organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[4-(Di­methyl­amino)benzyl­­idene]acetohydrazide

aDepartment of Chemical Engineering, Hangzhou Vocational and Technical College, Hangzhou 310018, People's Republic of China, and bResearch Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: zgdhxc@126.com

(Received 20 July 2009; accepted 17 August 2009; online 22 August 2009)

The title compound, C11H15N3O, crystallizes with two independent mol­ecules per asymmetric unit which differ slightly in their side-chain orientations: the C=N—N—C torsion angle is −176.2 (3)° in one of the mol­ecules and −179.83 (3)° in the other. Each independent mol­ecule adopts a trans configuration with respect to the C=N bond. The two independent mol­ecules are related by a pseudo-inversion center and they exist as a N—H⋯O hydrogen-bonded dimer. The dimers are linked into zigzag chains along [100] by C—H⋯O hydrogen bonds.

Related literature

For general background to this type of compound, see: Cimerman et al. (1997[Cimerman, Z., Galic, N. & Bosner, B. (1997). Anal. Chim. Acta, 343, 145-153.]); Offe et al. (1952[Offe, H. A., Siefen, W. & Domagk, G. (1952). Z. Naturforsch. Teil B, 7, 446-447.]); Richardson et al. (1988[Richardson, D., Baker, E., Ponka, P., Wilairat, P., Vitolo, M. L. & Webb, J. (1988). Thalassemia: Pathophysiology and Management, Part B, p. 81. New York: Alan R. Liss.]). For related structures, see: Li & Jian (2008[Li, Y.-F. & Jian, F.-F. (2008). Acta Cryst. E64, o2409.]); Shang et al. (2007[Shang, Z.-H., Zhang, H.-L. & Ding, Y. (2007). Acta Cryst. E63, o3394.]); Tamboura et al. (2009[Tamboura, F. B., Gaye, M., Sall, A. S., Barry, A. H. & Bah, Y. (2009). Acta Cryst. E65, m160-m161.]).

[Scheme 1]

Experimental

Crystal data
  • C11H15N3O

  • Mr = 205.26

  • Orthorhombic, P b c a

  • a = 8.619 (4) Å

  • b = 20.063 (3) Å

  • c = 26.231 (3) Å

  • V = 4536 (2) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 223 K

  • 0.25 × 0.21 × 0.19 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.977, Tmax = 0.979

  • 25277 measured reflections

  • 3944 independent reflections

  • 2266 reflections with I > 2σ(I)

  • Rint = 0.086

Refinement
  • R[F2 > 2σ(F2)] = 0.081

  • wR(F2) = 0.260

  • S = 1.05

  • 3944 reflections

  • 278 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.86 2.09 2.930 (4) 166
N6—H6⋯O1ii 0.86 2.04 2.884 (4) 165
C3—H3⋯O1iii 0.93 2.56 3.328 (4) 140
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have attracted much attention due to the possibility of their analytical applications (Cimerman et al., 1997). They are also important ligands, which have been reported to have mild bacteriostatic activity and as potential oral iron-chelating drugs for genetic disorders such as thalassemia (Offe et al., 1952; Richardson et al., 1988). Metal complexes based on Schiff bases have received considerable attention because they can be utilized as model compounds of active centres in various complexes (Tamboura et al., 2009). We report here the crystal structure of the title compound (Fig. 1).

The title compound contains two independent, but almost identical molecules in the asymmetric unit. Each independent molecule adopts a trans configuration with respect to the CN bond. The N1/N2/O1/C9/C10/C11 and N5/N6/O2/C10/C21/C22 planes form dihedral angles of 4.68 (6)° and 6.93 (5)°, respectively, with the C3-C8 and C14-C19 planes. The dihedral angle between the two independent benzene rings is 88.26 (9)°. Bond lengths and angles are comparable to those observed for related structures (Li et al., 2008; Shang et al., 2007).

The two independent molecules are related by a pseudo inversion center, and in the crystal they exist as N—H···O hydrogen-bonded dimers. The dimers are linked into a zigzag chain along the 'a' axis by C—H···O hydrogen bonds. (Table 1).

Related literature top

For general background to Schiff bases, see: Cimerman et al. (1997); Offe et al. (1952); Richardson et al. (1988). For related structures, see: Li & Jian (2008); Shang et al. (2007); Tamboura et al. (2009).

Experimental top

4-Dimethylaminobenzaldehyde (1.49 g, 0.01 mol) and acetohydrazide (0.74 g, 0.01 mol) were dissolved in stirred methanol (20 ml) and left for 3.5 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 87% yield. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature (m.p. 490–493 K).

Refinement top

H atoms were positioned geometrically (N-H = 0.86 Å and C-H = 0.93 or 0.96 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(Cmethyl).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 40% probability level. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. Crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.
N'-[4-(Dimethylamino)benzylidene]acetohydrazide top
Crystal data top
C11H15N3OF(000) = 1760
Mr = 205.26Dx = 1.202 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3944 reflections
a = 8.619 (4) Åθ = 1.5–25.0°
b = 20.063 (3) ŵ = 0.08 mm1
c = 26.231 (3) ÅT = 223 K
V = 4536 (2) Å3Block, colourless
Z = 160.25 × 0.21 × 0.19 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3944 independent reflections
Radiation source: fine-focus sealed tube2266 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.086
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1010
Tmin = 0.977, Tmax = 0.979k = 2323
25277 measured reflectionsl = 3027
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.081H-atom parameters constrained
wR(F2) = 0.260 w = 1/[σ2(Fo2) + (0.1428P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.009
3944 reflectionsΔρmax = 0.26 e Å3
278 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0088 (18)
Crystal data top
C11H15N3OV = 4536 (2) Å3
Mr = 205.26Z = 16
Orthorhombic, PbcaMo Kα radiation
a = 8.619 (4) ŵ = 0.08 mm1
b = 20.063 (3) ÅT = 223 K
c = 26.231 (3) Å0.25 × 0.21 × 0.19 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3944 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2266 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.979Rint = 0.086
25277 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0810 restraints
wR(F2) = 0.260H-atom parameters constrained
S = 1.05Δρmax = 0.26 e Å3
3944 reflectionsΔρmin = 0.25 e Å3
278 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0047 (3)0.29181 (12)0.13459 (9)0.0780 (8)
O20.1988 (3)0.06574 (13)0.42455 (9)0.0870 (9)
C10.2222 (5)0.2853 (2)0.26167 (14)0.0876 (12)
H1A0.23520.29200.29770.131*
H1B0.15810.24690.25600.131*
H1C0.32170.27840.24610.131*
C20.0788 (5)0.3912 (2)0.27440 (14)0.0960 (13)
H2A0.12060.38470.30800.144*
H2B0.10110.43570.26310.144*
H2C0.03140.38450.27520.144*
C30.1822 (4)0.30188 (16)0.15390 (12)0.0642 (9)
H30.25540.27150.16570.077*
C40.1112 (4)0.34523 (16)0.18857 (12)0.0609 (9)
C50.0040 (4)0.38962 (16)0.16863 (13)0.0705 (10)
H50.04500.41970.19030.085*
C60.0317 (4)0.39019 (17)0.11734 (13)0.0711 (10)
H6A0.10390.42080.10530.085*
C70.0365 (4)0.34675 (16)0.08350 (12)0.0602 (9)
C80.1463 (4)0.30314 (16)0.10280 (12)0.0636 (9)
H80.19680.27410.08070.076*
C90.0084 (4)0.34839 (18)0.03007 (12)0.0678 (9)
H90.07810.38090.01940.081*
C100.0398 (4)0.27958 (17)0.09107 (14)0.0675 (10)
C110.1489 (5)0.2237 (2)0.08028 (14)0.0894 (12)
H11A0.17510.22360.04470.134*
H11B0.10050.18210.08900.134*
H11C0.24150.22920.10020.134*
C120.0762 (5)0.1252 (2)0.01346 (13)0.0932 (13)
H12A0.10360.11760.02150.140*
H12B0.07970.17210.02060.140*
H12C0.02680.10870.01960.140*
C130.2661 (6)0.0345 (2)0.02456 (15)0.0972 (14)
H13A0.26790.03870.01190.146*
H13B0.21410.00600.03380.146*
H13C0.37050.03350.03730.146*
C140.1752 (4)0.09738 (16)0.09815 (12)0.0606 (9)
C150.0720 (5)0.14273 (16)0.12098 (12)0.0684 (10)
H150.01050.16990.10050.082*
C160.0610 (4)0.14740 (16)0.17306 (12)0.0670 (9)
H160.00870.17760.18710.080*
C170.1510 (4)0.10824 (15)0.20548 (11)0.0579 (9)
C180.2550 (4)0.06487 (16)0.18297 (12)0.0616 (9)
H180.31760.03840.20360.074*
C190.2681 (4)0.05990 (15)0.13102 (12)0.0647 (9)
H190.34080.03080.11730.078*
C200.1307 (4)0.11238 (16)0.26024 (12)0.0642 (9)
H200.06370.14450.27320.077*
C210.2309 (4)0.05138 (18)0.37994 (13)0.0684 (10)
C220.3373 (4)0.00500 (18)0.36685 (13)0.0772 (11)
H22A0.40840.00900.34080.116*
H22B0.27750.04210.35470.116*
H22C0.39420.01810.39670.116*
N10.0433 (3)0.30740 (14)0.00272 (10)0.0689 (8)
N20.0109 (3)0.31648 (14)0.05201 (10)0.0716 (8)
H20.07940.34680.05760.086*
N30.1490 (4)0.34348 (16)0.23945 (10)0.0791 (9)
N40.1849 (4)0.09056 (14)0.04632 (10)0.0786 (9)
N50.1997 (3)0.07432 (14)0.29129 (10)0.0647 (8)
N60.1681 (3)0.08653 (14)0.34201 (10)0.0714 (8)
H60.10490.11820.34950.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0901 (19)0.0899 (18)0.0541 (16)0.0010 (14)0.0130 (13)0.0020 (12)
O20.105 (2)0.107 (2)0.0488 (15)0.0166 (16)0.0105 (14)0.0072 (12)
C10.107 (3)0.093 (3)0.063 (2)0.005 (2)0.020 (2)0.0040 (19)
C20.098 (3)0.123 (3)0.068 (3)0.004 (3)0.001 (2)0.026 (2)
C30.066 (2)0.068 (2)0.058 (2)0.0080 (17)0.0004 (17)0.0067 (16)
C40.063 (2)0.069 (2)0.050 (2)0.0069 (17)0.0043 (16)0.0006 (16)
C50.079 (3)0.069 (2)0.064 (2)0.0082 (18)0.002 (2)0.0084 (17)
C60.080 (3)0.067 (2)0.067 (2)0.0102 (18)0.003 (2)0.0036 (17)
C70.066 (2)0.0609 (19)0.054 (2)0.0026 (17)0.0044 (16)0.0072 (15)
C80.072 (2)0.068 (2)0.051 (2)0.0029 (18)0.0065 (17)0.0000 (15)
C90.078 (3)0.071 (2)0.054 (2)0.0010 (18)0.0016 (18)0.0029 (17)
C100.069 (2)0.077 (2)0.057 (2)0.0096 (19)0.0052 (18)0.0013 (18)
C110.098 (3)0.097 (3)0.073 (3)0.023 (2)0.006 (2)0.006 (2)
C120.114 (3)0.109 (3)0.057 (2)0.002 (3)0.010 (2)0.010 (2)
C130.135 (4)0.091 (3)0.066 (3)0.011 (3)0.007 (2)0.010 (2)
C140.073 (2)0.0649 (19)0.0436 (19)0.0063 (18)0.0001 (17)0.0009 (15)
C150.088 (3)0.063 (2)0.054 (2)0.0069 (19)0.0034 (18)0.0038 (16)
C160.072 (2)0.068 (2)0.062 (2)0.0115 (18)0.0025 (18)0.0035 (16)
C170.067 (2)0.0607 (19)0.0461 (19)0.0017 (16)0.0002 (16)0.0010 (14)
C180.068 (2)0.0658 (19)0.052 (2)0.0061 (16)0.0032 (17)0.0034 (15)
C190.079 (2)0.0608 (19)0.054 (2)0.0037 (17)0.0038 (18)0.0007 (15)
C200.067 (2)0.072 (2)0.054 (2)0.0025 (18)0.0035 (17)0.0050 (17)
C210.071 (2)0.087 (2)0.047 (2)0.0010 (19)0.0036 (18)0.0094 (18)
C220.080 (3)0.083 (2)0.068 (2)0.004 (2)0.0007 (19)0.0059 (18)
N10.076 (2)0.0802 (19)0.0506 (17)0.0032 (15)0.0036 (14)0.0104 (14)
N20.082 (2)0.0794 (18)0.0530 (18)0.0102 (16)0.0073 (15)0.0002 (14)
N30.095 (2)0.092 (2)0.0505 (18)0.0090 (18)0.0027 (16)0.0076 (15)
N40.105 (3)0.083 (2)0.0478 (18)0.0107 (17)0.0013 (16)0.0013 (14)
N50.0686 (19)0.0819 (18)0.0435 (16)0.0004 (15)0.0037 (14)0.0026 (13)
N60.077 (2)0.091 (2)0.0465 (17)0.0135 (16)0.0070 (15)0.0007 (14)
Geometric parameters (Å, º) top
O1—C101.229 (4)C12—H12A0.96
O2—C211.236 (4)C12—H12B0.96
C1—N31.449 (5)C12—H12C0.96
C1—H1A0.96C13—N41.443 (5)
C1—H1B0.96C13—H13A0.96
C1—H1C0.96C13—H13B0.96
C2—N31.456 (5)C13—H13C0.96
C2—H2A0.96C14—N41.369 (4)
C2—H2B0.96C14—C191.396 (5)
C2—H2C0.96C14—C151.406 (5)
C3—C81.376 (4)C15—C161.373 (4)
C3—C41.399 (4)C15—H150.93
C3—H30.93C16—C171.394 (4)
C4—N31.374 (4)C16—H160.93
C4—C51.386 (5)C17—C181.381 (4)
C5—C61.380 (4)C17—C201.450 (4)
C5—H50.93C18—C191.371 (4)
C6—C71.376 (5)C18—H180.93
C6—H6A0.93C19—H190.93
C7—C81.384 (5)C20—N51.265 (4)
C7—C91.454 (4)C20—H200.93
C8—H80.93C21—N61.334 (4)
C9—N11.271 (4)C21—C221.496 (5)
C9—H90.93C22—H22A0.96
C10—N21.337 (4)C22—H22B0.96
C10—C111.491 (5)C22—H22C0.96
C11—H11A0.96N1—N21.387 (3)
C11—H11B0.96N2—H20.86
C11—H11C0.96N5—N61.380 (4)
C12—N41.450 (5)N6—H60.86
N3—C1—H1A109.5N4—C13—H13B109.5
N3—C1—H1B109.5H13A—C13—H13B109.5
H1A—C1—H1B109.5N4—C13—H13C109.4
N3—C1—H1C109.5H13A—C13—H13C109.5
H1A—C1—H1C109.5H13B—C13—H13C109.5
H1B—C1—H1C109.5N4—C14—C19121.6 (3)
N3—C2—H2A109.5N4—C14—C15121.7 (3)
N3—C2—H2B109.5C19—C14—C15116.6 (3)
H2A—C2—H2B109.5C16—C15—C14120.8 (3)
N3—C2—H2C109.5C16—C15—H15119.6
H2A—C2—H2C109.5C14—C15—H15119.6
H2B—C2—H2C109.5C15—C16—C17122.0 (3)
C8—C3—C4121.5 (3)C15—C16—H16119.0
C8—C3—H3119.2C17—C16—H16119.0
C4—C3—H3119.2C18—C17—C16117.1 (3)
N3—C4—C5122.8 (3)C18—C17—C20122.6 (3)
N3—C4—C3120.7 (3)C16—C17—C20120.3 (3)
C5—C4—C3116.5 (3)C19—C18—C17121.6 (3)
C6—C5—C4121.4 (3)C19—C18—H18119.2
C6—C5—H5119.3C17—C18—H18119.2
C4—C5—H5119.3C18—C19—C14121.8 (3)
C7—C6—C5121.9 (3)C18—C19—H19119.1
C7—C6—H6A119.0C14—C19—H19119.1
C5—C6—H6A119.1N5—C20—C17123.1 (3)
C6—C7—C8117.2 (3)N5—C20—H20118.4
C6—C7—C9119.6 (3)C17—C20—H20118.4
C8—C7—C9123.3 (3)O2—C21—N6119.5 (3)
C3—C8—C7121.4 (3)O2—C21—C22122.0 (3)
C3—C8—H8119.3N6—C21—C22118.5 (3)
C7—C8—H8119.3C21—C22—H22A109.5
N1—C9—C7123.0 (3)C21—C22—H22B109.5
N1—C9—H9118.5H22A—C22—H22B109.5
C7—C9—H9118.5C21—C22—H22C109.5
O1—C10—N2120.0 (3)H22A—C22—H22C109.5
O1—C10—C11121.5 (3)H22B—C22—H22C109.5
N2—C10—C11118.5 (3)C9—N1—N2115.3 (3)
C10—C11—H11A109.5C10—N2—N1122.1 (3)
C10—C11—H11B109.4C10—N2—H2119.0
H11A—C11—H11B109.5N1—N2—H2119.0
C10—C11—H11C109.5C4—N3—C2119.7 (3)
H11A—C11—H11C109.5C4—N3—C1121.0 (3)
H11B—C11—H11C109.5C2—N3—C1117.2 (3)
N4—C12—H12A109.5C14—N4—C13120.0 (3)
N4—C12—H12B109.5C14—N4—C12120.2 (3)
H12A—C12—H12B109.5C13—N4—C12116.9 (3)
N4—C12—H12C109.5C20—N5—N6114.9 (3)
H12A—C12—H12C109.5C21—N6—N5123.0 (3)
H12B—C12—H12C109.5C21—N6—H6118.5
N4—C13—H13A109.5N5—N6—H6118.5
C8—C3—C4—N3179.7 (3)N4—C14—C19—C18177.7 (3)
C8—C3—C4—C50.5 (5)C15—C14—C19—C182.7 (5)
N3—C4—C5—C6180.0 (3)C18—C17—C20—N54.0 (5)
C3—C4—C5—C60.8 (5)C16—C17—C20—N5174.0 (3)
C4—C5—C6—C70.3 (5)C7—C9—N1—N2179.6 (3)
C5—C6—C7—C81.6 (5)O1—C10—N2—N1175.8 (3)
C5—C6—C7—C9178.4 (3)C11—C10—N2—N14.8 (5)
C4—C3—C8—C70.9 (5)C9—N1—N2—C10176.2 (3)
C6—C7—C8—C31.9 (5)C5—C4—N3—C22.0 (5)
C9—C7—C8—C3178.1 (3)C3—C4—N3—C2177.1 (3)
C6—C7—C9—N1176.0 (3)C5—C4—N3—C1160.9 (3)
C8—C7—C9—N14.0 (5)C3—C4—N3—C120.0 (5)
N4—C14—C15—C16178.1 (3)C19—C14—N4—C1313.6 (5)
C19—C14—C15—C162.3 (5)C15—C14—N4—C13166.8 (4)
C14—C15—C16—C170.4 (5)C19—C14—N4—C12173.7 (3)
C15—C16—C17—C181.1 (5)C15—C14—N4—C126.6 (5)
C15—C16—C17—C20177.0 (3)C17—C20—N5—N6178.8 (3)
C16—C17—C18—C190.7 (5)O2—C21—N6—N5179.0 (3)
C20—C17—C18—C19177.4 (3)C22—C21—N6—N51.7 (5)
C17—C18—C19—C141.3 (5)C20—N5—N6—C21179.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.862.092.930 (4)166
N6—H6···O1ii0.862.042.884 (4)165
C3—H3···O1iii0.932.563.328 (4)140
C11—H11A···N10.962.312.791 (5)110
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC11H15N3O
Mr205.26
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)223
a, b, c (Å)8.619 (4), 20.063 (3), 26.231 (3)
V3)4536 (2)
Z16
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.21 × 0.19
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.977, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
25277, 3944, 2266
Rint0.086
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.081, 0.260, 1.05
No. of reflections3944
No. of parameters278
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.25

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.862.092.930 (4)166
N6—H6···O1ii0.862.042.884 (4)165
C3—H3···O1iii0.932.563.328 (4)140
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x1/2, y+1/2, z.
 

Acknowledgements

The authors thank the Science and Technology Project of Zhejiang Province (grant No. 2007 F70077) and Hangzhou Vocational and Technical College for financial support.

References

First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCimerman, Z., Galic, N. & Bosner, B. (1997). Anal. Chim. Acta, 343, 145–153.  CrossRef CAS Web of Science Google Scholar
First citationLi, Y.-F. & Jian, F.-F. (2008). Acta Cryst. E64, o2409.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOffe, H. A., Siefen, W. & Domagk, G. (1952). Z. Naturforsch. Teil B, 7, 446–447.  Google Scholar
First citationRichardson, D., Baker, E., Ponka, P., Wilairat, P., Vitolo, M. L. & Webb, J. (1988). Thalassemia: Pathophysiology and Management, Part B, p. 81. New York: Alan R. Liss.  Google Scholar
First citationShang, Z.-H., Zhang, H.-L. & Ding, Y. (2007). Acta Cryst. E63, o3394.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTamboura, F. B., Gaye, M., Sall, A. S., Barry, A. H. & Bah, Y. (2009). Acta Cryst. E65, m160–m161.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds