74
Crystal size (mm)0.32 × 0.30 × 0.30
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.797, 0.808
No. of measured, independent and
observed [I > 2σ(I)] reflections
9655, 3553, 2395
Rint0.046
(sin θ/λ)max1)0.635
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.115, 1.03
No. of reflections3553
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.36

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—O12.0104 (18)Ni1—N32.180 (3)
Ni1—N12.076 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N30.902.343.113 (3)144
N2—H2A···O2i0.902.533.273 (3)141
N2—H2A···O1i0.901.792.584 (3)145
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

This work was supported by the Natural Science Foundation of China (grant No. 30771696), the Natural Science Foundation of Zhejiang Province (grant No. Y407318) and the Science and Technology Plan of Huzhou (grant No. 2009GG06).

References

First citationAli, H. M., Khamis, N. A. & Yamin, B. M. (2004). Acta Cryst. E60, m1708–m1709.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGomes, L., Sousa, C., Freire, C. & de Castro, B. (2000). Acta Cryst. C56, 1201–1203.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSarı, M., Atakol, O., Svoboda, I. & Fuess, H. (2006). Acta Cryst. E62, m563–m565.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, Y.-Q., Wang, P., He, Y.-F. & Liu, L.-M. (2006). Acta Cryst. E62, m2673–m2675.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, C.-Y. (2007). Acta Cryst. E63, m1076–m1077.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds