organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3,6,6-Tetra­kis­­(hy­droxy­meth­yl)-1,2,4,5-tetra­zinane tetra­hydrate

aDepartment of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand, bDepartment of Physics, Faculty of Science and Technology, Thammasart University, Pathum Thani 12121, Thailand, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 28 October 2009; accepted 29 October 2009; online 4 November 2009)

In the title compound, C6H16N4O4·4H2O, the tetra­zinane mol­ecule lies across an inversion centre. The tetra­zinane ring adopts a chair conformation, and all imino H atoms occupy axial positions. In the crystal, adjacent mol­ecules are linked through O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds with water mol­ecules generating a three-dimensional network.

Related literature

For the synthesis of hexa­hydro-1,2,4,5-tetra­zine derivatives by condensing aldehydes with hydrazine, see: Skorianetz & Kovats (1970[Skorianetz, W. & Kovats, E. Sz. (1970). Helv. Chim. Acta, 53, 251-262.]). For the synthesis of the 3,6-dimethyl homolog, see: Sun et al. (2003[Sun, Y.-Q., Hu, W.-X. & Yuan, Q. (2003). Synth. Commun. 33, 2769-2775.]); Zhou et al. (1999[Zhou, M., Cai, Z.-B., Yang, Z.-Y. & Hu, W.-X. (1999). Jingxi Huagong, 16, 1-4.]).

[Scheme 1]

Experimental

Crystal data
  • C6H16N4O4·4H2O

  • Mr = 280.29

  • Triclinic, [P \overline 1]

  • a = 6.3067 (1) Å

  • b = 7.0317 (2) Å

  • c = 8.4015 (2) Å

  • α = 71.010 (1)°

  • β = 74.424 (1)°

  • γ = 85.055 (1)°

  • V = 339.36 (1) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 296 K

  • 0.40 × 0.40 × 0.40 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: none

  • 10198 measured reflections

  • 4231 independent reflections

  • 3630 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.137

  • S = 1.01

  • 4231 reflections

  • 114 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.93 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O1W 0.85 (1) 1.87 (1) 2.704 (1) 166 (2)
O2—H2O⋯O2Wi 0.86 (1) 1.87 (1) 2.723 (1) 171 (2)
N1—H1N⋯O2ii 0.86 (1) 2.23 (1) 3.036 (1) 155 (1)
N2—H2N⋯O1Wiii 0.87 (1) 2.36 (1) 3.130 (1) 148 (1)
O1W—H1W1⋯O2Wiv 0.86 (1) 1.92 (1) 2.782 (1) 172 (2)
O1W—H1W2⋯N2v 0.86 (1) 2.03 (1) 2.869 (1) 166 (2)
O2W—H2W1⋯O1 0.84 (1) 1.92 (1) 2.759 (1) 175 (2)
O2W—H2W2⋯N1vi 0.84 (1) 2.02 (1) 2.853 (1) 171 (2)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y, -z+2; (iii) -x+1, -y, -z+2; (iv) -x+2, -y+1, -z+1; (v) x, y+1, z; (vi) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For the synthesis of hexahydro-1,2,4,5-tetrazine derivatives by condensing aldehydes with hydrazine, see: Skorianetz & Kovats (1970). For the synthesis of the 3,6-dimethyl homolog, see: Sun et al. (2003); Zhou et al. (1999).

Experimental top

Dihydroxyacetone (0.90 g, 10 mmol) and hydrazine hydrate (0.49 ml, 10 mmol) in ethanol (50 ml) were heated for 12 h. Slow evaporation of the solvent gave colourless crystals in 80% yield. The formulation of the organic molecule was established by 1H and 13C NMR as well as by mass spectroscopies.

Refinement top

The amino and water H-atoms were located in a difference Fourier map, and were refined with a distance restraint of N-H = O-H = 0.85 (1) Å; their Uiso parameters were freely refined. Carbon-bound H-atoms were placed in calculated positions (C-H = 0.97 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C). The highest peak and the deepest hole are located 0.73 and 0.58 Å from O1W. Although the displacement parameters of atom O1W are relatively large, no disorder is expected as its H-atoms could be located and refined.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (Barbour, 2001) of C6H16N4O4.4H2O at the 50% probability level. H atoms are drawn as spheres of arbitrary radius. Unlabelled atoms in the tetrazinane derivative are related to labelled atoms by the symmetry operation (1-x, -y, 2-z). Two symmetry related water molecules are not shown.
3,3,6,6-Tetrakis(hydroxymethyl)-1,2,4,5-tetrazinane tetrahydrate top
Crystal data top
C6H16N4O4·4H2OZ = 1
Mr = 280.29F(000) = 152
Triclinic, P1Dx = 1.371 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.3067 (1) ÅCell parameters from 6318 reflections
b = 7.0317 (2) Åθ = 3.1–40.2°
c = 8.4015 (2) ŵ = 0.12 mm1
α = 71.010 (1)°T = 296 K
β = 74.424 (1)°Cube, colourless
γ = 85.055 (1)°0.40 × 0.40 × 0.40 mm
V = 339.36 (1) Å3
Data collection top
Bruker SMART APEXII
diffractometer
3630 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
Graphite monochromatorθmax = 40.2°, θmin = 3.1°
ϕ and ω scansh = 1111
10198 measured reflectionsk = 1212
4231 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0853P)2 + 0.0377P]
where P = (Fo2 + 2Fc2)/3
4231 reflections(Δ/σ)max = 0.001
114 parametersΔρmax = 0.93 e Å3
8 restraintsΔρmin = 0.63 e Å3
Crystal data top
C6H16N4O4·4H2Oγ = 85.055 (1)°
Mr = 280.29V = 339.36 (1) Å3
Triclinic, P1Z = 1
a = 6.3067 (1) ÅMo Kα radiation
b = 7.0317 (2) ŵ = 0.12 mm1
c = 8.4015 (2) ÅT = 296 K
α = 71.010 (1)°0.40 × 0.40 × 0.40 mm
β = 74.424 (1)°
Data collection top
Bruker SMART APEXII
diffractometer
3630 reflections with I > 2σ(I)
10198 measured reflectionsRint = 0.018
4231 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0428 restraints
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.93 e Å3
4231 reflectionsΔρmin = 0.63 e Å3
114 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.62982 (10)0.32676 (8)0.59353 (6)0.03101 (11)
O20.12442 (8)0.12559 (9)0.85708 (8)0.03186 (11)
O1W0.74166 (12)0.53141 (12)0.78141 (13)0.0496 (2)
O2W0.81111 (10)0.46492 (8)0.23874 (7)0.03194 (11)
N10.35398 (7)0.15628 (7)0.93656 (6)0.01863 (8)
N20.53643 (7)0.16882 (6)0.93673 (6)0.01882 (8)
C30.30946 (11)0.01190 (10)0.73791 (8)0.02651 (11)
H3A0.25990.11540.66970.032*
H3B0.38560.08440.65860.032*
C10.67667 (9)0.13379 (9)0.69956 (7)0.02297 (10)
H1A0.78190.14720.76090.028*
H1B0.74350.05170.62620.028*
C20.46871 (8)0.02767 (7)0.83271 (6)0.01806 (9)
H1O0.661 (3)0.409 (2)0.640 (2)0.051 (4)*
H2O0.140 (3)0.2396 (16)0.839 (2)0.052 (4)*
H1W10.8827 (15)0.535 (3)0.765 (2)0.057 (4)*
H1W20.688 (3)0.6353 (19)0.810 (2)0.055 (4)*
H2W10.753 (2)0.430 (2)0.3464 (12)0.053 (4)*
H2W20.754 (3)0.5766 (18)0.198 (3)0.069 (5)*
H1N0.2237 (14)0.1097 (17)0.9941 (14)0.026 (2)*
H2N0.4192 (16)0.2420 (16)0.9932 (15)0.027 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0395 (3)0.0239 (2)0.02234 (19)0.00194 (17)0.00506 (17)0.00069 (15)
O20.02304 (19)0.0353 (2)0.0423 (3)0.00251 (16)0.00474 (17)0.0211 (2)
O1W0.0348 (3)0.0488 (4)0.0794 (6)0.0026 (3)0.0098 (3)0.0437 (4)
O2W0.0353 (2)0.0254 (2)0.0306 (2)0.00639 (17)0.00462 (18)0.00747 (17)
N10.01946 (16)0.01761 (16)0.01842 (16)0.00258 (12)0.00506 (12)0.00561 (12)
N20.02248 (17)0.01557 (15)0.01876 (16)0.00090 (12)0.00525 (12)0.00611 (12)
C30.0297 (2)0.0293 (3)0.0242 (2)0.00180 (19)0.01135 (18)0.00917 (19)
C10.0244 (2)0.0221 (2)0.01861 (18)0.00032 (16)0.00180 (15)0.00427 (15)
C20.02086 (18)0.01704 (17)0.01609 (16)0.00065 (13)0.00472 (13)0.00510 (13)
Geometric parameters (Å, º) top
O1—C11.4169 (7)N1—H1N0.86 (1)
O1—H1O0.851 (9)N2—N1i1.4441 (6)
O2—C31.4198 (9)N2—C21.4724 (6)
O2—H2O0.86 (1)N2—H2N0.87 (1)
O1W—H1W10.86 (1)C3—C21.5305 (8)
O1W—H1W20.86 (1)C3—H3A0.97
O2W—H2W10.84 (1)C3—H3B0.97
O2W—H2W20.84 (1)C1—C21.5382 (7)
N1—N2i1.4441 (6)C1—H1A0.97
N1—C21.4712 (7)C1—H1B0.97
C1—O1—H1O105.1 (11)C2—C3—H3B109.4
C3—O2—H2O104.1 (11)H3A—C3—H3B108.0
H1W1—O1W—H1W2107.6 (16)O1—C1—C2112.12 (5)
H2W1—O2W—H2W2105.0 (18)O1—C1—H1A109.2
N2i—N1—C2113.59 (4)C2—C1—H1A109.2
N2i—N1—H1N106.4 (8)O1—C1—H1B109.2
C2—N1—H1N110.2 (8)C2—C1—H1B109.2
N1i—N2—C2113.72 (4)H1A—C1—H1B107.9
N1i—N2—H2N107.4 (8)N1—C2—N2114.01 (4)
C2—N2—H2N108.2 (8)N1—C2—C3107.44 (4)
O2—C3—C2111.33 (5)N2—C2—C3107.54 (4)
O2—C3—H3A109.4N1—C2—C1110.36 (4)
C2—C3—H3A109.4N2—C2—C1107.54 (4)
O2—C3—H3B109.4C3—C2—C1109.89 (4)
N2i—N1—C2—N247.54 (6)O2—C3—C2—N165.11 (6)
N2i—N1—C2—C3166.60 (4)O2—C3—C2—N258.02 (6)
N2i—N1—C2—C173.60 (5)O2—C3—C2—C1174.80 (5)
N1i—N2—C2—N147.60 (6)O1—C1—C2—N154.32 (6)
N1i—N2—C2—C3166.60 (4)O1—C1—C2—N2179.24 (4)
N1i—N2—C2—C175.09 (5)O1—C1—C2—C363.98 (6)
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O1W0.85 (1)1.87 (1)2.704 (1)166 (2)
O2—H2O···O2Wii0.86 (1)1.87 (1)2.723 (1)171 (2)
N1—H1N···O2iii0.86 (1)2.23 (1)3.036 (1)155 (1)
N2—H2N···O1Wi0.87 (1)2.36 (1)3.130 (1)148 (1)
O1W—H1W1···O2Wiv0.86 (1)1.92 (1)2.782 (1)172 (2)
O1W—H1W2···N2v0.86 (1)2.03 (1)2.869 (1)166 (2)
O2W—H2W1···O10.84 (1)1.92 (1)2.759 (1)175 (2)
O2W—H2W2···N1vi0.84 (1)2.02 (1)2.853 (1)171 (2)
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y, z+1; (iii) x, y, z+2; (iv) x+2, y+1, z+1; (v) x, y+1, z; (vi) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC6H16N4O4·4H2O
Mr280.29
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.3067 (1), 7.0317 (2), 8.4015 (2)
α, β, γ (°)71.010 (1), 74.424 (1), 85.055 (1)
V3)339.36 (1)
Z1
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.40 × 0.40 × 0.40
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10198, 4231, 3630
Rint0.018
(sin θ/λ)max1)0.908
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.137, 1.01
No. of reflections4231
No. of parameters114
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.93, 0.63

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O1W0.85 (1)1.87 (1)2.704 (1)166 (2)
O2—H2O···O2Wi0.86 (1)1.87 (1)2.723 (1)171 (2)
N1—H1N···O2ii0.86 (1)2.23 (1)3.036 (1)155 (1)
N2—H2N···O1Wiii0.87 (1)2.36 (1)3.130 (1)148 (1)
O1W—H1W1···O2Wiv0.86 (1)1.92 (1)2.782 (1)172 (2)
O1W—H1W2···N2v0.86 (1)2.03 (1)2.869 (1)166 (2)
O2W—H2W1···O10.84 (1)1.92 (1)2.759 (1)175 (2)
O2W—H2W2···N1vi0.84 (1)2.02 (1)2.853 (1)171 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+2; (iii) x+1, y, z+2; (iv) x+2, y+1, z+1; (v) x, y+1, z; (vi) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge support from Chulalongkorn University and the Center of Excellence for Petroleum, Petrochemicals and Advanced Materials of Thailand.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkorianetz, W. & Kovats, E. Sz. (1970). Helv. Chim. Acta, 53, 251–262.  CrossRef CAS Web of Science Google Scholar
First citationSun, Y.-Q., Hu, W.-X. & Yuan, Q. (2003). Synth. Commun. 33, 2769–2775.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationZhou, M., Cai, Z.-B., Yang, Z.-Y. & Hu, W.-X. (1999). Jingxi Huagong, 16, 1–4.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds