organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-N-[4-(di­ethyl­amino)benzyl­­idene]aniline

aWeifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: zfgwfu@sina.com

(Received 18 December 2009; accepted 11 January 2010; online 16 January 2010)

The asymmetric unit of the title compound, C17H19ClN2, contains two independent mol­ecules which differ by a 180° flip in the orientation of the 4-chloro­aniline unit with respect to the diethyl­amino­benzyl­idene unit [N=C—C—C = 10.0 (3) and −170.6 (2)°]. The dihedral angles between the two aromatic rings are 64.0 (1) and 66.5 (1)° in the two independent mol­ecules.

Related literature

For general background to Schiff base compounds in coordin­ation chemistry, see: Yu et al. (2007[Yu, Y. Y., Zhao, G. L. & Wen, Y. H. (2007). Chin. J. Struct. Chem. 26, 1359-1362.]). For a related structure, see: You et al. (2004[You, X.-L., Lu, C.-R., Zhang, Y. & Zhang, D.-C. (2004). Acta Cryst. C60, o693-o695.]).

[Scheme 1]

Experimental

Crystal data
  • C17H19ClN2

  • Mr = 286.79

  • Monoclinic, P 21 /c

  • a = 20.153 (2) Å

  • b = 8.7434 (7) Å

  • c = 20.1446 (19) Å

  • β = 118.444 (2)°

  • V = 3121.0 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.942, Tmax = 0.958

  • 22416 measured reflections

  • 5494 independent reflections

  • 4266 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.127

  • S = 1.07

  • 5494 reflections

  • 361 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base compounds have been used as fine chemicals and medical substrates. They are important ligands in coordination chemistry due to their ease of preparation and can both electronically and sterically modified (Yu et al., 2007). In this paper, the crystal structure of the title compound is reported.

The asymmetric unit of the title compound consists of two independent molecules, as illustrated in Fig. 1. The two molecules differ by a 180° flip in the orientation of the 4-chloroaniline unit with respect to the diethylaminobenzylidene moiety. The N4—C28—C25—C24 and N2—C11—C8—C9 torsion angles are 10.0 (3)° and -170.6 (2)°, respectively. In the two independent molecules, the dihedral angles between the two aromatic rings are 64.0 (1)° and 66.5 (1) °, respectively. Bond lengths and angles are comparable to those observed for 4-chloro-N-[4-(dimethylamino)benzylidene]aniline (You et al., 2004).

Related literature top

For general background to Schiff base compounds in coordination chemistry, see: Yu et al. (2007). For a related structure, see: You et al. (2004).

Experimental top

A mixture of 4-(diethylamino)benzaldehyde (0.01 mol) and 4-chloroaniline (0.01 mol) in ethanol (10 ml) was refluxed for 2 h. After cooling, filtration and drying, the title compound was obtained. The title compound (10 mg) was dissolved in ethanol (15 ml) and the solution was kept at room temperature for 5 d. Natural evaporation gave light-yellow single crystals of the title compound, suitable for X-ray analysis.

Refinement top

H atoms were initially located in a difference map and then refined in a riding model, with C–H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C) and 1.5Ueq(methyl C).

Structure description top

Schiff base compounds have been used as fine chemicals and medical substrates. They are important ligands in coordination chemistry due to their ease of preparation and can both electronically and sterically modified (Yu et al., 2007). In this paper, the crystal structure of the title compound is reported.

The asymmetric unit of the title compound consists of two independent molecules, as illustrated in Fig. 1. The two molecules differ by a 180° flip in the orientation of the 4-chloroaniline unit with respect to the diethylaminobenzylidene moiety. The N4—C28—C25—C24 and N2—C11—C8—C9 torsion angles are 10.0 (3)° and -170.6 (2)°, respectively. In the two independent molecules, the dihedral angles between the two aromatic rings are 64.0 (1)° and 66.5 (1) °, respectively. Bond lengths and angles are comparable to those observed for 4-chloro-N-[4-(dimethylamino)benzylidene]aniline (You et al., 2004).

For general background to Schiff base compounds in coordination chemistry, see: Yu et al. (2007). For a related structure, see: You et al. (2004).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The two independent molecules of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
4-Chloro-N-[4-(diethylamino)benzylidene]aniline top
Crystal data top
C17H19ClN2F(000) = 1216
Mr = 286.79Dx = 1.221 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1362 reflections
a = 20.153 (2) Åθ = 2.4–21.4°
b = 8.7434 (7) ŵ = 0.24 mm1
c = 20.1446 (19) ÅT = 293 K
β = 118.444 (2)°Block, light yellow
V = 3121.0 (5) Å30.25 × 0.22 × 0.18 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
5494 independent reflections
Radiation source: fine-focus sealed tube4266 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2323
Tmin = 0.942, Tmax = 0.958k = 1010
22416 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0646P)2 + 0.3803P]
where P = (Fo2 + 2Fc2)/3
5494 reflections(Δ/σ)max = 0.001
361 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C17H19ClN2V = 3121.0 (5) Å3
Mr = 286.79Z = 8
Monoclinic, P21/cMo Kα radiation
a = 20.153 (2) ŵ = 0.24 mm1
b = 8.7434 (7) ÅT = 293 K
c = 20.1446 (19) Å0.25 × 0.22 × 0.18 mm
β = 118.444 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5494 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4266 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.958Rint = 0.034
22416 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.07Δρmax = 0.25 e Å3
5494 reflectionsΔρmin = 0.34 e Å3
361 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl20.85148 (4)0.53996 (7)0.76082 (4)0.0984 (2)
Cl10.64613 (4)1.53729 (7)0.41511 (4)0.1002 (2)
N20.59641 (9)1.07076 (17)0.18309 (8)0.0637 (4)
N30.90381 (8)0.57265 (16)0.41592 (8)0.0619 (4)
C70.58844 (9)0.83306 (19)0.07682 (9)0.0562 (4)
H7A0.57310.92990.05600.067*
C50.60395 (9)0.56348 (18)0.05880 (9)0.0530 (4)
C230.91666 (10)0.30238 (19)0.44633 (10)0.0581 (4)
H23A0.93210.28370.41030.070*
C60.58355 (9)0.71363 (19)0.03069 (9)0.0567 (4)
H6A0.56640.73190.02040.068*
N40.90566 (9)0.05533 (17)0.58706 (9)0.0659 (4)
C240.91207 (10)0.18314 (19)0.48779 (9)0.0583 (4)
H24A0.92520.08550.47980.070*
C220.89856 (9)0.45309 (18)0.45679 (9)0.0522 (4)
C280.88144 (10)0.0793 (2)0.58554 (9)0.0593 (4)
H28A0.85770.09920.61450.071*
N10.59608 (9)0.44244 (16)0.01260 (9)0.0627 (4)
C110.62332 (9)0.9374 (2)0.20476 (10)0.0568 (4)
H11A0.64950.91860.25640.068*
C250.88817 (9)0.20400 (19)0.54188 (9)0.0559 (4)
C270.87455 (10)0.47377 (19)0.51171 (10)0.0585 (4)
H27A0.86190.57120.52050.070*
C80.61580 (9)0.81317 (19)0.15426 (9)0.0539 (4)
C100.63215 (10)0.5445 (2)0.13724 (10)0.0612 (4)
H10A0.64740.44800.15850.073*
C120.61080 (10)1.18249 (19)0.23937 (9)0.0564 (4)
C260.86968 (10)0.3532 (2)0.55194 (10)0.0609 (4)
H26A0.85340.37080.58740.073*
C290.89088 (10)0.16858 (19)0.62846 (9)0.0571 (4)
C90.63739 (10)0.6647 (2)0.18232 (10)0.0609 (4)
H9A0.65600.64760.23370.073*
C150.63294 (11)1.4018 (2)0.34658 (11)0.0645 (5)
C340.95037 (10)0.25322 (19)0.68199 (11)0.0628 (5)
H34A0.99910.23390.69030.075*
C320.86616 (10)0.3967 (2)0.70916 (10)0.0625 (4)
C170.68257 (10)1.2175 (2)0.29554 (11)0.0669 (5)
H17A0.72381.16630.29720.080*
C160.69412 (11)1.3272 (2)0.34924 (12)0.0704 (5)
H16A0.74271.35040.38670.084*
C140.56102 (11)1.3704 (2)0.29018 (12)0.0730 (5)
H14A0.51991.42200.28850.088*
C330.93858 (10)0.3652 (2)0.72303 (11)0.0660 (5)
H33A0.97920.41940.75980.079*
C20.61471 (11)0.2868 (2)0.04203 (12)0.0709 (5)
H2B0.58670.21560.00120.085*
H2C0.59820.27250.07960.085*
C130.55034 (10)1.2624 (2)0.23647 (11)0.0674 (5)
H13A0.50191.24300.19770.081*
C300.81858 (10)0.2037 (2)0.61520 (11)0.0696 (5)
H30A0.77780.14960.57870.084*
C40.57312 (12)0.4657 (2)0.06713 (11)0.0720 (5)
H4B0.53170.53820.08780.086*
H4C0.55460.36960.09360.086*
C190.88835 (11)0.72995 (19)0.42921 (12)0.0699 (5)
H19A0.91640.79890.41410.084*
H19B0.90680.74380.48290.084*
C210.92008 (12)0.5464 (2)0.35369 (12)0.0730 (5)
H21A0.96270.47720.37050.088*
H21B0.93470.64270.34050.088*
C310.80608 (11)0.3174 (2)0.65510 (12)0.0714 (5)
H31A0.75720.34020.64550.086*
C200.85481 (14)0.4803 (3)0.28411 (12)0.0883 (7)
H20A0.86930.46690.24550.132*
H20B0.81260.54880.26640.132*
H20C0.84100.38320.29620.132*
C30.63511 (14)0.5236 (3)0.08195 (13)0.0882 (7)
H3A0.61600.53650.13530.132*
H3B0.67580.45120.06300.132*
H3C0.65310.62010.05700.132*
C180.80592 (12)0.7741 (2)0.38778 (15)0.0933 (7)
H18A0.80030.87820.39950.140*
H18B0.77760.70810.40310.140*
H18C0.78740.76420.33440.140*
C10.69744 (13)0.2482 (3)0.07706 (15)0.0991 (8)
H1A0.70530.14490.09540.149*
H1B0.72570.31670.11820.149*
H1C0.71410.25840.03980.149*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl20.1067 (5)0.0772 (4)0.1268 (5)0.0034 (3)0.0682 (4)0.0204 (3)
Cl10.1127 (5)0.0755 (4)0.1135 (5)0.0022 (3)0.0549 (4)0.0307 (3)
N20.0695 (9)0.0627 (9)0.0590 (9)0.0001 (7)0.0307 (8)0.0018 (7)
N30.0668 (9)0.0526 (8)0.0632 (9)0.0015 (6)0.0283 (8)0.0032 (7)
C70.0584 (10)0.0542 (9)0.0571 (10)0.0021 (7)0.0285 (8)0.0076 (7)
C50.0499 (9)0.0542 (9)0.0561 (9)0.0034 (7)0.0263 (8)0.0027 (7)
C230.0627 (10)0.0593 (10)0.0541 (9)0.0065 (8)0.0292 (8)0.0027 (8)
C60.0590 (10)0.0612 (10)0.0489 (9)0.0001 (7)0.0250 (8)0.0058 (8)
N40.0775 (10)0.0637 (9)0.0628 (9)0.0058 (7)0.0386 (8)0.0002 (7)
C240.0643 (10)0.0539 (9)0.0556 (10)0.0077 (7)0.0279 (8)0.0038 (7)
C220.0468 (8)0.0536 (9)0.0462 (9)0.0011 (7)0.0140 (7)0.0058 (7)
C280.0617 (10)0.0649 (11)0.0503 (9)0.0030 (8)0.0258 (8)0.0044 (8)
N10.0700 (9)0.0542 (8)0.0627 (9)0.0029 (6)0.0306 (8)0.0007 (7)
C110.0531 (9)0.0658 (11)0.0538 (10)0.0010 (8)0.0275 (8)0.0034 (8)
C250.0561 (9)0.0593 (10)0.0469 (9)0.0017 (7)0.0202 (8)0.0042 (7)
C270.0618 (10)0.0533 (9)0.0547 (10)0.0029 (7)0.0231 (8)0.0117 (8)
C80.0506 (9)0.0603 (10)0.0535 (9)0.0019 (7)0.0269 (8)0.0015 (7)
C100.0674 (11)0.0572 (10)0.0583 (10)0.0029 (8)0.0295 (9)0.0111 (8)
C120.0627 (10)0.0536 (9)0.0563 (10)0.0012 (7)0.0311 (8)0.0073 (7)
C260.0655 (10)0.0649 (11)0.0511 (9)0.0028 (8)0.0268 (8)0.0111 (8)
C290.0644 (10)0.0549 (9)0.0543 (9)0.0026 (8)0.0302 (8)0.0080 (7)
C90.0656 (10)0.0670 (11)0.0509 (9)0.0011 (8)0.0285 (8)0.0089 (8)
C150.0738 (12)0.0501 (9)0.0743 (12)0.0026 (8)0.0390 (10)0.0017 (8)
C340.0560 (10)0.0571 (10)0.0753 (12)0.0021 (8)0.0313 (9)0.0027 (9)
C320.0703 (11)0.0512 (9)0.0708 (11)0.0025 (8)0.0376 (10)0.0052 (8)
C170.0571 (10)0.0704 (11)0.0779 (12)0.0002 (8)0.0358 (10)0.0042 (10)
C160.0578 (10)0.0689 (12)0.0783 (13)0.0053 (8)0.0275 (10)0.0101 (10)
C140.0632 (11)0.0575 (11)0.0990 (15)0.0086 (8)0.0391 (11)0.0011 (10)
C330.0603 (10)0.0568 (10)0.0727 (12)0.0047 (8)0.0250 (9)0.0030 (9)
C20.0719 (12)0.0535 (10)0.0827 (13)0.0025 (8)0.0332 (10)0.0006 (9)
C130.0558 (10)0.0578 (10)0.0772 (12)0.0040 (8)0.0225 (9)0.0035 (9)
C300.0580 (11)0.0717 (12)0.0693 (12)0.0081 (9)0.0223 (9)0.0018 (9)
C40.0848 (13)0.0649 (11)0.0613 (11)0.0090 (9)0.0307 (10)0.0107 (9)
C190.0666 (11)0.0515 (10)0.0813 (13)0.0012 (8)0.0267 (10)0.0028 (9)
C210.0829 (13)0.0669 (12)0.0791 (13)0.0034 (9)0.0465 (11)0.0061 (10)
C310.0574 (10)0.0690 (12)0.0881 (14)0.0030 (9)0.0349 (10)0.0062 (10)
C200.1086 (18)0.0907 (15)0.0606 (12)0.0092 (12)0.0362 (12)0.0058 (11)
C30.1165 (19)0.0832 (14)0.0860 (16)0.0070 (13)0.0652 (15)0.0008 (12)
C180.0720 (13)0.0778 (14)0.1146 (18)0.0135 (10)0.0319 (13)0.0052 (13)
C10.0780 (15)0.0875 (16)0.1166 (19)0.0177 (12)0.0342 (14)0.0075 (14)
Geometric parameters (Å, º) top
Cl2—C321.7415 (19)C15—C161.373 (3)
Cl1—C151.7407 (19)C15—C141.378 (3)
N2—C111.273 (2)C34—C331.373 (2)
N2—C121.418 (2)C34—H34A0.93
N3—C221.366 (2)C32—C311.370 (3)
N3—C211.457 (2)C32—C331.377 (2)
N3—C191.463 (2)C17—C161.380 (3)
C7—C61.370 (2)C17—H17A0.93
C7—C81.396 (2)C16—H16A0.93
C7—H7A0.93C14—C131.373 (3)
C5—N11.368 (2)C14—H14A0.93
C5—C61.411 (2)C33—H33A0.93
C5—C101.411 (2)C2—C11.507 (3)
C23—C241.366 (2)C2—H2B0.97
C23—C221.410 (2)C2—H2C0.97
C23—H23A0.93C13—H13A0.93
C6—H6A0.93C30—C311.375 (3)
N4—C281.269 (2)C30—H30A0.93
N4—C291.415 (2)C4—C31.504 (3)
C24—C251.397 (2)C4—H4B0.97
C24—H24A0.93C4—H4C0.97
C22—C271.414 (2)C19—C181.511 (3)
C28—C251.447 (2)C19—H19A0.97
C28—H28A0.93C19—H19B0.97
N1—C41.459 (2)C21—C201.507 (3)
N1—C21.460 (2)C21—H21A0.97
C11—C81.446 (2)C21—H21B0.97
C11—H11A0.93C31—H31A0.93
C25—C261.398 (2)C20—H20A0.96
C27—C261.361 (2)C20—H20B0.96
C27—H27A0.93C20—H20C0.96
C8—C91.400 (2)C3—H3A0.96
C10—C91.360 (2)C3—H3B0.96
C10—H10A0.93C3—H3C0.96
C12—C171.381 (3)C18—H18A0.96
C12—C131.381 (2)C18—H18B0.96
C26—H26A0.93C18—H18C0.96
C29—C341.384 (2)C1—H1A0.96
C29—C301.385 (3)C1—H1B0.96
C9—H9A0.93C1—H1C0.96
C11—N2—C12117.75 (15)C12—C17—H17A119.5
C22—N3—C21120.79 (14)C15—C16—C17119.11 (18)
C22—N3—C19121.66 (16)C15—C16—H16A120.4
C21—N3—C19117.42 (16)C17—C16—H16A120.4
C6—C7—C8121.71 (15)C13—C14—C15119.69 (17)
C6—C7—H7A119.1C13—C14—H14A120.2
C8—C7—H7A119.1C15—C14—H14A120.2
N1—C5—C6121.97 (15)C34—C33—C32119.40 (17)
N1—C5—C10121.69 (15)C34—C33—H33A120.3
C6—C5—C10116.33 (15)C32—C33—H33A120.3
C24—C23—C22121.62 (16)N1—C2—C1114.34 (17)
C24—C23—H23A119.2N1—C2—H2B108.7
C22—C23—H23A119.2C1—C2—H2B108.7
C7—C6—C5121.59 (15)N1—C2—H2C108.7
C7—C6—H6A119.2C1—C2—H2C108.7
C5—C6—H6A119.2H2B—C2—H2C107.6
C28—N4—C29118.48 (15)C14—C13—C12120.69 (17)
C23—C24—C25121.73 (15)C14—C13—H13A119.7
C23—C24—H24A119.1C12—C13—H13A119.7
C25—C24—H24A119.1C31—C30—C29121.10 (17)
N3—C22—C23121.71 (16)C31—C30—H30A119.4
N3—C22—C27121.83 (15)C29—C30—H30A119.5
C23—C22—C27116.47 (16)N1—C4—C3114.07 (18)
N4—C28—C25124.55 (17)N1—C4—H4B108.7
N4—C28—H28A117.7C3—C4—H4B108.7
C25—C28—H28A117.7N1—C4—H4C108.7
C5—N1—C4120.95 (14)C3—C4—H4C108.7
C5—N1—C2121.38 (15)H4B—C4—H4C107.6
C4—N1—C2117.57 (15)N3—C19—C18114.41 (16)
N2—C11—C8124.21 (16)N3—C19—H19A108.7
N2—C11—H11A117.9C18—C19—H19A108.7
C8—C11—H11A117.9N3—C19—H19B108.7
C24—C25—C26116.71 (16)C18—C19—H19B108.7
C24—C25—C28122.85 (15)H19A—C19—H19B107.6
C26—C25—C28120.43 (16)N3—C21—C20113.96 (18)
C26—C27—C22121.02 (15)N3—C21—H21A108.8
C26—C27—H27A119.5C20—C21—H21A108.8
C22—C27—H27A119.5N3—C21—H21B108.8
C7—C8—C9116.62 (16)C20—C21—H21B108.8
C7—C8—C11123.10 (15)H21A—C21—H21B107.7
C9—C8—C11120.27 (15)C32—C31—C30119.47 (18)
C9—C10—C5121.25 (16)C32—C31—H31A120.3
C9—C10—H10A119.4C30—C31—H31A120.3
C5—C10—H10A119.4C21—C20—H20A109.5
C17—C12—C13118.74 (17)C21—C20—H20B109.5
C17—C12—N2122.91 (16)H20A—C20—H20B109.5
C13—C12—N2118.32 (16)C21—C20—H20C109.5
C27—C26—C25122.45 (17)H20A—C20—H20C109.5
C27—C26—H26A118.8H20B—C20—H20C109.5
C25—C26—H26A118.8C4—C3—H3A109.5
C34—C29—C30118.21 (17)C4—C3—H3B109.5
C34—C29—N4119.08 (16)H3A—C3—H3B109.5
C30—C29—N4122.63 (16)C4—C3—H3C109.5
C10—C9—C8122.46 (16)H3A—C3—H3C109.5
C10—C9—H9A118.8H3B—C3—H3C109.5
C8—C9—H9A118.8C19—C18—H18A109.5
C16—C15—C14120.64 (18)C19—C18—H18B109.5
C16—C15—Cl1119.81 (15)H18A—C18—H18B109.5
C14—C15—Cl1119.54 (15)C19—C18—H18C109.5
C33—C34—C29121.09 (17)H18A—C18—H18C109.5
C33—C34—H34A119.5H18B—C18—H18C109.5
C29—C34—H34A119.5C2—C1—H1A109.5
C31—C32—C33120.69 (18)C2—C1—H1B109.5
C31—C32—Cl2120.11 (15)H1A—C1—H1B109.5
C33—C32—Cl2119.20 (14)C2—C1—H1C109.5
C16—C17—C12121.07 (17)H1A—C1—H1C109.5
C16—C17—H17A119.5H1B—C1—H1C109.5

Experimental details

Crystal data
Chemical formulaC17H19ClN2
Mr286.79
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)20.153 (2), 8.7434 (7), 20.1446 (19)
β (°) 118.444 (2)
V3)3121.0 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.25 × 0.22 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.942, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
22416, 5494, 4266
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.127, 1.07
No. of reflections5494
No. of parameters361
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.34

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYou, X.-L., Lu, C.-R., Zhang, Y. & Zhang, D.-C. (2004). Acta Cryst. C60, o693–o695.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationYu, Y. Y., Zhao, G. L. & Wen, Y. H. (2007). Chin. J. Struct. Chem. 26, 1359–1362.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds