organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Chloro­acetyl-3-iso­propyl-r-2,c-6-di­phenyl­piperidin-4-one

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Chemistry, Government Arts College (Autonomous), Coimbatore 641 018, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 17 December 2009; accepted 21 December 2009; online 9 January 2010)

In the title compound, C22H24ClNO2, the piperidine ring adopts a distorted boat conformation. The dihedral angle between the two phenyl rings is 83.2 (1)°. In the crystal, the mol­ecules are linked into chains running along the b axis by C—H⋯O hydrogen bonds. The Cl atom of the chloro­acetyl group is disordered over two positions with occupancies of 0.66 (2) and 0.34 (2).

Related literature

For general background to piperidine derivatives, see: El-Subbagh et al. (2000[El-Subbagh, H. I., Abu-Zaid, S. M., Mahran, M. A., Badria, F. A. & Al-obaid, A. M. (2000). J. Med. Chem. 43, 2915-2921.]); Jerom & Spencer (1988[Jerom, B. R. & Spencer, K. H. (1988). Eur. Pat. Appl. EP 277794.]); Perumal et al. (2001[Perumal, R. V., Adiraj, M. & Shanmugapandiyan, P. (2001). Indian Drugs, 38, 156-159.]); Hagenbach & Gysin (1952[Hagenbach, R. E. & Gysin, H. (1952). Experientia, 8, 184-185.]); Mobio et al. (1989[Mobio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sergeeva, N. D., Lin, S., Stashenku, E. E., Prostakov, N. S. & Andreeva, E. L. (1989). Khim. Farm. Zh. 23, 421-427.]); Katritzky & Fan (1990[Katritzky, A. R. & Fan, W. J. (1990). J. Org. Chem. 55, 3205-3209.]); Ganellin & Spickett (1965[Ganellin, C. R. & Spickett, R. G. W. (1965). J. Med. Chem. 8, 619-625.]). For asymmetry and puckering parameters, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the synthesis, see: Venkatraj et al. (2008[Venkatraj, M., Ponnuswamy, S. & Jeyaraman, R. (2008). Indian J. Chem. Sect. B, 47, 411-426.]).

[Scheme 1]

Experimental

Crystal data
  • C22H24ClNO2

  • Mr = 369.87

  • Monoclinic, P 21 /n

  • a = 10.3415 (12) Å

  • b = 9.0243 (9) Å

  • c = 21.438 (2) Å

  • β = 90.894 (3)°

  • V = 2000.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 293 K

  • 0.23 × 0.23 × 0.20 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.954, Tmax = 0.960

  • 19037 measured reflections

  • 4965 independent reflections

  • 3634 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.152

  • S = 1.05

  • 4965 reflections

  • 247 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.98 2.57 3.504 (2) 160
C8—H8C⋯O1i 0.96 2.25 3.203 (2) 174
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Piperidine derivatives gained considerable importance owing to their varied biological properties such as antiviral, antitumour (El-Subbagh et al., 2000), analgesic (Jerom & Spencer, 1988), local anaesthetic (Perumal et al., 2001; Hagenbach & Gysin, 1952), antimicrobial, bactericidal, fungicidal, herbicidal, insecticidal, antihistaminic, anti-inflammatory, anticancer, CNS stimulant and depressant activities (Mobio et al., 1989; Katritzky & Fan, 1990; Ganellin & Spickett, 1965). In view of these importance and to ascertain the molecular conformation, crystallographic study of the title compound has been carried out.

The ORTEP plot of the title molecule is shown in Fig.1. The piperidine ring adopts a distorted boat conformation with the puckering parameters (Cremer & Pople, 1975) and asymmetry parameters (Nardelli, 1983) of q2 = 0.661 (2) Å, q3 = -0.057 (2) Å, φ2 = 257.1 (1)° and Δs(C2 and C5)= 20.2 (2)°. The sum of the bond angles around the atom N1 (358.8°) of the piperidine ring is in accordance with the sp2 hybridization.

The crystal packing is stabilized by C—H···O intermolecular interactions which link the molecules into chains running along the b axis. These hydrogen bonds form R12(7) ring motifs (Bernstein et al., 1995).

Related literature top

For general background to piperidine derivatives, see: El-Subbagh et al. (2000); Jerom & Spencer (1988); Perumal et al. (2001); Hagenbach & Gysin (1952); Mobio et al. 1989; Katritzky & Fan (1990); Ganellin & Spickett (1965). For asymmetry and puckering parameters, see: Nardelli (1983); Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the synthesis, see: Venkatraj et al. (2008).

Experimental top

To a solution of r-2,c-6-diphenyl-3-isopropylpiperidin-4-one (2.93 g) in anhydrous benzene (60 ml) was added triethylamine (5.57 ml) and chloroacetylchloride (3.18 ml). The reaction mixture was allowed to stirr at room temperature for 2 h. The resulting solution was washed with sodium bicarbonate solution (10%) and water. Then the organic layer was dried over anhydrous sodium sulfate, evaporated and crystallized from benzene-petroleum ether (60–80°C) in the ratio of 9:1 (Venkatraj et al., 2008).

Refinement top

The Cl atom of the chloroacetyl group is disordered over two positions with refined occupancies of 0.662 (18) and 0.338 (18). H atoms were positioned geometrically (C-H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(Cmethyl) and 1.2Ueq(C).

Structure description top

Piperidine derivatives gained considerable importance owing to their varied biological properties such as antiviral, antitumour (El-Subbagh et al., 2000), analgesic (Jerom & Spencer, 1988), local anaesthetic (Perumal et al., 2001; Hagenbach & Gysin, 1952), antimicrobial, bactericidal, fungicidal, herbicidal, insecticidal, antihistaminic, anti-inflammatory, anticancer, CNS stimulant and depressant activities (Mobio et al., 1989; Katritzky & Fan, 1990; Ganellin & Spickett, 1965). In view of these importance and to ascertain the molecular conformation, crystallographic study of the title compound has been carried out.

The ORTEP plot of the title molecule is shown in Fig.1. The piperidine ring adopts a distorted boat conformation with the puckering parameters (Cremer & Pople, 1975) and asymmetry parameters (Nardelli, 1983) of q2 = 0.661 (2) Å, q3 = -0.057 (2) Å, φ2 = 257.1 (1)° and Δs(C2 and C5)= 20.2 (2)°. The sum of the bond angles around the atom N1 (358.8°) of the piperidine ring is in accordance with the sp2 hybridization.

The crystal packing is stabilized by C—H···O intermolecular interactions which link the molecules into chains running along the b axis. These hydrogen bonds form R12(7) ring motifs (Bernstein et al., 1995).

For general background to piperidine derivatives, see: El-Subbagh et al. (2000); Jerom & Spencer (1988); Perumal et al. (2001); Hagenbach & Gysin (1952); Mobio et al. 1989; Katritzky & Fan (1990); Ganellin & Spickett (1965). For asymmetry and puckering parameters, see: Nardelli (1983); Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the synthesis, see: Venkatraj et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. Both disorder components are shown.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis. H atoms not involved in hydrogen bonding have been omitted for clarity.
1-Chloroacetyl-3-isopropyl-r-2,c-6-diphenylpiperidin-4-one top
Crystal data top
C22H24ClNO2F(000) = 784
Mr = 369.87Dx = 1.228 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2052 reflections
a = 10.3415 (12) Åθ = 1.9–28.3°
b = 9.0243 (9) ŵ = 0.21 mm1
c = 21.438 (2) ÅT = 293 K
β = 90.894 (3)°Block, colourless
V = 2000.5 (4) Å30.23 × 0.23 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
4965 independent reflections
Radiation source: fine-focus sealed tube3634 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω and φ scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1313
Tmin = 0.954, Tmax = 0.960k = 1112
19037 measured reflectionsl = 2826
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.073P)2 + 0.4534P]
where P = (Fo2 + 2Fc2)/3
4965 reflections(Δ/σ)max = 0.001
247 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C22H24ClNO2V = 2000.5 (4) Å3
Mr = 369.87Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.3415 (12) ŵ = 0.21 mm1
b = 9.0243 (9) ÅT = 293 K
c = 21.438 (2) Å0.23 × 0.23 × 0.20 mm
β = 90.894 (3)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
4965 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3634 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.960Rint = 0.026
19037 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.05Δρmax = 0.51 e Å3
4965 reflectionsΔρmin = 0.24 e Å3
247 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl1A0.4290 (5)0.2714 (5)0.19072 (9)0.0742 (9)0.662 (18)
Cl1B0.4685 (12)0.2335 (12)0.2045 (7)0.097 (2)0.338 (18)
O10.28951 (14)0.09562 (14)0.28351 (6)0.0649 (4)
O20.07198 (13)0.48645 (19)0.43316 (7)0.0758 (5)
N10.23607 (12)0.28293 (14)0.34870 (6)0.0385 (3)
C20.13248 (14)0.19074 (18)0.37710 (7)0.0416 (3)
H20.11910.10670.34880.050*
C30.00443 (15)0.2766 (2)0.37661 (7)0.0460 (4)
H30.05850.21660.39920.055*
C40.01886 (16)0.4218 (2)0.41130 (7)0.0494 (4)
C50.15466 (15)0.47860 (19)0.41923 (7)0.0446 (4)
H5A0.19100.43810.45760.053*
H5B0.15130.58540.42400.053*
C60.24626 (14)0.44202 (17)0.36585 (7)0.0382 (3)
H60.21970.50090.32940.046*
C70.30043 (16)0.22482 (18)0.29965 (7)0.0444 (4)
C80.39016 (18)0.3296 (2)0.26547 (8)0.0524 (4)
H8A0.46940.34060.28980.063*0.662 (18)
H8B0.34950.42630.26270.063*0.662 (18)
H8C0.34120.41090.24850.063*0.338 (18)
H8D0.45360.36900.29410.063*0.338 (18)
C90.17615 (15)0.12393 (18)0.43941 (7)0.0447 (4)
C100.2790 (2)0.0264 (2)0.43950 (10)0.0638 (5)
H100.32030.00620.40220.077*
C110.3221 (2)0.0420 (3)0.49375 (12)0.0769 (6)
H110.39160.10730.49270.092*
C120.2619 (2)0.0130 (3)0.54915 (10)0.0709 (6)
H120.29060.05820.58580.085*
C130.1599 (2)0.0821 (2)0.55003 (9)0.0656 (5)
H130.11900.10150.58750.079*
C140.11594 (18)0.1510 (2)0.49564 (8)0.0541 (4)
H140.04590.21540.49700.065*
C150.05025 (19)0.2994 (3)0.30908 (9)0.0619 (5)
H150.01860.34090.28350.074*
C160.0902 (4)0.1544 (3)0.28166 (14)0.1154 (12)
H16A0.02050.08470.28600.173*
H16B0.11140.16730.23820.173*
H16C0.16450.11770.30310.173*
C170.1643 (3)0.4015 (4)0.30539 (14)0.1232 (13)
H17A0.14070.49630.32230.185*
H17B0.23400.36060.32890.185*
H17C0.19120.41290.26260.185*
C180.38149 (15)0.49029 (18)0.38534 (7)0.0409 (3)
C190.41717 (19)0.6350 (2)0.37469 (9)0.0560 (4)
H190.35970.69910.35460.067*
C200.5382 (2)0.6861 (2)0.39369 (10)0.0674 (5)
H200.56110.78420.38660.081*
C210.62369 (19)0.5928 (3)0.42275 (10)0.0656 (5)
H210.70500.62700.43510.079*
C220.58976 (18)0.4492 (3)0.43370 (9)0.0631 (5)
H220.64830.38560.45330.076*
C230.46858 (17)0.3976 (2)0.41585 (8)0.0511 (4)
H230.44550.30020.42440.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.1037 (17)0.0687 (12)0.0512 (8)0.0259 (10)0.0369 (7)0.0192 (6)
Cl1B0.104 (4)0.077 (3)0.112 (4)0.017 (3)0.069 (3)0.030 (3)
O10.0795 (9)0.0486 (7)0.0674 (8)0.0137 (7)0.0272 (7)0.0207 (6)
O20.0458 (7)0.0976 (12)0.0841 (10)0.0165 (7)0.0073 (7)0.0291 (9)
N10.0384 (6)0.0373 (7)0.0400 (6)0.0036 (5)0.0062 (5)0.0048 (5)
C20.0383 (7)0.0427 (8)0.0440 (7)0.0064 (6)0.0049 (6)0.0035 (6)
C30.0362 (8)0.0569 (10)0.0450 (8)0.0049 (7)0.0034 (6)0.0001 (7)
C40.0422 (8)0.0618 (11)0.0444 (8)0.0076 (8)0.0042 (6)0.0040 (7)
C50.0448 (8)0.0450 (9)0.0441 (8)0.0029 (7)0.0059 (6)0.0079 (7)
C60.0395 (7)0.0365 (8)0.0388 (7)0.0011 (6)0.0025 (5)0.0034 (6)
C70.0463 (8)0.0448 (9)0.0424 (7)0.0033 (7)0.0075 (6)0.0065 (6)
C80.0616 (10)0.0507 (10)0.0456 (8)0.0037 (8)0.0173 (7)0.0050 (7)
C90.0424 (8)0.0418 (9)0.0500 (8)0.0109 (7)0.0046 (6)0.0026 (7)
C100.0636 (12)0.0599 (12)0.0682 (12)0.0076 (10)0.0117 (9)0.0112 (9)
C110.0686 (13)0.0721 (15)0.0902 (16)0.0093 (11)0.0031 (11)0.0279 (12)
C120.0746 (14)0.0682 (13)0.0694 (12)0.0138 (11)0.0121 (10)0.0241 (10)
C130.0776 (14)0.0677 (13)0.0516 (10)0.0166 (11)0.0048 (9)0.0084 (9)
C140.0557 (10)0.0535 (10)0.0531 (9)0.0055 (8)0.0062 (7)0.0021 (8)
C150.0524 (10)0.0820 (14)0.0510 (9)0.0004 (10)0.0046 (8)0.0034 (9)
C160.156 (3)0.101 (2)0.0880 (17)0.026 (2)0.0594 (19)0.0347 (16)
C170.136 (3)0.129 (3)0.103 (2)0.055 (2)0.057 (2)0.0268 (19)
C180.0414 (8)0.0422 (8)0.0393 (7)0.0018 (7)0.0064 (6)0.0080 (6)
C190.0563 (10)0.0439 (10)0.0676 (11)0.0045 (8)0.0000 (8)0.0062 (8)
C200.0657 (12)0.0539 (11)0.0829 (14)0.0205 (10)0.0043 (10)0.0130 (10)
C210.0461 (10)0.0804 (15)0.0703 (12)0.0131 (10)0.0001 (8)0.0182 (11)
C220.0493 (10)0.0743 (14)0.0653 (11)0.0028 (10)0.0079 (8)0.0049 (10)
C230.0477 (9)0.0512 (10)0.0542 (9)0.0002 (8)0.0012 (7)0.0005 (7)
Geometric parameters (Å, º) top
Cl1A—C81.739 (3)C10—H100.93
Cl1B—C81.774 (5)C11—C121.375 (3)
O1—C71.221 (2)C11—H110.93
O2—C41.207 (2)C12—C131.360 (3)
N1—C71.3585 (19)C12—H120.93
N1—C61.4853 (19)C13—C141.391 (3)
N1—C21.4936 (19)C13—H130.93
C2—C91.527 (2)C14—H140.93
C2—C31.534 (2)C15—C161.491 (3)
C2—H20.98C15—C171.497 (3)
C3—C41.513 (2)C15—H150.98
C3—C151.560 (2)C16—H16A0.96
C3—H30.98C16—H16B0.96
C4—O21.207 (2)C16—H16C0.96
C4—C51.502 (2)C17—H17A0.96
C5—C61.533 (2)C17—H17B0.96
C5—H5A0.97C17—H17C0.96
C5—H5B0.97C18—C191.377 (2)
C6—C181.517 (2)C18—C231.386 (2)
C6—H60.98C19—C201.389 (3)
C7—C81.521 (2)C19—H190.93
C8—H8A0.97C20—C211.364 (3)
C8—H8B0.97C20—H200.93
C8—H8C0.96C21—C221.363 (3)
C8—H8D0.96C21—H210.93
C9—C101.381 (3)C22—C231.385 (3)
C9—C141.387 (2)C22—H220.93
C10—C111.384 (3)C23—H230.93
C7—N1—C6122.07 (13)C14—C9—C2124.06 (16)
C7—N1—C2117.63 (13)C9—C10—C11121.5 (2)
C6—N1—C2119.08 (12)C9—C10—H10119.2
N1—C2—C9111.86 (12)C11—C10—H10119.2
N1—C2—C3109.90 (13)C12—C11—C10119.8 (2)
C9—C2—C3116.66 (13)C12—C11—H11120.1
N1—C2—H2105.9C10—C11—H11120.1
C9—C2—H2105.9C13—C12—C11119.58 (19)
C3—C2—H2105.9C13—C12—H12120.2
C4—C3—C2110.82 (13)C11—C12—H12120.2
C4—C3—C15111.93 (15)C12—C13—C14120.90 (19)
C2—C3—C15111.93 (14)C12—C13—H13119.5
C4—C3—H3107.3C14—C13—H13119.5
C2—C3—H3107.3C9—C14—C13120.30 (19)
C15—C3—H3107.3C9—C14—H14119.8
O2—C4—C5121.54 (17)C13—C14—H14119.8
O2—C4—C3122.57 (16)C16—C15—C17107.8 (2)
C5—C4—C3115.86 (14)C16—C15—C3110.14 (19)
C4—C5—C6115.44 (13)C17—C15—C3113.83 (18)
C4—C5—H5A108.4C16—C15—H15108.3
C6—C5—H5A108.4C17—C15—H15108.3
C4—C5—H5B108.4C3—C15—H15108.3
C6—C5—H5B108.4C15—C16—H16A109.5
H5A—C5—H5B107.5C15—C16—H16B109.5
N1—C6—C18114.04 (12)H16A—C16—H16B109.5
N1—C6—C5110.53 (12)C15—C16—H16C109.5
C18—C6—C5108.07 (12)H16A—C16—H16C109.5
N1—C6—H6108.0H16B—C16—H16C109.5
C18—C6—H6108.0C15—C17—H17A109.5
C5—C6—H6108.0C15—C17—H17B109.5
O1—C7—N1122.93 (15)H17A—C17—H17B109.5
O1—C7—C8120.78 (14)C15—C17—H17C109.5
N1—C7—C8116.28 (14)H17A—C17—H17C109.5
C7—C8—Cl1A114.03 (15)H17B—C17—H17C109.5
C7—C8—Cl1B109.9 (3)C19—C18—C23118.48 (16)
C7—C8—H8A108.7C19—C18—C6118.35 (15)
Cl1A—C8—H8A108.7C23—C18—C6123.11 (15)
Cl1B—C8—H8A93.1C18—C19—C20120.57 (19)
C7—C8—H8B108.7C18—C19—H19119.7
Cl1A—C8—H8B108.7C20—C19—H19119.7
Cl1B—C8—H8B126.7C21—C20—C19120.3 (2)
H8A—C8—H8B107.6C21—C20—H20119.9
C7—C8—H8C109.6C19—C20—H20119.9
Cl1A—C8—H8C90.5C22—C21—C20119.88 (18)
Cl1B—C8—H8C109.7C22—C21—H21120.1
H8A—C8—H8C124.2C20—C21—H21120.1
C7—C8—H8D109.7C21—C22—C23120.41 (19)
Cl1A—C8—H8D122.4C21—C22—H22119.8
Cl1B—C8—H8D109.7C23—C22—H22119.8
H8B—C8—H8D89.9C22—C23—C18120.39 (18)
H8C—C8—H8D108.2C22—C23—H23119.8
C10—C9—C14117.86 (16)C18—C23—H23119.8
C10—C9—C2118.04 (15)
C7—N1—C2—C9104.81 (16)N1—C2—C9—C1062.6 (2)
C6—N1—C2—C987.54 (16)C3—C2—C9—C10169.66 (16)
C7—N1—C2—C3123.94 (15)N1—C2—C9—C14119.83 (17)
C6—N1—C2—C343.72 (17)C3—C2—C9—C147.9 (2)
N1—C2—C3—C457.76 (16)C14—C9—C10—C110.5 (3)
C9—C2—C3—C470.91 (18)C2—C9—C10—C11178.19 (19)
N1—C2—C3—C1567.97 (17)C9—C10—C11—C120.0 (3)
C9—C2—C3—C15163.36 (14)C10—C11—C12—C130.3 (3)
C2—C3—C4—O2157.42 (17)C11—C12—C13—C140.2 (3)
C15—C3—C4—O276.9 (2)C10—C9—C14—C130.6 (3)
C2—C3—C4—C520.3 (2)C2—C9—C14—C13178.19 (16)
C15—C3—C4—C5105.41 (17)C12—C13—C14—C90.3 (3)
O2—C4—C5—C6149.50 (17)C4—C3—C15—C16167.5 (2)
C3—C4—C5—C632.7 (2)C2—C3—C15—C1667.4 (2)
C7—N1—C6—C1862.87 (18)C4—C3—C15—C1746.3 (3)
C2—N1—C6—C18130.04 (13)C2—C3—C15—C17171.4 (2)
C7—N1—C6—C5175.14 (14)N1—C6—C18—C19150.61 (14)
C2—N1—C6—C58.06 (17)C5—C6—C18—C1986.06 (17)
C4—C5—C6—N147.51 (19)N1—C6—C18—C2332.4 (2)
C4—C5—C6—C18172.94 (14)C5—C6—C18—C2390.93 (18)
C6—N1—C7—O1177.26 (16)C23—C18—C19—C200.6 (3)
C2—N1—C7—O110.0 (2)C6—C18—C19—C20177.69 (17)
C6—N1—C7—C83.6 (2)C18—C19—C20—C210.5 (3)
C2—N1—C7—C8170.82 (14)C19—C20—C21—C220.6 (3)
O1—C7—C8—Cl1A20.2 (3)C20—C21—C22—C230.4 (3)
N1—C7—C8—Cl1A160.6 (3)C21—C22—C23—C181.5 (3)
O1—C7—C8—Cl1B0.7 (7)C19—C18—C23—C221.6 (3)
N1—C7—C8—Cl1B178.5 (7)C6—C18—C23—C22178.55 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.982.573.504 (2)160
C8—H8C···O1i0.962.253.203 (2)174
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H24ClNO2
Mr369.87
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.3415 (12), 9.0243 (9), 21.438 (2)
β (°) 90.894 (3)
V3)2000.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.23 × 0.23 × 0.20
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.954, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
19037, 4965, 3634
Rint0.026
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.152, 1.05
No. of reflections4965
No. of parameters247
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.24

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.982.573.504 (2)160
C8—H8C···O1i0.962.253.203 (2)174
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

KR thanks the GNR X-ray Facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection and the management of Kandaswami Kandar's College, Velur, Namakkal, Tamil Nadu, India, for the encouragement to pursue the programme.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEl-Subbagh, H. I., Abu-Zaid, S. M., Mahran, M. A., Badria, F. A. & Al-obaid, A. M. (2000). J. Med. Chem. 43, 2915–2921.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGanellin, C. R. & Spickett, R. G. W. (1965). J. Med. Chem. 8, 619–625.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHagenbach, R. E. & Gysin, H. (1952). Experientia, 8, 184–185.  CrossRef PubMed CAS Web of Science Google Scholar
First citationJerom, B. R. & Spencer, K. H. (1988). Eur. Pat. Appl. EP 277794.  Google Scholar
First citationKatritzky, A. R. & Fan, W. J. (1990). J. Org. Chem. 55, 3205–3209.  CrossRef CAS Web of Science Google Scholar
First citationMobio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sergeeva, N. D., Lin, S., Stashenku, E. E., Prostakov, N. S. & Andreeva, E. L. (1989). Khim. Farm. Zh. 23, 421–427.  CAS Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPerumal, R. V., Adiraj, M. & Shanmugapandiyan, P. (2001). Indian Drugs, 38, 156–159.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVenkatraj, M., Ponnuswamy, S. & Jeyaraman, R. (2008). Indian J. Chem. Sect. B, 47, 411–426.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds