organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages o1269-o1270

N-[4-Acetyl-5-(2-methylprop-1-enyl)-5-(2-p-tolyl­prop­yl)-4,5-di­hydro-1,3,4-thia­diazol-2-yl]acetamide

aLaboratoire de Chimie Biomoléculaires, Substances Naturelles et Réactivité, Faculté des Sciences Semlalia, BP 2390, Bd My Abdellah, 40000 Marrakech, Morocco, bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Avenue Ibn Battouta, BP 1014, Rabat, Morocco, cLaboratoire des Sciences des Matériaux, Département de Physique, Faculté des Sciences Semlalia, BP 2390, Bd My Abdellah, 40000 Marrakech, Morocco, and dCRM2 (UMR UHP - CNRS 7036), Faculté des Sciences et Techniques, BP 70239, Bd des Aiguillettes, 54506 Vandoeuvre-lès-Nancy CEDEX, France
*Correspondence e-mail: mberraho@yahoo.fr

(Received 3 May 2009; accepted 6 May 2009; online 14 May 2009)

The title heterocyclic compound, C20H27N3O2S, was synthesized from 2-(4-methyl­cyclo­hex-3-en­yl)-6-methyl­hepta-2,5-dien-4-one, which was isolated from the essential oil Cedrus atlantica. The thia­diazole ring is essentially planar [maximum deviation 0.006 (2) Å] and it forms a dihedral angle of 18.08 (9)° with the benzene ring. The dihedral angle between the thia­diazole ring and the acetamide plane is 7.62 (10)°. In the crystal, mol­ecules are linked into chains running along the c axis by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For the biological activity of 1,3,4-thia­diazole derivatives, see: Demirbas et al. (2005[Demirbas, N., Demirbas, A., Karaoglu, S. A. & Çelik, E. (2005). Arkivoc, i, 75-91.]); Holla et al. (2002[Holla, B. S., Poorjary, N. K., Rao, S. B. & Shivananda, M. K. (2002). Eur. J. Med. Chem. 37, 511-517.]); Kritsanida et al. (2002[Kritsanida, M., Mouroutsou, A., Marakos, P., Pouli, N., Papakonstantinou-Garoufalias, S., Pannecouque, C., Witvrouw, M. & Clercq, E. D. (2002). Farmaco, 57, 253-257.]); Nizamuddin et al. (1999[Nizamuddin, G. M., Khan, M. H. & Srivastava, M. K. (1999). J. Sci. Ind. Res. 58, 538-542.]); Sun et al. (1999[Sun, X.-W., Zhang, Y., Zhang, Z.-Y., Wang, Q. & Wang, S.-F. (1999). Indian J. Chem. Sect. B, 38, 380-382.]); Udupi et al. (2000[Udupi, R. H., Suresh, G. V., Sety, S. R. & Bhat, A. R. (2000). J. Indian Chem. Soc. 77, 302-304.]). For the synthesis, see: Beatriz et al. (2002[Beatriz, N. B., Albertina, G. M., Miriam, M. A., Angel, A. L., Graciela, Y. M. & Norma, B. D. (2002). Arkivoc, x, 14-23.]); Sakthivel et al. (2008[Sakthivel, P., Joseph, P. S., Muthiah, P. T., Sethusankar, K. & Thennarasu, S. (2008). Acta Cryst. E64, o216.]). For related structures, see: Loughzail et al. (2009[Loughzail, M., Mazoir, N., Maya, C. M., Berraho, M., Benharref, A. & Bouhmaida, N. (2009). Acta Cryst. E65, o4.]); Tebaa et al. (2009[Tebaa, M., Mazoir, N., Maya, C. M., Nouzha, B., Benharref, A. & Berraho, M. (2009). Acta Cryst. E65, o267-o268.]).

[Scheme 1]

Experimental

Crystal data
  • C20H27N3O2S

  • Mr = 373.51

  • Monoclinic, P 21 /c

  • a = 10.855 (2) Å

  • b = 14.193 (2) Å

  • c = 12.854 (4) Å

  • β = 90.955 (11)°

  • V = 1980.1 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 100 K

  • 0.28 × 0.17 × 0.12 mm

Data collection
  • Bruker X8 APEX CCD area-detector diffractometer

  • Absorption correction: none

  • 7884 measured reflections

  • 4030 independent reflections

  • 3365 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.094

  • S = 1.10

  • 4030 reflections

  • 249 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H2⋯O2i 0.87 (2) 1.96 (2) 2.811 (2) 167 (2)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT-Plus. Bruker AXS Inc.,Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). APEX2 and SAINT-Plus. Bruker AXS Inc.,Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

1,3,4-Thiadiazole derivatives possess antimicrobial (Demirbas et al., 2005) and antiviral (Kritsanida et al., 2002) activities. They are also known for their broad-spectrum of biological activities such as antibacterial (Sun et al., 1999), anti-inflammatory (Udupi et al., 2000) and herbicidal (Nizamuddin et al., 1999). In addition, [1,3,4]thiadiazoles exhibit various biological activities possibly due to the presence of the N—C—S moiety (Holla et al., 2002). In view of these findings and in continuation to our previous work on the synthesis of [1,3,4]thiadiazoles, we report herein the hemisynthesis of N-[4-acetyl-5-isobutenyl-5-(2-p-tolylpropyl)-4,5-dihydro-1,3,4-thiadiazol-2-yl]acetamide, (I), through chemical modification of 2-(4-methylcyclohex-3-enyl)-6-methylhepta-2,5-dien-4-one, which is isolated from Cedrus Atlantica essential oil. Thus, aromatization of this later, followed by condensation with thiosemicarbazide (Beatriz et al., 2002; Sakthivel et al., 2008) ending with treatment of acetic anhydride in the presence of pyridine yielded the diasterioisomers in high stereoselectivity.

The molecular structure of (I) is shown in Fig. 1. The geometric parameters (bond lengths and angles) are very similar to those observed in previously reported structures (Loughzail et al.,2009; Tebaa et al.,2009). The thiadiazole ring system is essentially planar and it forms a dihedral angle of 18.08 (9)° with the benzene ring.

In the crystal structure, molecules are linked into chains (Fig. 2) running along the c axis by intermolecular N—H···O hydrogen bonds (Table 1) involving the carbonyl and the acetamide groups.

Related literature top

For the biological activity of 1,3,4-thiadiazole derivatives, see: Demirbas et al. (2005); Holla et al. (2002); Kritsanida et al. (2002); Nizamuddin et al. (1999); Sun et al. (1999); Udupi et al. (2000). For the synthesis, see: Beatriz et al. (2002); Sakthivel et al. (2008). For related structures, see: Loughzail et al. (2009); Tebaa et al. (2009).

Experimental top

A mixture of 2-(4-methylcyclohex-3-enyl)-6-methylhepta-2,5-dien-4-one (0.5 g, 2.3 mmol) and Pd/C (10%) was heated at 423 K for 12 h. The product obtained was treated with equimolecular quantity of thiosemicarbazide and several drops of HCl were added. The reactional mixture was heated at reflux in ethanol for 5 h and then evaporated under reduced pressure and the residue obtained was purified on silica gel column using hexane–ethyl acetate (96:4) as an eluent. 0.25 mmol of the thiosemicarbazone obtained was dissolved in 2.5 ml of pyridine and 2.5 ml of acetic anhydride. The mixture was heated on a water bath for 1.5 h. The resulting residue was concentrated in vacuo and chromatographied on silica gel column with hexane–ethyl acetate (92:8) as an eluent. Suitable crystals were obtained by evaporation of an ethyl acetate solution at 277 K.

Refinement top

Atoms H2 and H9 were located in a difference map and refined freely. The remaining H atoms were positioned geometrically and refined as riding, with C—H = 0.93 Å (aromatic), 0.96 Å (methyl), 0.97 Å (methylene), 0.98 Å (methine), and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view showing the N—H···O hydrogen bonds (dashed lines) and the formation of a chain along the c axis. H atoms not involved in hydrogen bonding have been omitted for clarity.
N-[4-Acetyl-5-(2-methylprop-1-enyl)-5-(2-p-tolylpropyl)-4,5-dihydro-1,3,4-thiadiazol-2-yl]acetamide top
Crystal data top
C20H27N3O2SF(000) = 800
Mr = 373.51Dx = 1.253 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8068 reflections
a = 10.855 (2) Åθ = 2.8–26.4°
b = 14.193 (2) ŵ = 0.18 mm1
c = 12.854 (4) ÅT = 100 K
β = 90.955 (11)°Prism, colourless
V = 1980.1 (8) Å30.28 × 0.17 × 0.12 mm
Z = 4
Data collection top
Bruker X8 APEX CCD area-detector
diffractometer
3365 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 26.4°, θmin = 2.8°
ϕ and ω scansh = 013
7884 measured reflectionsk = 1717
4030 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0257P)2 + 1.5568P]
where P = (Fo2 + 2Fc2)/3
4030 reflections(Δ/σ)max = 0.001
249 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C20H27N3O2SV = 1980.1 (8) Å3
Mr = 373.51Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.855 (2) ŵ = 0.18 mm1
b = 14.193 (2) ÅT = 100 K
c = 12.854 (4) Å0.28 × 0.17 × 0.12 mm
β = 90.955 (11)°
Data collection top
Bruker X8 APEX CCD area-detector
diffractometer
3365 reflections with I > 2σ(I)
7884 measured reflectionsRint = 0.032
4030 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.24 e Å3
4030 reflectionsΔρmin = 0.20 e Å3
249 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H20.357 (2)0.0915 (17)0.0811 (19)0.039 (7)*
H90.5323 (18)0.1563 (13)0.5491 (16)0.018 (5)*
C1'0.04998 (19)0.36320 (14)0.44410 (16)0.0263 (4)
H1'0.04730.41820.48330.032*
C2'0.10902 (18)0.28480 (14)0.48503 (15)0.0231 (4)
H2'0.14420.28790.55140.028*
C20.37116 (16)0.09545 (13)0.23153 (13)0.0180 (4)
C3'0.11662 (17)0.20141 (13)0.42843 (14)0.0188 (4)
C30.35748 (17)0.04166 (13)0.11768 (14)0.0204 (4)
C40.33879 (19)0.07060 (14)0.00610 (14)0.0252 (4)
H400.38140.12870.00610.038*
H410.37060.02250.03860.038*
H420.25240.07900.00830.038*
C4'0.05884 (17)0.19924 (14)0.33050 (14)0.0216 (4)
H4'0.06110.14420.29130.026*
C50.41102 (17)0.13772 (12)0.42180 (14)0.0178 (4)
C5'0.00180 (17)0.27755 (14)0.29079 (15)0.0234 (4)
H5'0.04080.27370.22600.028*
C60.31344 (17)0.12846 (13)0.50691 (13)0.0185 (4)
H600.33700.07590.55120.022*
H610.31760.18480.54950.022*
C6'0.00551 (18)0.36170 (14)0.34573 (16)0.0247 (4)
C70.17835 (17)0.11399 (13)0.47324 (14)0.0191 (4)
H70.17520.06440.42030.023*
C7'0.0625 (2)0.44905 (15)0.29915 (17)0.0326 (5)
H70'0.00040.48480.26440.049*
H71'0.09740.48660.35330.049*
H72'0.12600.43150.25000.049*
C80.10620 (18)0.07994 (13)0.56829 (14)0.0227 (4)
H800.14030.02150.59280.034*
H810.02130.07080.54870.034*
H820.11200.12630.62260.034*
C90.53585 (18)0.15303 (13)0.47409 (14)0.0200 (4)
C100.64558 (18)0.16273 (13)0.43130 (15)0.0226 (4)
C110.67035 (19)0.16274 (15)0.31623 (16)0.0286 (5)
H1110.73020.11510.30090.043*
H1120.70130.22330.29610.043*
H1130.59530.14980.27840.043*
C120.75806 (19)0.17719 (15)0.49976 (17)0.0304 (5)
H1210.79820.23480.48070.046*
H1220.81380.12540.49110.046*
H1230.73390.18070.57120.046*
C410.37297 (17)0.30457 (13)0.37021 (13)0.0177 (4)
C420.33714 (19)0.37167 (13)0.28539 (14)0.0231 (4)
H4200.39910.37150.23300.035*
H4210.32960.43400.31370.035*
H4220.25970.35270.25500.035*
N10.35903 (15)0.05391 (11)0.13421 (12)0.0192 (3)
N30.35840 (14)0.18471 (10)0.24065 (11)0.0183 (3)
N40.38013 (14)0.21218 (10)0.34384 (11)0.0174 (3)
O10.36850 (13)0.09778 (9)0.18908 (10)0.0256 (3)
O20.39419 (12)0.32905 (9)0.46085 (9)0.0213 (3)
S10.40785 (4)0.02872 (3)0.34223 (3)0.01914 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1'0.0305 (11)0.0224 (10)0.0261 (10)0.0034 (8)0.0050 (8)0.0035 (8)
C2'0.0251 (10)0.0248 (10)0.0195 (9)0.0012 (8)0.0007 (8)0.0015 (8)
C20.0184 (9)0.0205 (9)0.0153 (9)0.0010 (7)0.0019 (7)0.0011 (7)
C3'0.0175 (9)0.0199 (9)0.0192 (9)0.0004 (7)0.0020 (7)0.0011 (7)
C30.0198 (9)0.0198 (9)0.0215 (10)0.0000 (8)0.0010 (7)0.0005 (7)
C40.0334 (11)0.0220 (10)0.0201 (10)0.0008 (8)0.0041 (8)0.0041 (8)
C4'0.0212 (10)0.0228 (9)0.0207 (9)0.0018 (8)0.0007 (7)0.0010 (8)
C50.0221 (9)0.0169 (9)0.0144 (8)0.0007 (7)0.0003 (7)0.0003 (7)
C5'0.0206 (10)0.0304 (10)0.0192 (9)0.0002 (8)0.0002 (8)0.0043 (8)
C60.0239 (10)0.0187 (9)0.0128 (8)0.0013 (8)0.0008 (7)0.0012 (7)
C6'0.0196 (10)0.0272 (10)0.0276 (10)0.0032 (8)0.0058 (8)0.0068 (8)
C70.0231 (10)0.0181 (9)0.0160 (9)0.0001 (7)0.0011 (7)0.0020 (7)
C7'0.0328 (12)0.0314 (11)0.0338 (12)0.0119 (9)0.0082 (9)0.0077 (9)
C80.0248 (10)0.0216 (9)0.0216 (10)0.0014 (8)0.0009 (8)0.0000 (8)
C90.0245 (10)0.0197 (9)0.0157 (9)0.0011 (7)0.0032 (7)0.0018 (7)
C100.0253 (10)0.0171 (9)0.0254 (10)0.0020 (8)0.0015 (8)0.0013 (7)
C110.0258 (11)0.0285 (11)0.0316 (11)0.0001 (9)0.0064 (9)0.0002 (9)
C120.0229 (11)0.0271 (11)0.0410 (12)0.0019 (9)0.0029 (9)0.0013 (9)
C410.0193 (9)0.0187 (9)0.0153 (9)0.0014 (7)0.0009 (7)0.0003 (7)
C420.0332 (11)0.0183 (9)0.0176 (9)0.0004 (8)0.0029 (8)0.0003 (7)
N10.0274 (9)0.0185 (8)0.0117 (7)0.0001 (7)0.0000 (6)0.0010 (6)
N30.0230 (8)0.0188 (8)0.0130 (7)0.0003 (6)0.0009 (6)0.0019 (6)
N40.0240 (8)0.0174 (7)0.0107 (7)0.0021 (6)0.0006 (6)0.0014 (6)
O10.0358 (8)0.0201 (7)0.0208 (7)0.0013 (6)0.0010 (6)0.0016 (6)
O20.0277 (7)0.0211 (7)0.0149 (6)0.0000 (6)0.0011 (5)0.0019 (5)
S10.0254 (2)0.0175 (2)0.0145 (2)0.00277 (19)0.00084 (17)0.00137 (18)
Geometric parameters (Å, º) top
C1'—C2'1.384 (3)C6'—C7'1.505 (3)
C1'—C6'1.392 (3)C7—C81.540 (3)
C1'—H1'0.93C7—H70.98
C2'—C3'1.392 (3)C7'—H70'0.96
C2'—H2'0.93C7'—H71'0.96
C2—N31.280 (2)C7'—H72'0.96
C2—N11.387 (2)C8—H800.96
C2—S11.7497 (18)C8—H810.96
C3'—C4'1.397 (3)C8—H820.96
C3'—C71.519 (2)C9—C101.327 (3)
C3—O11.219 (2)C9—H90.97 (2)
C3—N11.373 (2)C10—C121.507 (3)
C3—C41.502 (3)C10—C111.508 (3)
C4—H400.96C11—H1110.96
C4—H410.96C11—H1120.96
C4—H420.96C11—H1130.96
C4'—C5'1.385 (3)C12—H1210.96
C4'—H4'0.93C12—H1220.96
C5—N41.491 (2)C12—H1230.96
C5—C91.518 (3)C41—O21.234 (2)
C5—C61.541 (2)C41—N41.357 (2)
C5—S11.8545 (18)C41—C421.494 (2)
C5'—C6'1.388 (3)C42—H4200.96
C5'—H5'0.93C42—H4210.96
C6—C71.536 (3)C42—H4220.96
C6—H600.97N1—H20.87 (2)
C6—H610.97N3—N41.399 (2)
C2'—C1'—C6'121.60 (18)C6'—C7'—H70'109.5
C2'—C1'—H1'119.2C6'—C7'—H71'109.5
C6'—C1'—H1'119.2H70'—C7'—H71'109.5
C1'—C2'—C3'121.06 (18)C6'—C7'—H72'109.5
C1'—C2'—H2'119.5H70'—C7'—H72'109.5
C3'—C2'—H2'119.5H71'—C7'—H72'109.5
N3—C2—N1119.63 (16)C7—C8—H80109.5
N3—C2—S1119.00 (14)C7—C8—H81109.5
N1—C2—S1121.35 (14)H80—C8—H81109.5
C2'—C3'—C4'117.38 (17)C7—C8—H82109.5
C2'—C3'—C7121.72 (16)H80—C8—H82109.5
C4'—C3'—C7120.80 (16)H81—C8—H82109.5
O1—C3—N1121.87 (17)C10—C9—C5129.19 (17)
O1—C3—C4123.36 (17)C10—C9—H9117.4 (12)
N1—C3—C4114.76 (16)C5—C9—H9113.5 (12)
C3—C4—H40109.5C9—C10—C12119.73 (18)
C3—C4—H41109.5C9—C10—C11125.62 (18)
H40—C4—H41109.5C12—C10—C11114.63 (17)
C3—C4—H42109.5C10—C11—H111109.5
H40—C4—H42109.5C10—C11—H112109.5
H41—C4—H42109.5H111—C11—H112109.5
C5'—C4'—C3'121.18 (18)C10—C11—H113109.5
C5'—C4'—H4'119.4H111—C11—H113109.5
C3'—C4'—H4'119.4H112—C11—H113109.5
N4—C5—C9112.66 (15)C10—C12—H121109.5
N4—C5—C6112.84 (14)C10—C12—H122109.5
C9—C5—C6108.48 (15)H121—C12—H122109.5
N4—C5—S1102.63 (11)C10—C12—H123109.5
C9—C5—S1111.83 (13)H121—C12—H123109.5
C6—C5—S1108.29 (12)H122—C12—H123109.5
C4'—C5'—C6'121.37 (18)O2—C41—N4119.83 (16)
C4'—C5'—H5'119.3O2—C41—C42123.49 (16)
C6'—C5'—H5'119.3N4—C41—C42116.67 (15)
C7—C6—C5118.41 (15)C41—C42—H420109.5
C7—C6—H60107.7C41—C42—H421109.5
C5—C6—H60107.7H420—C42—H421109.5
C7—C6—H61107.7C41—C42—H422109.5
C5—C6—H61107.7H420—C42—H422109.5
H60—C6—H61107.1H421—C42—H422109.5
C5'—C6'—C1'117.35 (18)C3—N1—C2124.06 (16)
C5'—C6'—C7'121.43 (18)C3—N1—H2119.1 (16)
C1'—C6'—C7'121.17 (19)C2—N1—H2116.7 (16)
C3'—C7—C6114.25 (15)C2—N3—N4110.24 (14)
C3'—C7—C8109.29 (15)C41—N4—N3119.79 (14)
C6—C7—C8108.32 (15)C41—N4—C5122.03 (14)
C3'—C7—H7108.3N3—N4—C5118.18 (14)
C6—C7—H7108.3C2—S1—C589.94 (8)
C8—C7—H7108.3
C6'—C1'—C2'—C3'0.9 (3)O1—C3—N1—C21.0 (3)
C1'—C2'—C3'—C4'2.1 (3)C4—C3—N1—C2177.88 (17)
C1'—C2'—C3'—C7178.47 (17)N3—C2—N1—C3172.52 (18)
C2'—C3'—C4'—C5'1.0 (3)S1—C2—N1—C39.3 (3)
C7—C3'—C4'—C5'177.45 (17)N1—C2—N3—N4177.12 (15)
C3'—C4'—C5'—C6'1.3 (3)S1—C2—N3—N41.1 (2)
N4—C5—C6—C753.5 (2)O2—C41—N4—N3178.76 (15)
C9—C5—C6—C7179.04 (15)C42—C41—N4—N32.1 (2)
S1—C5—C6—C759.41 (18)O2—C41—N4—C51.1 (3)
C4'—C5'—C6'—C1'2.5 (3)C42—C41—N4—C5178.05 (16)
C4'—C5'—C6'—C7'175.03 (18)C2—N3—N4—C41179.12 (16)
C2'—C1'—C6'—C5'1.4 (3)C2—N3—N4—C50.7 (2)
C2'—C1'—C6'—C7'176.10 (19)C9—C5—N4—C4159.4 (2)
C2'—C3'—C7—C657.9 (2)C6—C5—N4—C4163.9 (2)
C4'—C3'—C7—C6125.84 (18)S1—C5—N4—C41179.78 (14)
C2'—C3'—C7—C863.6 (2)C9—C5—N4—N3120.51 (17)
C4'—C3'—C7—C8112.64 (19)C6—C5—N4—N3116.23 (16)
C5—C6—C7—C3'73.3 (2)S1—C5—N4—N30.08 (18)
C5—C6—C7—C8164.63 (15)N3—C2—S1—C50.96 (16)
N4—C5—C9—C1055.8 (3)N1—C2—S1—C5177.27 (16)
C6—C5—C9—C10178.55 (19)N4—C5—S1—C20.41 (12)
S1—C5—C9—C1059.2 (2)C9—C5—S1—C2120.59 (14)
C5—C9—C10—C12179.85 (17)C6—C5—S1—C2119.95 (13)
C5—C9—C10—C111.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2···O2i0.87 (2)1.96 (2)2.811 (2)167 (2)
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC20H27N3O2S
Mr373.51
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.855 (2), 14.193 (2), 12.854 (4)
β (°) 90.955 (11)
V3)1980.1 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.28 × 0.17 × 0.12
Data collection
DiffractometerBruker X8 APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7884, 4030, 3365
Rint0.032
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.094, 1.10
No. of reflections4030
No. of parameters249
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.20

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2005), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2···O2i0.87 (2)1.96 (2)2.811 (2)167 (2)
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

The authors thank Professor J. C. Daran for fruitful discussions.

References

First citationBeatriz, N. B., Albertina, G. M., Miriam, M. A., Angel, A. L., Graciela, Y. M. & Norma, B. D. (2002). Arkivoc, x, 14–23.  Google Scholar
First citationBruker (2005). APEX2 and SAINT-Plus. Bruker AXS Inc.,Madison, Wisconsin, USA.  Google Scholar
First citationDemirbas, N., Demirbas, A., Karaoglu, S. A. & Çelik, E. (2005). Arkivoc, i, 75–91.  CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHolla, B. S., Poorjary, N. K., Rao, S. B. & Shivananda, M. K. (2002). Eur. J. Med. Chem. 37, 511–517.  Web of Science PubMed Google Scholar
First citationKritsanida, M., Mouroutsou, A., Marakos, P., Pouli, N., Papakonstantinou-Garoufalias, S., Pannecouque, C., Witvrouw, M. & Clercq, E. D. (2002). Farmaco, 57, 253–257.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLoughzail, M., Mazoir, N., Maya, C. M., Berraho, M., Benharref, A. & Bouhmaida, N. (2009). Acta Cryst. E65, o4.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNizamuddin, G. M., Khan, M. H. & Srivastava, M. K. (1999). J. Sci. Ind. Res. 58, 538–542.  CAS Google Scholar
First citationSakthivel, P., Joseph, P. S., Muthiah, P. T., Sethusankar, K. & Thennarasu, S. (2008). Acta Cryst. E64, o216.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, X.-W., Zhang, Y., Zhang, Z.-Y., Wang, Q. & Wang, S.-F. (1999). Indian J. Chem. Sect. B, 38, 380–382.  Google Scholar
First citationTebaa, M., Mazoir, N., Maya, C. M., Nouzha, B., Benharref, A. & Berraho, M. (2009). Acta Cryst. E65, o267–o268.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUdupi, R. H., Suresh, G. V., Sety, S. R. & Bhat, A. R. (2000). J. Indian Chem. Soc. 77, 302–304.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages o1269-o1270
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds