metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(4-formyl­benzoato-κO1)(isonicotinamide-κN1)zinc(II)]-μ-4-formyl­benzoato-κ2O1:O1′]

aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemistry, Faculty of Science, Anadolu University, 26470 Yenibağlar, Eskişehir, Turkey, cDepartment of Physics, Karabük University, 78050 Karabük, Turkey, and dDepartment of Chemistry, Kafkas University, 63100 Kars, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 14 October 2009; accepted 15 October 2009; online 23 October 2009)

In the title compound, [Zn(C8H5O3)2(C6H6N2O)]n, the ZnII ion is tetrahedrally coordinated by two formyl­benzoate (FB) and one isonicotinamide (INA) ligands while symmetry-related FB ligands bridge adjacent ZnII ions, forming polymeric chains along the b axis. The carboxyl­ate groups in the two FB ions are twisted away from the attached benzene ring by 9.07 (2) and 26.2 (2)°. The two benzene rings of the FB ions are oriented at a dihedral angle of 81.30 (5)°. In the crystal, adjacent polymeric chains inter­act via N—H⋯O and C—H⋯O hydrogen bonds, ππ contacts between the formyl­benzoate rings [centroid–centroid distance = 3.7736 (8) Å] and weak C—H⋯π inter­actions, forming a three-dimensional network.

Related literature

For general background to niacin, see: Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]). For the crystal structure of N,N-diethyl­nicotinamide, see: Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). For related structures, see: Hökelek & Necefoğlu (1996[Hökelek, T. & Necefoğlu, H. (1996). Acta Cryst. C52, 1128-1131.]); Hökelek et al. (2009[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009). Acta Cryst. E65, m651-m652.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C8H5O3)2(C6H6N2O)]

  • Mr = 485.74

  • Monoclinic, P 21 /n

  • a = 13.3143 (2) Å

  • b = 6.7857 (1) Å

  • c = 21.3927 (3) Å

  • β = 91.458 (1)°

  • V = 1932.14 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.32 mm−1

  • T = 100 K

  • 0.22 × 0.12 × 0.08 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.829, Tmax = 0.903

  • 17841 measured reflections

  • 4812 independent reflections

  • 4086 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.080

  • S = 1.10

  • 4812 reflections

  • 297 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O1 1.9153 (11)
Zn1—O3 1.9723 (11)
Zn1—O4 1.9450 (10)
Zn1—N1 2.0270 (12)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2i 0.86 2.08 2.9242 (17) 165
N2—H2B⋯O2ii 0.86 2.11 2.9439 (17) 163
C4—H4⋯O5iii 0.93 2.41 3.298 (2) 160
C6—H6⋯O7iv 0.93 2.50 3.223 (2) 135
C15—H15⋯O6iv 0.93 2.32 3.2049 (19) 159
C16—H16⋯O2ii 0.93 2.44 3.3541 (18) 169
C3—H3⋯Cg1 0.93 2.73 3.6332 (17) 163
Symmetry codes: (i) -x+2, -y, -z; (ii) x, y-1, z; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+{\script{5\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg1 is the centroid of the C9–C14 ring.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

In the crystal structure of the title compound, each ZnII ion is coordinated by two formylbenzoate (FB) and one isonicotinamide (INA) ligands (Fig. 1), while symmetry related FB ligands bridge the ZnII ions forming polymeric chains along the b axis (Fig.2). The structures of similar complexes of ZnII ion, [Zn2(C10H14N2O)2(C7H5O3)4].2H2O (Hökelek & Necefouglu, 1996) and [Zn(C9H10NO2)2(C6H6N2O)(H2O)2] (Hökelek et al., 2009) have also been reported.

The average Zn—O bond length (Table 1) is 1.9442 (11) Å and the Zn1 atom is displaced out of the least-squares planes of the carboxylate groups (O1/C1/O2) and (O3/C8/O4*) by 0.687 (5) Å and 0.703 (2) Å, respectively. The O1/C1/O2 and O3/C8/O4* carboxylate planes form dihedral angles of 9.07 (2)° and 26.2 (2)°, respectively, with benzene rings A(C2-C7) and B(C9-C14), while the angles between rings A, B and C (N1/C15-C19) are A/B = 81.30 (5), A/C = 63.17 (5) and B/C = 46.11 (5)°.

In the crystal structure, N—H···O and C—H···O hydrogen bonds (Table 2) link adjacent chains into a three-dimensional network. In addition, ππ contacts between symmetry related A(C2-C7) formylbenzoate rings at (x, y, z) and (5/2-x, -1/2+y, 1/2-z)/(5/2-x, 1/2+y, 1/2-z) with a centroid-to-centroid distance of 3.7736 (8) Å, and weak C—H···π interaction (Table 2) involving the B(C9-C14) ring stabilize the structure.

Related literature top

For general background to niacin, see: Krishnamachari (1974). For the crystal structure of N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Hökelek & Necefouglu (1996); Hökelek et al. (2009). Cg1 is the centroid of the C9–C14 ring.

Experimental top

The title compound was prepared by the reaction of ZnSO4.H2O (0.90 g, 5 mmol) in H2O (25 ml) and INA (1.22 g, 10 mmol) in H2O (40 ml) with sodium 4-formylbenzoate (1.72 g, 10 mmol) in H2O (50 ml). The mixture was filtered and set aside to crystallize at ambient temperature for several days, giving colourless single crystals.

Refinement top

Atoms H21 and H22 (for methine) were located in a difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically with N-H = 0.86 Å (for NH2) and C-H = 0.93 Å for aromatic H atoms and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N).

Structure description top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

In the crystal structure of the title compound, each ZnII ion is coordinated by two formylbenzoate (FB) and one isonicotinamide (INA) ligands (Fig. 1), while symmetry related FB ligands bridge the ZnII ions forming polymeric chains along the b axis (Fig.2). The structures of similar complexes of ZnII ion, [Zn2(C10H14N2O)2(C7H5O3)4].2H2O (Hökelek & Necefouglu, 1996) and [Zn(C9H10NO2)2(C6H6N2O)(H2O)2] (Hökelek et al., 2009) have also been reported.

The average Zn—O bond length (Table 1) is 1.9442 (11) Å and the Zn1 atom is displaced out of the least-squares planes of the carboxylate groups (O1/C1/O2) and (O3/C8/O4*) by 0.687 (5) Å and 0.703 (2) Å, respectively. The O1/C1/O2 and O3/C8/O4* carboxylate planes form dihedral angles of 9.07 (2)° and 26.2 (2)°, respectively, with benzene rings A(C2-C7) and B(C9-C14), while the angles between rings A, B and C (N1/C15-C19) are A/B = 81.30 (5), A/C = 63.17 (5) and B/C = 46.11 (5)°.

In the crystal structure, N—H···O and C—H···O hydrogen bonds (Table 2) link adjacent chains into a three-dimensional network. In addition, ππ contacts between symmetry related A(C2-C7) formylbenzoate rings at (x, y, z) and (5/2-x, -1/2+y, 1/2-z)/(5/2-x, 1/2+y, 1/2-z) with a centroid-to-centroid distance of 3.7736 (8) Å, and weak C—H···π interaction (Table 2) involving the B(C9-C14) ring stabilize the structure.

For general background to niacin, see: Krishnamachari (1974). For the crystal structure of N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Hökelek & Necefouglu (1996); Hökelek et al. (2009). Cg1 is the centroid of the C9–C14 ring.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of a polymeric chain of the title compound.
catena-Poly[[(4-formylbenzoato-κO1)(isonicotinamide- κN1)zinc(II)]-µ-4-formylbenzoato-κ2O1:O1'] top
Crystal data top
[Zn(C8H5O3)2(C6H6N2O)]F(000) = 992
Mr = 485.74Dx = 1.670 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9448 reflections
a = 13.3143 (2) Åθ = 3.1–28.4°
b = 6.7857 (1) ŵ = 1.32 mm1
c = 21.3927 (3) ÅT = 100 K
β = 91.458 (1)°Needle, colourless
V = 1932.14 (5) Å30.22 × 0.12 × 0.08 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
4812 independent reflections
Radiation source: fine-focus sealed tube4086 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
φ and ω scansθmax = 28.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1714
Tmin = 0.829, Tmax = 0.903k = 89
17841 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0394P)2 + 0.0092P]
where P = (Fo2 + 2Fc2)/3
4812 reflections(Δ/σ)max = 0.001
297 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Zn(C8H5O3)2(C6H6N2O)]V = 1932.14 (5) Å3
Mr = 485.74Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.3143 (2) ŵ = 1.32 mm1
b = 6.7857 (1) ÅT = 100 K
c = 21.3927 (3) Å0.22 × 0.12 × 0.08 mm
β = 91.458 (1)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
4812 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4086 reflections with I > 2σ(I)
Tmin = 0.829, Tmax = 0.903Rint = 0.072
17841 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.47 e Å3
4812 reflectionsΔρmin = 0.39 e Å3
297 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.816160 (13)0.51300 (2)0.187880 (8)0.01058 (7)
O10.95052 (8)0.60767 (16)0.20123 (5)0.0149 (2)
O21.00643 (8)0.55706 (16)0.10502 (5)0.0149 (2)
O30.77863 (8)0.37932 (15)0.26575 (5)0.0134 (2)
O40.70741 (8)0.67550 (14)0.15404 (5)0.0137 (2)
O50.83582 (11)0.07543 (19)0.07713 (6)0.0312 (3)
O61.49773 (9)0.61367 (17)0.23858 (5)0.0199 (3)
O71.10801 (11)0.97953 (16)0.45862 (6)0.0236 (3)
N10.81632 (9)0.29546 (17)0.12295 (6)0.0112 (3)
N20.91501 (11)0.28715 (18)0.01158 (6)0.0182 (3)
H2A0.92690.36950.04100.022*
H2B0.93480.31250.02620.022*
C11.02044 (11)0.5821 (2)0.16202 (7)0.0110 (3)
C21.12564 (11)0.5862 (2)0.18971 (7)0.0109 (3)
C31.14051 (12)0.5879 (2)0.25423 (7)0.0126 (3)
H31.08570.58670.28030.015*
C41.23802 (12)0.5913 (2)0.27978 (7)0.0131 (3)
H41.24870.59060.32290.016*
C51.31866 (11)0.5957 (2)0.24033 (7)0.0122 (3)
C61.30379 (12)0.5942 (2)0.17551 (7)0.0143 (3)
H61.35850.59790.14940.017*
C71.20746 (12)0.5872 (2)0.15043 (7)0.0134 (3)
H71.19710.58320.10730.016*
C80.81930 (11)0.3293 (2)0.31722 (7)0.0115 (3)
C90.89783 (12)0.4527 (2)0.34954 (7)0.0114 (3)
C100.96360 (12)0.3649 (2)0.39317 (7)0.0149 (3)
H100.96030.22990.40040.018*
C111.03354 (13)0.4785 (2)0.42548 (8)0.0162 (3)
H111.07920.41880.45310.019*
C121.03609 (12)0.6823 (2)0.41700 (7)0.0140 (3)
C130.97104 (12)0.7698 (2)0.37288 (7)0.0138 (3)
H130.97300.90530.36660.017*
C140.90409 (12)0.6556 (2)0.33872 (7)0.0122 (3)
H140.86270.71380.30830.015*
C150.86757 (11)0.1289 (2)0.13520 (7)0.0125 (3)
H150.89240.10740.17570.015*
C160.88489 (13)0.0119 (2)0.09003 (8)0.0139 (3)
H160.92130.12510.10000.017*
C170.84719 (12)0.0179 (2)0.02948 (8)0.0126 (3)
C180.79165 (12)0.1872 (2)0.01756 (7)0.0147 (3)
H180.76390.20970.02210.018*
C190.77770 (12)0.3220 (2)0.06473 (7)0.0136 (3)
H190.74040.43500.05610.016*
C200.86597 (12)0.1204 (2)0.02441 (7)0.0157 (3)
C211.42128 (13)0.6036 (2)0.26818 (8)0.0161 (3)
H211.4266 (13)0.600 (3)0.3157 (9)0.028 (5)*
C221.10601 (13)0.8010 (2)0.45686 (8)0.0188 (4)
H221.1561 (13)0.714 (3)0.4842 (9)0.020 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01001 (11)0.01290 (10)0.00882 (11)0.00080 (6)0.00023 (7)0.00111 (6)
O10.0092 (6)0.0225 (6)0.0129 (5)0.0007 (4)0.0003 (4)0.0045 (4)
O20.0144 (6)0.0195 (5)0.0106 (5)0.0021 (5)0.0019 (5)0.0020 (4)
O30.0120 (6)0.0184 (5)0.0098 (5)0.0013 (4)0.0021 (4)0.0016 (4)
O40.0134 (6)0.0141 (5)0.0135 (5)0.0030 (4)0.0013 (5)0.0022 (4)
O50.0524 (9)0.0310 (7)0.0097 (6)0.0163 (7)0.0092 (6)0.0050 (5)
O60.0130 (6)0.0295 (6)0.0172 (6)0.0013 (5)0.0005 (5)0.0005 (5)
O70.0279 (8)0.0248 (6)0.0181 (7)0.0107 (5)0.0007 (6)0.0038 (5)
N10.0094 (7)0.0145 (6)0.0096 (6)0.0011 (5)0.0002 (5)0.0003 (5)
N20.0256 (8)0.0193 (6)0.0094 (6)0.0055 (6)0.0018 (6)0.0037 (5)
C10.0111 (8)0.0103 (6)0.0115 (7)0.0008 (6)0.0008 (6)0.0005 (6)
C20.0111 (8)0.0102 (6)0.0113 (7)0.0000 (6)0.0016 (6)0.0001 (6)
C30.0128 (8)0.0145 (7)0.0106 (7)0.0009 (6)0.0017 (6)0.0001 (6)
C40.0164 (8)0.0143 (7)0.0085 (7)0.0000 (6)0.0008 (6)0.0002 (6)
C50.0121 (8)0.0110 (7)0.0135 (8)0.0003 (6)0.0016 (6)0.0002 (6)
C60.0113 (8)0.0190 (7)0.0127 (7)0.0008 (6)0.0028 (6)0.0003 (6)
C70.0143 (8)0.0183 (7)0.0076 (7)0.0006 (6)0.0008 (6)0.0006 (6)
C80.0096 (8)0.0138 (7)0.0113 (7)0.0029 (6)0.0015 (6)0.0023 (6)
C90.0098 (8)0.0154 (7)0.0091 (7)0.0002 (6)0.0015 (6)0.0020 (6)
C100.0173 (9)0.0137 (7)0.0137 (8)0.0002 (6)0.0001 (7)0.0003 (6)
C110.0144 (9)0.0206 (8)0.0134 (8)0.0021 (6)0.0043 (7)0.0003 (6)
C120.0113 (8)0.0191 (7)0.0117 (7)0.0021 (6)0.0004 (6)0.0029 (6)
C130.0149 (8)0.0136 (7)0.0129 (7)0.0015 (6)0.0041 (6)0.0024 (6)
C140.0111 (8)0.0164 (7)0.0090 (7)0.0020 (6)0.0012 (6)0.0004 (6)
C150.0116 (8)0.0171 (7)0.0087 (7)0.0004 (6)0.0023 (6)0.0008 (6)
C160.0157 (9)0.0140 (7)0.0120 (8)0.0026 (6)0.0017 (7)0.0003 (5)
C170.0147 (8)0.0143 (7)0.0088 (8)0.0022 (6)0.0006 (6)0.0003 (5)
C180.0169 (9)0.0176 (7)0.0094 (7)0.0006 (6)0.0029 (6)0.0014 (6)
C190.0130 (8)0.0150 (7)0.0128 (7)0.0019 (6)0.0011 (6)0.0029 (6)
C200.0180 (9)0.0185 (7)0.0106 (7)0.0001 (6)0.0013 (7)0.0024 (6)
C210.0173 (9)0.0171 (7)0.0139 (8)0.0003 (6)0.0024 (7)0.0003 (6)
C220.0174 (9)0.0260 (8)0.0131 (8)0.0046 (7)0.0007 (7)0.0018 (7)
Geometric parameters (Å, º) top
Zn1—O11.9153 (11)C7—C61.378 (2)
Zn1—O31.9723 (11)C7—H70.93
Zn1—O41.9450 (10)C8—O4ii1.2669 (18)
Zn1—N12.0270 (12)C8—C91.495 (2)
O1—C11.2807 (18)C9—C101.397 (2)
O2—C11.2405 (18)C9—C141.3990 (19)
O3—C81.2611 (17)C10—H100.93
O4—C8i1.2669 (18)C11—C101.381 (2)
O5—C201.2261 (18)C11—H110.93
O6—C211.214 (2)C12—C111.395 (2)
O7—C221.2124 (19)C12—C131.397 (2)
N1—C151.3427 (18)C12—C221.484 (2)
N1—C191.3474 (18)C13—C141.377 (2)
N2—C201.332 (2)C13—H130.93
N2—H2A0.86C14—H140.93
N2—H2B0.86C15—H150.93
C2—C11.507 (2)C16—C151.382 (2)
C2—C31.390 (2)C16—C171.392 (2)
C2—C71.393 (2)C16—H160.93
C3—C41.396 (2)C18—C171.386 (2)
C3—H30.93C18—H180.93
C4—H40.93C19—C181.378 (2)
C5—C41.383 (2)C19—H190.93
C5—C61.396 (2)C20—C171.512 (2)
C5—C211.478 (2)C21—H211.018 (19)
C6—H60.93C22—H221.057 (17)
O1—Zn1—O3106.50 (4)C14—C9—C8121.23 (13)
O1—Zn1—O4123.30 (5)C9—C10—H10120.0
O1—Zn1—N1109.22 (5)C11—C10—C9119.95 (14)
O3—Zn1—N1104.39 (5)C11—C10—H10120.0
O4—Zn1—O3111.89 (5)C10—C11—C12120.45 (15)
O4—Zn1—N199.88 (5)C10—C11—H11119.8
C1—O1—Zn1123.27 (10)C12—C11—H11119.8
C8—O3—Zn1138.48 (10)C11—C12—C13119.50 (14)
C8i—O4—Zn1120.13 (10)C11—C12—C22118.70 (15)
C15—N1—Zn1119.26 (10)C13—C12—C22121.77 (14)
C15—N1—C19118.22 (13)C12—C13—H13120.0
C19—N1—Zn1121.95 (10)C14—C13—C12120.09 (14)
C20—N2—H2A120.0C14—C13—H13120.0
C20—N2—H2B120.0C9—C14—H14119.8
H2A—N2—H2B120.0C13—C14—C9120.42 (14)
O1—C1—C2115.07 (13)C13—C14—H14119.8
O2—C1—O1124.67 (14)N1—C15—C16122.57 (14)
O2—C1—C2120.25 (14)N1—C15—H15118.7
C3—C2—C1119.87 (14)C16—C15—H15118.7
C3—C2—C7120.36 (14)C15—C16—C17119.19 (14)
C7—C2—C1119.76 (13)C15—C16—H16120.4
C2—C3—C4119.77 (14)C17—C16—H16120.4
C2—C3—H3120.1C16—C17—C20123.82 (13)
C4—C3—H3120.1C18—C17—C16118.00 (14)
C3—C4—H4120.3C18—C17—C20118.16 (14)
C5—C4—C3119.36 (14)C17—C18—H18120.1
C5—C4—H4120.3C19—C18—C17119.77 (14)
C4—C5—C6120.90 (14)C19—C18—H18120.1
C4—C5—C21118.62 (14)N1—C19—C18122.20 (14)
C6—C5—C21120.48 (14)N1—C19—H19118.9
C5—C6—H6120.2C18—C19—H19118.9
C7—C6—C5119.60 (14)O5—C20—N2123.26 (15)
C7—C6—H6120.2O5—C20—C17119.35 (14)
C2—C7—H7120.0N2—C20—C17117.39 (13)
C6—C7—C2119.98 (14)O6—C21—C5124.78 (15)
C6—C7—H7120.0O6—C21—H21119.0 (11)
O3—C8—O4ii121.72 (14)C5—C21—H21116.3 (11)
O3—C8—C9122.19 (13)O7—C22—C12124.98 (17)
O4ii—C8—C9116.01 (13)O7—C22—H22121.9 (9)
C10—C9—C8119.27 (13)C12—C22—H22113.1 (9)
C10—C9—C14119.45 (14)
O3—Zn1—O1—C1132.27 (11)C21—C5—C4—C3178.69 (13)
O4—Zn1—O1—C196.44 (12)C4—C5—C6—C70.3 (2)
N1—Zn1—O1—C120.07 (13)C21—C5—C6—C7179.85 (14)
O1—Zn1—O3—C86.56 (15)C4—C5—C21—O6177.81 (15)
O4—Zn1—O3—C8143.97 (14)C6—C5—C21—O61.7 (2)
N1—Zn1—O3—C8108.94 (15)C2—C7—C6—C51.5 (2)
O1—Zn1—O4—C8i60.90 (13)O3—C8—C9—C10158.23 (15)
O3—Zn1—O4—C8i68.17 (12)O3—C8—C9—C1424.3 (2)
N1—Zn1—O4—C8i178.16 (11)O4ii—C8—C9—C1024.8 (2)
O1—Zn1—N1—C1562.86 (12)O4ii—C8—C9—C14152.61 (15)
O1—Zn1—N1—C19108.32 (12)C8—C9—C10—C11177.06 (15)
O3—Zn1—N1—C1550.72 (12)C14—C9—C10—C110.4 (2)
O3—Zn1—N1—C19138.10 (12)C8—C9—C14—C13174.28 (14)
O4—Zn1—N1—C15166.53 (11)C10—C9—C14—C133.2 (2)
O4—Zn1—N1—C1922.29 (13)C12—C11—C10—C92.9 (3)
Zn1—O1—C1—O225.4 (2)C13—C12—C11—C103.6 (3)
Zn1—O1—C1—C2155.21 (9)C22—C12—C11—C10174.41 (16)
Zn1—O3—C8—O4ii147.48 (12)C11—C12—C13—C140.9 (2)
Zn1—O3—C8—C935.8 (2)C22—C12—C13—C14177.08 (15)
Zn1—N1—C15—C16169.24 (12)C11—C12—C22—O7171.97 (17)
C19—N1—C15—C162.3 (2)C13—C12—C22—O76.0 (3)
Zn1—N1—C19—C18169.38 (12)C12—C13—C14—C92.5 (2)
C15—N1—C19—C181.9 (2)C17—C16—C15—N10.7 (2)
C3—C2—C1—O19.2 (2)C15—C16—C17—C181.4 (2)
C3—C2—C1—O2171.42 (14)C15—C16—C17—C20176.70 (15)
C7—C2—C1—O1171.18 (13)C19—C18—C17—C161.7 (2)
C7—C2—C1—O28.2 (2)C19—C18—C17—C20176.45 (14)
C1—C2—C3—C4179.87 (13)N1—C19—C18—C170.1 (2)
C7—C2—C3—C40.2 (2)N2—C20—C17—C165.3 (2)
C1—C2—C7—C6178.94 (14)N2—C20—C17—C18176.65 (15)
C3—C2—C7—C61.4 (2)O5—C20—C17—C16174.85 (17)
C2—C3—C4—C50.9 (2)O5—C20—C17—C183.2 (2)
C6—C5—C4—C30.8 (2)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2iii0.862.082.9242 (17)165
N2—H2B···O2iv0.862.112.9439 (17)163
C4—H4···O5v0.932.413.298 (2)160
C6—H6···O7vi0.932.503.223 (2)135
C15—H15···O6vi0.932.323.2049 (19)159
C16—H16···O2iv0.932.443.3541 (18)169
C3—H3···Cg10.932.733.6332 (17)163
Symmetry codes: (iii) x+2, y, z; (iv) x, y1, z; (v) x+1/2, y+1/2, z+1/2; (vi) x+5/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C8H5O3)2(C6H6N2O)]
Mr485.74
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)13.3143 (2), 6.7857 (1), 21.3927 (3)
β (°) 91.458 (1)
V3)1932.14 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.32
Crystal size (mm)0.22 × 0.12 × 0.08
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.829, 0.903
No. of measured, independent and
observed [I > 2σ(I)] reflections
17841, 4812, 4086
Rint0.072
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.080, 1.10
No. of reflections4812
No. of parameters297
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.39

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Zn1—O11.9153 (11)Zn1—O41.9450 (10)
Zn1—O31.9723 (11)Zn1—N12.0270 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.862.082.9242 (17)165
N2—H2B···O2ii0.862.112.9439 (17)163
C4—H4···O5iii0.932.413.298 (2)160
C6—H6···O7iv0.932.503.223 (2)135
C15—H15···O6iv0.932.323.2049 (19)159
C16—H16···O2ii0.932.443.3541 (18)169
C3—H3···Cg10.932.733.6332 (17)163
Symmetry codes: (i) x+2, y, z; (ii) x, y1, z; (iii) x+1/2, y+1/2, z+1/2; (iv) x+5/2, y1/2, z+1/2.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of the X-ray diffractometer. This work was supported financially by Kafkas University Research Fund (grant No. 2009-FEF-03).

References

First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009). Acta Cryst. E65, m651–m652.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (1996). Acta Cryst. C52, 1128–1131.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds