metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m545-m546

Di­aqua­bis­(2-chloro­benzoato-κO)bis­­(N,N-di­ethyl­nicotinamide-κN1)nickel(II)

aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemistry, Faculty of Science, Anadolu University, 26470 Yenibağlar, Eskişehir, Turkey, cDepartment of Physics, Karabük University, 78050 Karabük, Turkey, and dDepartment of Chemistry, Kafkas University, 63100 Kars, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 7 April 2009; accepted 16 April 2009; online 22 April 2009)

In the monomeric and centrosymmetric title NiII complex, [Ni(C7H4ClO2)2(C10H14N2O)2(H2O)2], the NiII ion is located on an inversion center. The asymmetric unit contains one 2-chloro­benzoate ligand, one diethyl­nicotinamide (DENA) ligand and one coordinating water mol­ecule, the ligands being monodentate. The four O atoms in the equatorial plane around the NiII ion form a slightly distorted square-planar arrangement, while the slightly distorted octa­hedral coordination is completed by two N atoms of the DENA ligands in axial positions. The dihedral angle between the benzene ring and the attached carboxyl­ate group is 87.36 (10)°, while the pyridine and benzene rings are oriented at an angle of 41.90 (5)°. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into a two-dimensional network parallel to (10[\overline{1}]).

Related literature

For general backgroud, see: Antolini et al. (1982[Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391-1395.]); Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]); Nadzhafov et al. (1981[Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124-128.]); Shnulin et al. (1981[Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409-1416.]). For related structures, see: Hökelek et al. (1995[Hökelek, T., Necefoğlu, H. & Balcı, M. (1995). Acta Cryst. C51, 2020-2023.], 1997[Hökelek, T., Budak, K. & Necefoğlu, H. (1997). Acta Cryst. C53, 1049-1051.], 2007[Hökelek, T., Çaylak, N. & Necefoğlu, H. (2007). Acta Cryst. E63, m2561-m2562.], 2008[Hökelek, T., Çaylak, N. & Necefoğlu, H. (2008). Acta Cryst. E64, m505-m506.]); Hökelek & Necefoğlu (1996[Hökelek, T. & Necefoğlu, H. (1996). Acta Cryst. C52, 1128-1131.], 1997[Hökelek, T. & Necefoğlu, H. (1997). Acta Cryst. C53, 187-189.], 2007[Hökelek, T. & Necefoğlu, H. (2007). Acta Cryst. E63, m821-m823.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C7H4ClO2)2(C10H14N2O)2(H2O)2]

  • Mr = 762.31

  • Monoclinic, P 21 /n

  • a = 12.7505 (2) Å

  • b = 10.3565 (2) Å

  • c = 14.9673 (3) Å

  • β = 114.046 (1)°

  • V = 1804.92 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.74 mm−1

  • T = 100 K

  • 0.27 × 0.18 × 0.11 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.828, Tmax = 0.923

  • 16593 measured reflections

  • 4519 independent reflections

  • 3781 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.084

  • S = 1.06

  • 4519 reflections

  • 233 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.08 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O1 2.0336 (10)
Ni1—O4 2.0867 (10)
Ni1—N1 2.1181 (12)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H41⋯O2i 0.82 (2) 1.86 (2) 2.6267 (17) 155 (2)
O4—H42⋯O3ii 0.85 (2) 1.93 (2) 2.7826 (15) 172 (2)
Symmetry codes: (i) -x, -y+1, -z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Transition metal complexes with biochemically active ligands frequently show interesting physical and/or chemical properties, as a result they may find applications in biological systems (Antolini et al., 1982). The structural functions and coordination relationships of the arylcarboxylate ion in transition metal complexes of benzoic acid derivatives change depending on the nature and position of the substituent groups on the benzene ring, the nature of the additional ligand molecule or solvent, and the medium of the synthesis (Nadzhafov et al., 1981; Shnulin et al., 1981). The nicotinic acid derivative N,N-diethylnicotinamide (DENA) is an important respiratory stimulant (Bigoli et al., 1972).

The structure determination of the title compound, (I), a nickel complex with two 2-chlorobenzoate (CB), two diethylnicotinamide (DENA) ligands and two water molecules, was undertaken in order to determine the properties of the ligands and also to compare the results obtained with those reported previously.

Compound (I) is a monomeric complex, with the NiII ion on a centre of symmetry. It contains two CB, two DENA ligands and two water molecules (Fig. 1). All ligands are monodentate. The four O atoms (O1, O4, and the symmetry-related atoms O1', O4') in the equatorial plane around the NiII ion form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two N atoms of the DENA ligands (N1, N1') in the axial positions (Table 1 and Fig. 1).

The near equality of the C1—O1 [1.2616 (17) Å] and C1—O2 [1.2435 (18) Å] bonds in the carboxylate group indicates a delocalized bonding arrangement, rather than localized single and double bonds, and may be compared with the corresponding distances: 1.256 (6) and 1.245 (6) Å in [Mn(DENA)2(C7H4ClO2)2(H2O)2], (II) (Hökelek et al., 2008), 1.265 (6) and 1.275 (6) Å in [Mn(C9H10NO2)2(H2O)4].2(H2O), (III) (Hökelek & Necefoğlu, 2007), 1.260 (4) and 1.252 (4) Å in [Zn(DENA)2(C7H4FO2)2(H2O)2],(IV) (Hökelek et al., 2007), 1.259 (9) and 1.273 (9) Å in Cu2(DENA)2(C6H5COO)4, (V) (Hökelek et al., 1995), 1.279 (4) and 1.246 (4) Å in [Zn2(DENA)2(C7H5O3)4].2H2O, (VI) (Hökelek & Necefoğlu, 1996), 1.251 (6) and 1.254 (7) Å in [Co(DENA)2(C7H5O3)2(H2O)2], (VII) (Hökelek & Necefoğlu, 1997) and 1.278 (3) and 1.246 (3) Å in [Cu(DENA)2(C7H4NO4)2(H2O)2], (VIII) (Hökelek et al., 1997). In (I), the average Ni—O bond length is 2.0602 (10) Å and the Ni1 atom is displaced out of the least-squares plane of the carboxylate group (O1/C1/O2) by -0.276 (1) Å. The dihedral angle between the planar carboxylate group and the benzene ring A (C2—C7) is 87.36 (10)°, while that between rings A and B (N1/C8—C12) is 41.90 (5)°.

In the crystal structure, intermolecular O—H···O hydrogen bonds (Table 2) link the molecules into a two-dimesional network parallel to the (1 0 1).

Related literature top

For general backgroud, see: Antolini et al. (1982); Bigoli et al. (1972); Nadzhafov et al. (1981); Shnulin et al. (1981). For related structures, see: Hökelek et al. (1995, 1997, 2007, 2008); Hökelek & Necefoğlu (1996, 1997, 2007).

Experimental top

The title compound was prepared by the reaction of Ni(SO4).6(H2O) (1.31 g, 5 mmol) in H2O (20 ml) and DENA (1.78 g, 10 mmol) in H2O (20 ml) with sodium 2-chlorobenzoate (1.785 g, 10 mmol) in H2O (50 ml). The mixture was filtered and set aside to crystallize at ambient temperature for 3 d, giving blue single crystals.

Refinement top

H atoms of water molecule were located in a difference Fourier map and refined isotropically, with a O-H restraint. The remaining H atoms were positioned geometrically with C-H = 0.93, 0.97 and 0.96 Å, for aromatic, methylene and methyl H atoms and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Primed atoms are generated by the symmetry operator (- x, 1 -y, -z).
Diaquabis(2-chlorobenzoato-κO)bis(N,N- diethylnicotinamide-κN1)nickel(II) top
Crystal data top
[Ni(C7H4ClO2)2(C10H14N2O)2(H2O)2]F(000) = 796
Mr = 762.31Dx = 1.403 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7783 reflections
a = 12.7505 (2) Åθ = 2.5–28.4°
b = 10.3565 (2) ŵ = 0.74 mm1
c = 14.9673 (3) ÅT = 100 K
β = 114.046 (1)°Block, blue
V = 1804.92 (6) Å30.27 × 0.18 × 0.11 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
4519 independent reflections
Radiation source: fine-focus sealed tube3781 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 28.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1717
Tmin = 0.828, Tmax = 0.923k = 1312
16593 measured reflectionsl = 2018
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0456P)2 + 0.2566P]
where P = (Fo2 + 2Fc2)/3
4519 reflections(Δ/σ)max = 0.001
233 parametersΔρmax = 1.08 e Å3
2 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Ni(C7H4ClO2)2(C10H14N2O)2(H2O)2]V = 1804.92 (6) Å3
Mr = 762.31Z = 2
Monoclinic, P21/nMo Kα radiation
a = 12.7505 (2) ŵ = 0.74 mm1
b = 10.3565 (2) ÅT = 100 K
c = 14.9673 (3) Å0.27 × 0.18 × 0.11 mm
β = 114.046 (1)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
4519 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3781 reflections with I > 2σ(I)
Tmin = 0.828, Tmax = 0.923Rint = 0.034
16593 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0312 restraints
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 1.08 e Å3
4519 reflectionsΔρmin = 0.39 e Å3
233 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.50000.00000.00853 (8)
Cl10.31050 (4)0.35043 (4)0.08471 (3)0.02678 (11)
O10.03038 (8)0.44605 (10)0.11794 (7)0.0128 (2)
O20.13227 (11)0.61462 (11)0.13322 (9)0.0268 (3)
O30.43014 (9)0.61598 (10)0.39621 (7)0.0151 (2)
O40.11786 (9)0.34845 (10)0.03504 (8)0.0123 (2)
H410.1299 (19)0.338 (2)0.0143 (13)0.042 (6)*
H420.1100 (18)0.2746 (17)0.0570 (15)0.043 (6)*
N10.13740 (10)0.61957 (11)0.08958 (9)0.0114 (2)
N20.48379 (11)0.49545 (12)0.29580 (9)0.0152 (3)
C10.09075 (13)0.50440 (14)0.15415 (11)0.0135 (3)
C20.11211 (13)0.42820 (14)0.23115 (11)0.0148 (3)
C30.03393 (14)0.42920 (16)0.32862 (12)0.0202 (3)
H30.02990.48300.34800.024*
C40.05013 (15)0.35049 (17)0.39746 (12)0.0259 (4)
H40.00270.35170.46240.031*
C50.14508 (16)0.27062 (17)0.36887 (13)0.0270 (4)
H50.15510.21690.41450.032*
C60.22513 (15)0.27003 (16)0.27308 (13)0.0235 (4)
H60.28950.21700.25410.028*
C70.20830 (14)0.34949 (15)0.20560 (11)0.0183 (3)
C80.14003 (12)0.74683 (14)0.07426 (11)0.0136 (3)
H80.08040.78330.02090.016*
C90.22780 (12)0.82654 (14)0.13450 (11)0.0151 (3)
H90.22550.91480.12230.018*
C100.31847 (12)0.77378 (14)0.21268 (11)0.0139 (3)
H100.37760.82550.25470.017*
C110.31889 (12)0.64090 (14)0.22689 (10)0.0119 (3)
C120.22679 (12)0.56819 (14)0.16507 (10)0.0124 (3)
H120.22670.47990.17620.015*
C130.41594 (12)0.58190 (13)0.31243 (11)0.0120 (3)
C140.47757 (15)0.45998 (18)0.19868 (12)0.0254 (4)
H14A0.55350.46700.19890.031*
H14B0.42780.52050.15070.031*
C150.43258 (16)0.32361 (19)0.16849 (14)0.0368 (5)
H15A0.43720.30230.10780.055*
H15B0.35410.31870.16050.055*
H15C0.47810.26380.21810.055*
C160.58189 (13)0.44280 (15)0.38015 (11)0.0166 (3)
H16A0.59670.35510.36570.020*
H16B0.56280.44010.43660.020*
C170.68933 (14)0.52372 (17)0.40425 (13)0.0233 (4)
H17A0.75120.48760.46000.035*
H17B0.67500.61050.41880.035*
H17C0.70980.52420.34920.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.00850 (13)0.00775 (13)0.00768 (13)0.00027 (9)0.00159 (10)0.00033 (9)
Cl10.0248 (2)0.0307 (2)0.0230 (2)0.00606 (17)0.00789 (18)0.00259 (17)
O10.0143 (5)0.0135 (5)0.0110 (5)0.0022 (4)0.0055 (4)0.0018 (4)
O20.0457 (8)0.0154 (6)0.0323 (7)0.0119 (5)0.0293 (6)0.0083 (5)
O30.0180 (5)0.0122 (5)0.0103 (5)0.0014 (4)0.0008 (4)0.0013 (4)
O40.0136 (5)0.0093 (5)0.0121 (5)0.0011 (4)0.0034 (4)0.0006 (4)
N10.0114 (6)0.0109 (6)0.0102 (6)0.0004 (5)0.0027 (5)0.0001 (5)
N20.0143 (6)0.0175 (7)0.0098 (6)0.0038 (5)0.0009 (5)0.0004 (5)
C10.0158 (7)0.0125 (7)0.0126 (7)0.0021 (6)0.0061 (6)0.0011 (6)
C20.0181 (7)0.0132 (7)0.0166 (7)0.0037 (6)0.0106 (6)0.0016 (6)
C30.0185 (8)0.0232 (9)0.0194 (8)0.0028 (6)0.0081 (7)0.0026 (7)
C40.0288 (9)0.0322 (10)0.0175 (8)0.0105 (8)0.0104 (7)0.0082 (7)
C50.0380 (10)0.0253 (9)0.0269 (9)0.0072 (8)0.0228 (9)0.0114 (7)
C60.0293 (9)0.0199 (9)0.0286 (9)0.0026 (7)0.0193 (8)0.0018 (7)
C70.0212 (8)0.0181 (8)0.0175 (8)0.0008 (6)0.0098 (7)0.0002 (6)
C80.0125 (7)0.0120 (7)0.0131 (7)0.0019 (6)0.0018 (6)0.0028 (6)
C90.0169 (7)0.0093 (7)0.0164 (7)0.0002 (6)0.0039 (6)0.0010 (6)
C100.0137 (7)0.0125 (7)0.0133 (7)0.0022 (6)0.0033 (6)0.0019 (6)
C110.0117 (7)0.0120 (7)0.0097 (7)0.0005 (5)0.0022 (6)0.0006 (5)
C120.0144 (7)0.0097 (7)0.0113 (7)0.0006 (5)0.0032 (6)0.0012 (5)
C130.0114 (7)0.0089 (7)0.0118 (7)0.0023 (5)0.0009 (6)0.0005 (5)
C140.0223 (9)0.0383 (10)0.0129 (8)0.0119 (7)0.0042 (7)0.0016 (7)
C150.0259 (10)0.0442 (12)0.0291 (10)0.0087 (8)0.0003 (8)0.0213 (9)
C160.0159 (7)0.0144 (8)0.0147 (7)0.0054 (6)0.0012 (6)0.0021 (6)
C170.0169 (8)0.0271 (9)0.0214 (9)0.0006 (7)0.0033 (7)0.0046 (7)
Geometric parameters (Å, º) top
Ni1—O1i2.0336 (10)C7—C21.390 (2)
Ni1—O12.0336 (10)C7—C61.386 (2)
Ni1—O42.0867 (10)C8—C91.387 (2)
Ni1—O4i2.0867 (10)C8—H80.93
Ni1—N1i2.1181 (12)C9—H90.93
Ni1—N12.1181 (12)C10—C91.379 (2)
Cl1—C71.7466 (17)C10—H100.93
O1—C11.2616 (17)C11—C101.392 (2)
O2—C11.2435 (18)C11—C121.384 (2)
O3—C131.2429 (17)C12—H120.93
O4—H410.820 (15)C13—N21.3369 (18)
O4—H420.854 (15)C13—C111.501 (2)
N1—C81.3405 (19)C14—H14A0.97
N1—C121.3452 (18)C14—H14B0.97
N2—C141.470 (2)C15—C141.522 (3)
N2—C161.4728 (19)C15—H15A0.96
C2—C31.392 (2)C15—H15B0.96
C2—C11.510 (2)C15—H15C0.96
C3—C41.394 (2)C16—H16A0.97
C3—H30.93C16—H16B0.97
C4—H40.93C17—C161.519 (2)
C5—C41.382 (3)C17—H17A0.96
C5—H50.93C17—H17B0.96
C6—C51.380 (2)C17—H17C0.96
C6—H60.93
O1i—Ni1—O1180.0C6—C7—C2121.94 (15)
O1i—Ni1—O493.00 (4)C6—C7—Cl1119.13 (13)
O1—Ni1—O487.00 (4)N1—C8—C9122.93 (14)
O1i—Ni1—O4i87.00 (4)N1—C8—H8118.5
O1—Ni1—O4i93.00 (4)C9—C8—H8118.5
O1i—Ni1—N1i90.70 (4)C8—C9—H9120.3
O1—Ni1—N1i89.30 (4)C10—C9—C8119.41 (14)
O1i—Ni1—N189.30 (4)C10—C9—H9120.3
O1—Ni1—N190.70 (4)C9—C10—C11118.10 (13)
O4—Ni1—O4i180.0C9—C10—H10121.0
O4—Ni1—N1i92.55 (4)C11—C10—H10121.0
O4i—Ni1—N1i87.45 (4)C10—C11—C13118.90 (13)
O4—Ni1—N187.45 (4)C12—C11—C10119.09 (13)
O4i—Ni1—N192.55 (4)C12—C11—C13121.91 (13)
N1i—Ni1—N1180.00 (7)N1—C12—C11122.94 (13)
C1—O1—Ni1127.35 (9)N1—C12—H12118.5
Ni1—O4—H41104.4 (15)C11—C12—H12118.5
Ni1—O4—H42125.8 (15)O3—C13—N2122.60 (13)
H41—O4—H42109 (2)O3—C13—C11118.39 (13)
C8—N1—Ni1122.58 (10)N2—C13—C11119.01 (13)
C8—N1—C12117.45 (12)N2—C14—C15112.80 (15)
C12—N1—Ni1119.97 (9)N2—C14—H14A109.0
C13—N2—C14124.98 (13)N2—C14—H14B109.0
C13—N2—C16118.44 (12)C15—C14—H14A109.0
C14—N2—C16116.10 (12)C15—C14—H14B109.0
O1—C1—C2114.14 (12)H14A—C14—H14B107.8
O2—C1—O1127.09 (14)C14—C15—H15A109.5
O2—C1—C2118.77 (13)C14—C15—H15B109.5
C3—C2—C1121.41 (14)C14—C15—H15C109.5
C7—C2—C1120.65 (14)H15A—C15—H15B109.5
C7—C2—C3117.87 (14)H15A—C15—H15C109.5
C2—C3—C4120.80 (16)H15B—C15—H15C109.5
C2—C3—H3119.6N2—C16—C17111.60 (13)
C4—C3—H3119.6N2—C16—H16A109.3
C3—C4—H4120.1N2—C16—H16B109.3
C5—C4—C3119.74 (16)C17—C16—H16A109.3
C5—C4—H4120.1C17—C16—H16B109.3
C6—C5—C4120.52 (15)H16A—C16—H16B108.0
C6—C5—H5119.7C16—C17—H17A109.5
C4—C5—H5119.7C16—C17—H17B109.5
C5—C6—C7119.08 (16)C16—C17—H17C109.5
C5—C6—H6120.5H17A—C17—H17B109.5
C7—C6—H6120.5H17A—C17—H17C109.5
C2—C7—Cl1118.94 (12)H17B—C17—H17C109.5
O4—Ni1—O1—C1172.55 (12)C1—C2—C3—C4174.81 (14)
O4i—Ni1—O1—C17.45 (12)C7—C2—C3—C42.0 (2)
N1i—Ni1—O1—C194.85 (12)C2—C3—C4—C50.2 (2)
N1—Ni1—O1—C185.15 (12)C6—C5—C4—C31.3 (3)
O1i—Ni1—N1—C858.61 (11)C7—C6—C5—C40.8 (3)
O1—Ni1—N1—C8121.39 (11)Cl1—C7—C2—C15.36 (19)
O1i—Ni1—N1—C12121.15 (11)Cl1—C7—C2—C3177.78 (12)
O1—Ni1—N1—C1258.85 (11)C6—C7—C2—C1174.35 (14)
O4—Ni1—N1—C8151.65 (11)C6—C7—C2—C32.5 (2)
O4i—Ni1—N1—C828.35 (11)Cl1—C7—C6—C5179.16 (12)
O4—Ni1—N1—C1228.11 (11)C2—C7—C6—C51.1 (2)
O4i—Ni1—N1—C12151.89 (11)N1—C8—C9—C101.6 (2)
Ni1—O1—C1—O29.8 (2)C11—C10—C9—C81.1 (2)
Ni1—O1—C1—C2170.38 (9)C12—C11—C10—C92.7 (2)
Ni1—N1—C8—C9177.78 (11)C13—C11—C10—C9179.11 (13)
C12—N1—C8—C92.5 (2)C10—C11—C12—N11.8 (2)
Ni1—N1—C12—C11179.49 (11)C13—C11—C12—N1178.16 (13)
C8—N1—C12—C110.7 (2)O3—C13—N2—C14174.33 (15)
C13—N2—C14—C15110.16 (17)O3—C13—N2—C162.5 (2)
C16—N2—C14—C1577.88 (18)C11—C13—N2—C145.4 (2)
C13—N2—C16—C1790.03 (17)C11—C13—N2—C16177.22 (12)
C14—N2—C16—C1782.48 (17)O3—C13—C11—C1061.59 (19)
C3—C2—C1—O185.51 (18)O3—C13—C11—C12114.75 (16)
C3—C2—C1—O294.30 (19)N2—C13—C11—C10118.19 (15)
C7—C2—C1—O191.23 (17)N2—C13—C11—C1265.48 (19)
C7—C2—C1—O288.96 (19)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H41···O2i0.82 (2)1.86 (2)2.6267 (17)155 (2)
O4—H42···O3ii0.85 (2)1.93 (2)2.7826 (15)172 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C7H4ClO2)2(C10H14N2O)2(H2O)2]
Mr762.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)12.7505 (2), 10.3565 (2), 14.9673 (3)
β (°) 114.046 (1)
V3)1804.92 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.74
Crystal size (mm)0.27 × 0.18 × 0.11
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.828, 0.923
No. of measured, independent and
observed [I > 2σ(I)] reflections
16593, 4519, 3781
Rint0.034
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.084, 1.06
No. of reflections4519
No. of parameters233
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.08, 0.39

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Ni1—O12.0336 (10)Ni1—N12.1181 (12)
Ni1—O42.0867 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H41···O2i0.82 (2)1.86 (2)2.6267 (17)155 (2)
O4—H42···O3ii0.85 (2)1.93 (2)2.7826 (15)172 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of the X-ray diffractometer.

References

First citationAntolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391–1395.  CSD CrossRef CAS Web of Science Google Scholar
First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Budak, K. & Necefoğlu, H. (1997). Acta Cryst. C53, 1049–1051.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T., Çaylak, N. & Necefoğlu, H. (2007). Acta Cryst. E63, m2561–m2562.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Çaylak, N. & Necefoğlu, H. (2008). Acta Cryst. E64, m505–m506.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (1996). Acta Cryst. C52, 1128–1131.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (1997). Acta Cryst. C53, 187–189.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (2007). Acta Cryst. E63, m821–m823.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Necefoğlu, H. & Balcı, M. (1995). Acta Cryst. C51, 2020–2023.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationNadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124–128.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409–1416.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m545-m546
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds