organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzyl­tri­butyl­ammonium 6-hy­droxy­naphthalene-2-sulfonate

aDepartment of Applied Physics, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, 240-8501 Yokohama, Japan
*Correspondence e-mail: mizu-j@ynu.ac.jp

(Received 31 December 2008; accepted 12 January 2009; online 17 January 2009)

The title compound, C19H34N+·C10H7O4S, is a charge-control agent for toners used in electrophotography. Inter­moleclar O—H⋯O hydrogen bonding between the OH group of one anion and the sulfonate O atom of a neighboring anion leads to the formation of one-dimensional chains along the b axis. In addition, C—H⋯O hydrogen bonds are observed. One of the n-butyl chains of the cation is disordered over two sites in a 0.88:0.12 ratio.

Related literature

For general background to charge-control agents for toners, see: Nash et al. (2001[Nash, R. J., Grande, M. L. & Muller, R. N. (2001). Proceedings of the 7th International Conference on Advances in Non-Impact Printing Technology, pp. 358-364.]). For a related structure, see: Mizuguchi et al. (2007[Mizuguchi, J., Sato, Y., Uta, K. & Sato, K. (2007). Acta Cryst. E63, o2509-o2510.]).

[Scheme 1]

Experimental

Crystal data
  • C19H34N+·C10H7O4S

  • Mr = 499.70

  • Monoclinic, P 21 /c

  • a = 16.9616 (4) Å

  • b = 10.4422 (2) Å

  • c = 17.6700 (4) Å

  • β = 116.2570 (11)°

  • V = 2806.73 (11) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.28 mm−1

  • T = 296.1 K

  • 0.50 × 0.25 × 0.04 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.720, Tmax = 0.954

  • 24483 measured reflections

  • 5103 independent reflections

  • 2818 reflections with F2 > 2σ(F2)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.191

  • S = 1.10

  • 5103 reflections

  • 328 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4O⋯O2i 0.82 1.88 2.696 (3) 177
C12—H12B⋯O2ii 0.96 2.52 3.470 (4) 173
C16—H16B⋯O3i 0.98 2.34 3.251 (4) 155
Symmetry codes: (i) x, y+1, z; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR2004 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Quaternary ammonium salts (for example, benzyltributylammonium 4-hydroxynaphthalene-1-sulfonate: P-51 from Orient Chemical Industries) are well known charge-control agents (CCAs) for toners used in electrophotography. CCAs are usually added to toners to create a desired charge level and polarity (Nash et al., 2001). The above compounds are characterized by high melting point above 433 K. The present high thermal stability is required for the toner manufacturing process which includes kneading of various toner components such as polymer, colorant, wax and CCA at 403–453 K. However, ordinary quaternary ammonium salts used in electrochemistry as supporting electrolytes exhibit much lower melting points below 373 K. Previously, we have investigated why P-51 alone possesses such a high melting point from the standpoint of the crystal structure. Then, we found chains of O—H···O intermolecular hydrogen bonds between the OH group of one anion and the sulfonate O atom of the neighboring one (Mizuguchi et al., 2007). The formation of the hydrogen bond is found to be responsible for the high thermal stability of P-51. A s an extension of this study, the present paper deals with the structure of the title compound, which is one of the P-51 derivatives.

Fig. 1 shows the ORTEPIII plot (Burnett & Johnson, 19966) of the title molecule. The ions have no crystallographically imposed symmetry. Fig. 2 shows a hydrogen-bonded anionic chain along the b axis between the OH group of one anion and the sulfonate O atom of the neighboring one. In addition, C—H···O hydrogen bonds are observed in the crystal structure (Table 1). The hydrogen-bonding network is found to greatly contribute to the high melting point of the title compound (433 K), just as in the case of P-51 (462 K).

Related literature top

For general background on charge-control agents for toners, see: Nash et al. (2001). For a related structure, see: Mizuguchi et al. (2007).

Experimental top

The title compound was obtained from Orient Chemical Industries Ltd., and was recrystallized from a methanol solution. After 48 h, a number of colourless crystals were obtained in the form of platelets.

Refinement top

Atom C11 was found to be disordered over two sites. The site occupancies for C11A/C11B were initially refined and later fixed at 0.88/0.12. These atoms were anisotropically refined. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å (aromatic), 0.96 Å (methyl), or 0.97 Å (methylene), and O—H = 0.82 Å; Uiso(H) = 1.2–1.5Ueq(parent atom).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2006); program(s) used to solve structure: SIR2004 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2006).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Only the major disorder component is shown.
[Figure 2] Fig. 2. The formation of a hydrogen-bonded (dashed lines) chain. Only anions are shown for clarity.
Benzyltributylammonium 6-hydroxynaphthalene-2-sulfonate top
Crystal data top
C19H34N+·C10H7O4SF(000) = 1080.00
Mr = 499.70Dx = 1.183 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2ybcCell parameters from 15945 reflections
a = 16.9616 (4) Åθ = 3.0–68.2°
b = 10.4422 (2) ŵ = 1.28 mm1
c = 17.6700 (4) ÅT = 296 K
β = 116.2570 (11)°Plate, colourless
V = 2806.73 (11) Å30.50 × 0.25 × 0.04 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2818 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.032
ω scansθmax = 68.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2020
Tmin = 0.720, Tmax = 0.954k = 1212
24483 measured reflectionsl = 2121
5103 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.055 w = 1/[σ2(Fo2) + (0.07P)2 + 1.689P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.191(Δ/σ)max = 0.001
S = 1.10Δρmax = 0.27 e Å3
5103 reflectionsΔρmin = 0.40 e Å3
328 parameters
Crystal data top
C19H34N+·C10H7O4SV = 2806.73 (11) Å3
Mr = 499.70Z = 4
Monoclinic, P21/cCu Kα radiation
a = 16.9616 (4) ŵ = 1.28 mm1
b = 10.4422 (2) ÅT = 296 K
c = 17.6700 (4) Å0.50 × 0.25 × 0.04 mm
β = 116.2570 (11)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5103 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2818 reflections with F2 > 2σ(F2)
Tmin = 0.720, Tmax = 0.954Rint = 0.032
24483 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.055328 parameters
wR(F2) = 0.191H-atom parameters constrained
S = 1.10Δρmax = 0.27 e Å3
5103 reflectionsΔρmin = 0.40 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.72863 (6)0.06500 (8)0.72643 (5)0.0673 (2)
O10.64931 (16)0.0460 (2)0.73670 (15)0.0775 (6)
O20.79375 (17)0.1418 (2)0.79490 (15)0.0840 (7)
O30.71380 (17)0.1121 (2)0.64457 (14)0.0805 (7)
O40.89003 (16)0.6746 (2)0.76763 (17)0.0837 (7)
N10.71413 (18)0.5740 (2)0.48646 (16)0.0636 (6)
C10.5395 (2)0.3823 (4)0.4426 (2)0.0829 (10)
C20.4932 (2)0.2707 (5)0.4115 (2)0.0948 (12)
C30.5324 (3)0.1552 (5)0.4400 (3)0.1058 (14)
C40.6187 (3)0.1490 (4)0.4993 (3)0.1091 (15)
C50.6659 (2)0.2610 (4)0.5289 (2)0.0922 (12)
C60.6279 (2)0.3792 (3)0.5014 (2)0.0729 (9)
C70.6794 (2)0.4989 (3)0.5397 (2)0.0729 (9)
C80.6398 (2)0.6301 (3)0.4083 (2)0.0691 (8)
C90.5816 (2)0.7256 (3)0.4246 (2)0.0849 (10)
C100.5138 (3)0.7839 (4)0.3429 (3)0.1152 (14)
C11A0.5529 (5)0.8743 (7)0.3027 (4)0.145 (3)0.88
C11B0.499 (2)0.774 (4)0.2541 (10)0.120 (8)0.12
C120.7657 (2)0.4880 (3)0.4554 (2)0.0701 (9)
C130.8520 (2)0.4368 (4)0.5213 (2)0.0877 (11)
C140.8937 (3)0.3471 (4)0.4819 (3)0.1095 (14)
C150.9840 (3)0.3085 (6)0.5412 (4)0.148 (2)
C160.7723 (2)0.6785 (3)0.5429 (2)0.0736 (9)
C170.8068 (2)0.7742 (3)0.5005 (2)0.0821 (10)
C180.8740 (3)0.8608 (4)0.5651 (2)0.1039 (14)
C190.8973 (4)0.9751 (5)0.5287 (3)0.142 (2)
C200.7782 (2)0.0872 (2)0.73747 (19)0.0591 (7)
C210.8585 (2)0.0989 (3)0.7323 (2)0.0686 (8)
C220.8973 (2)0.2154 (3)0.7391 (2)0.0711 (9)
C230.8581 (2)0.3286 (3)0.75144 (19)0.0607 (7)
C240.8940 (2)0.4517 (3)0.7557 (2)0.0662 (8)
C250.8535 (2)0.5573 (3)0.7660 (2)0.0657 (8)
C260.7749 (2)0.5462 (3)0.7738 (2)0.0679 (8)
C270.7390 (2)0.4290 (3)0.7700 (2)0.0694 (8)
C280.7778 (2)0.3164 (2)0.75807 (19)0.0600 (7)
C290.7396 (2)0.1939 (3)0.7505 (2)0.0637 (8)
H10.51170.46060.42490.107*
H20.43490.27440.37130.121*
H30.50010.08060.41870.134*
H40.64550.07000.51910.138*
H4O0.85990.73080.77400.134*
H50.72460.25580.56880.117*
H7A0.72950.47740.59240.094*
H7B0.64270.55730.55320.094*
H8A0.60260.55910.37540.092*
H8B0.66430.66970.37440.092*
H9A0.61950.79240.46170.110*
H9B0.55290.68330.45440.110*
H10A0.48370.71560.30350.138*0.88
H10B0.47040.82960.35440.138*0.88
H10C0.45790.75940.34130.138*0.12
H10D0.51900.87530.35390.138*0.12
H11A0.58990.82750.28430.217*0.88
H11B0.58710.93810.34300.217*0.88
H11C0.50660.91510.25510.217*0.88
H11D0.47360.69160.23200.180*0.12
H11E0.55350.78300.25110.180*0.12
H11F0.45900.84000.22140.180*0.12
H12A0.72960.41480.42770.090*
H12B0.77750.53460.41480.090*
H13A0.84160.39360.56440.112*
H13B0.89040.50970.54750.112*
H14A0.85850.27000.46170.144*
H14B0.89680.38760.43370.144*
H15A1.00820.25120.51470.233*
H15B0.98320.26560.58980.233*
H15C1.02060.38320.56090.233*
H16A0.82130.63980.58930.096*
H16B0.73820.72510.56670.096*
H17A0.83220.73070.46880.104*
H17B0.75820.82750.46110.104*
H18A0.85140.88960.60340.128*
H18B0.92610.80960.59650.128*
H19A0.94201.02110.57380.226*
H19B0.84781.02350.49790.226*
H19C0.92250.94200.49200.226*
H210.88530.02680.72410.087*
H220.95080.22120.73670.091*
H240.94640.46040.75110.085*
H260.74790.61920.78160.089*
H270.68700.42290.77600.089*
H290.68730.18590.75490.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0846 (6)0.0493 (4)0.0677 (5)0.0029 (4)0.0336 (4)0.0039 (3)
O10.0811 (15)0.0723 (15)0.0930 (17)0.0088 (12)0.0512 (13)0.0066 (12)
O20.1071 (18)0.0523 (13)0.0804 (16)0.0101 (13)0.0304 (14)0.0063 (11)
O30.1080 (18)0.0711 (15)0.0679 (14)0.0156 (13)0.0438 (13)0.0229 (12)
O40.0858 (16)0.0560 (14)0.1050 (19)0.0103 (12)0.0383 (14)0.0062 (13)
N10.0717 (16)0.0652 (17)0.0576 (15)0.0036 (13)0.0320 (13)0.0055 (13)
C10.081 (2)0.090 (2)0.080 (2)0.012 (2)0.038 (2)0.003 (2)
C20.091 (2)0.104 (3)0.087 (2)0.029 (2)0.036 (2)0.012 (2)
C30.127 (4)0.093 (3)0.095 (3)0.036 (3)0.047 (3)0.016 (2)
C40.135 (4)0.074 (2)0.102 (3)0.013 (2)0.037 (3)0.005 (2)
C50.104 (3)0.079 (2)0.080 (2)0.011 (2)0.029 (2)0.003 (2)
C60.089 (2)0.071 (2)0.0592 (19)0.013 (2)0.0332 (18)0.0043 (17)
C70.084 (2)0.078 (2)0.062 (2)0.0089 (19)0.0364 (18)0.0029 (17)
C80.073 (2)0.073 (2)0.0627 (19)0.0024 (17)0.0304 (17)0.0008 (16)
C90.086 (2)0.085 (2)0.094 (2)0.009 (2)0.048 (2)0.002 (2)
C100.097 (3)0.115 (3)0.115 (3)0.029 (2)0.030 (2)0.003 (2)
C11A0.181 (6)0.158 (6)0.108 (4)0.075 (4)0.077 (4)0.051 (4)
C11B0.106 (16)0.120 (18)0.102 (5)0.004 (16)0.017 (11)0.009 (13)
C120.079 (2)0.070 (2)0.066 (2)0.0034 (18)0.0360 (18)0.0059 (17)
C130.088 (2)0.094 (2)0.076 (2)0.014 (2)0.032 (2)0.001 (2)
C140.103 (3)0.107 (3)0.105 (3)0.029 (2)0.034 (2)0.003 (2)
C150.106 (3)0.157 (5)0.168 (5)0.037 (3)0.050 (3)0.019 (4)
C160.081 (2)0.071 (2)0.070 (2)0.0148 (18)0.0341 (18)0.0136 (18)
C170.088 (2)0.079 (2)0.084 (2)0.016 (2)0.041 (2)0.015 (2)
C180.116 (3)0.102 (3)0.102 (3)0.043 (2)0.055 (2)0.025 (2)
C190.157 (4)0.117 (4)0.144 (4)0.057 (3)0.060 (3)0.012 (3)
C200.0646 (18)0.0539 (18)0.0538 (16)0.0011 (14)0.0217 (14)0.0009 (14)
C210.071 (2)0.057 (2)0.080 (2)0.0049 (16)0.0356 (18)0.0071 (16)
C220.0642 (19)0.062 (2)0.084 (2)0.0008 (16)0.0307 (18)0.0062 (17)
C230.0586 (17)0.0566 (19)0.0607 (18)0.0021 (15)0.0208 (14)0.0031 (14)
C240.0625 (19)0.057 (2)0.073 (2)0.0037 (15)0.0250 (16)0.0088 (16)
C250.072 (2)0.0512 (19)0.0646 (19)0.0051 (16)0.0217 (16)0.0048 (15)
C260.078 (2)0.0503 (19)0.078 (2)0.0024 (16)0.0371 (18)0.0069 (16)
C270.074 (2)0.0540 (19)0.085 (2)0.0023 (16)0.0389 (18)0.0032 (17)
C280.0641 (18)0.0514 (18)0.0622 (18)0.0035 (14)0.0259 (15)0.0006 (14)
C290.0685 (19)0.0508 (18)0.073 (2)0.0033 (15)0.0320 (16)0.0022 (15)
Geometric parameters (Å, º) top
S1—O11.449 (3)C5—H50.933
S1—O21.465 (2)C7—H7A0.969
S1—O31.441 (2)C7—H7B0.972
S1—C201.768 (3)C8—H8A0.981
O4—C251.367 (4)C8—H8B0.961
N1—C71.530 (5)C9—H9A0.978
N1—C81.517 (3)C9—H9B0.967
N1—C121.515 (5)C10—H10A0.970
N1—C161.513 (4)C10—H10B0.970
C1—C21.376 (6)C10—H10C0.970
C1—C61.398 (4)C10—H10D0.970
C2—C31.361 (7)C11A—H11A0.960
C3—C41.375 (6)C11A—H11B0.960
C4—C51.383 (6)C11A—H11C0.960
C5—C61.377 (5)C11B—H11D0.960
C6—C71.503 (5)C11B—H11E0.960
C8—C91.518 (6)C11B—H11F0.960
C9—C101.519 (5)C12—H12A0.966
C10—C11A1.500 (10)C12—H12B0.959
C10—C11B1.48 (2)C13—H13A0.966
C12—C131.509 (4)C13—H13B0.975
C13—C141.515 (7)C14—H14A0.971
C14—C151.478 (6)C14—H14B0.974
C16—C171.513 (6)C15—H15A0.957
C17—C181.507 (5)C15—H15B0.973
C18—C191.490 (8)C15—H15C0.962
C20—C211.410 (5)C16—H16A0.960
C20—C291.362 (4)C16—H16B0.982
C21—C221.362 (5)C17—H17A0.959
C22—C231.419 (5)C17—H17B0.983
C23—C241.410 (4)C18—H18A0.961
C23—C281.423 (5)C18—H18B0.969
C24—C251.355 (5)C19—H19A0.952
C25—C261.406 (6)C19—H19B0.923
C26—C271.354 (4)C19—H19C0.983
C27—C281.408 (5)C21—H210.924
C28—C291.413 (4)C22—H220.930
O4—H4O0.817C24—H240.932
C1—H10.926C26—H260.930
C2—H20.930C27—H270.936
C3—H30.931C29—H290.928
C4—H40.931
O2···O4i2.696 (3)C11B···H2iv2.896
O4···O2ii2.696 (3)C25···H7A2.970
C2···C11Biii2.99 (3)H2···O1v2.993
C11B···C2iv2.99 (3)H2···O3v2.947
S1···H4Oi2.925H2···C11Biii2.896
O1···H2v2.993H3···O1v2.817
O1···H3v2.817H4···O32.757
O1···H8Avi2.893H4O···S1ii2.925
O1···H8Bvi2.665H4O···O2ii1.880
O1···H10Bvii2.989H7A···C252.970
O1···H12Bvi2.930H8A···O1ix2.893
O2···H4Oi1.880H8B···O1ix2.665
O2···H12Bvi2.516H9B···C1vii2.961
O2···H17Avi2.992H9B···C2vii2.846
O2···H26i2.593H10B···O1vii2.989
O3···H2v2.947H11D···C2iv2.949
O3···H42.757H11E···C2iv2.624
O3···H16Bi2.336H11F···C1iv2.942
O3···H18Ai2.736H11F···C2iv2.895
O4···H15Bviii2.661H12B···O1ix2.930
O4···H16A2.859H12B···O2ix2.516
O4···H22viii2.777H15B···O4x2.661
C1···H9Bvii2.961H16A···O42.859
C1···H11Fiii2.942H16B···O3ii2.336
C2···H9Bvii2.846H17A···O2ix2.992
C2···H11Diii2.949H18A···O3ii2.736
C2···H11Eiii2.624H22···O4x2.777
C2···H11Fiii2.895H26···O2ii2.593
O1—S1—O2111.98 (17)C9—C10—H10B108.9
O1—S1—O3114.40 (15)C9—C10—H10C104.0
O1—S1—C20106.62 (16)C9—C10—H10D103.9
O2—S1—O3112.04 (15)C11A—C10—H10A108.9
O2—S1—C20104.67 (13)C11A—C10—H10B108.9
O3—S1—C20106.32 (17)C11B—C10—H10C103.9
C7—N1—C8111.5 (2)C11B—C10—H10D103.9
C7—N1—C12111.1 (2)H10A—C10—H10B107.7
C7—N1—C16106.3 (2)H10C—C10—H10D105.4
C8—N1—C12106.2 (2)C10—C11A—H11A109.5
C8—N1—C16111.0 (2)C10—C11A—H11B109.5
C12—N1—C16110.7 (2)C10—C11A—H11C109.5
C2—C1—C6120.8 (3)H11A—C11A—H11B109.5
C1—C2—C3120.3 (3)H11A—C11A—H11C109.5
C2—C3—C4120.3 (4)H11B—C11A—H11C109.5
C3—C4—C5119.4 (4)C10—C11B—H11D109.5
C4—C5—C6121.5 (3)C10—C11B—H11E109.5
C1—C6—C5117.6 (3)C10—C11B—H11F109.5
C1—C6—C7122.3 (3)H11D—C11B—H11E109.5
C5—C6—C7119.9 (2)H11D—C11B—H11F109.5
N1—C7—C6117.0 (3)H11E—C11B—H11F109.5
N1—C8—C9115.4 (3)N1—C12—H12A108.4
C8—C9—C10111.4 (3)N1—C12—H12B108.4
C9—C10—C11A113.3 (4)C13—C12—H12A107.0
C9—C10—C11B133.1 (18)C13—C12—H12B107.8
N1—C12—C13116.7 (3)H12A—C12—H12B108.5
C12—C13—C14110.8 (3)C12—C13—H13A108.7
C13—C14—C15113.0 (4)C12—C13—H13B107.8
N1—C16—C17115.6 (3)C14—C13—H13A111.0
C16—C17—C18110.5 (3)C14—C13—H13B110.5
C17—C18—C19114.2 (3)H13A—C13—H13B107.9
S1—C20—C21119.8 (2)C13—C14—H14A110.2
S1—C20—C29120.9 (2)C13—C14—H14B110.5
C21—C20—C29119.4 (3)C15—C14—H14A108.0
C20—C21—C22120.9 (3)C15—C14—H14B107.4
C21—C22—C23121.1 (3)H14A—C14—H14B107.4
C22—C23—C24123.1 (3)C14—C15—H15A111.0
C22—C23—C28117.9 (3)C14—C15—H15B109.7
C24—C23—C28119.0 (3)C14—C15—H15C109.6
C23—C24—C25121.0 (3)H15A—C15—H15B108.7
O4—C25—C24118.7 (3)H15A—C15—H15C109.6
O4—C25—C26120.9 (3)H15B—C15—H15C108.2
C24—C25—C26120.4 (3)N1—C16—H16A109.0
C25—C26—C27119.6 (3)N1—C16—H16B107.7
C26—C27—C28122.2 (3)C17—C16—H16A108.8
C23—C28—C27117.7 (3)C17—C16—H16B108.4
C23—C28—C29119.2 (3)H16A—C16—H16B107.2
C27—C28—C29123.1 (3)C16—C17—H17A110.4
C20—C29—C28121.5 (3)C16—C17—H17B109.7
C25—O4—H4O109.9C18—C17—H17A110.0
C2—C1—H1119.9C18—C17—H17B108.2
C6—C1—H1119.3H17A—C17—H17B107.9
C1—C2—H2119.7C17—C18—H18A108.5
C3—C2—H2120.0C17—C18—H18B107.1
C2—C3—H3119.3C19—C18—H18A108.6
C4—C3—H3120.4C19—C18—H18B109.9
C3—C4—H4120.4H18A—C18—H18B108.4
C5—C4—H4120.2C18—C19—H19A107.9
C4—C5—H5118.8C18—C19—H19B110.3
C6—C5—H5119.7C18—C19—H19C106.2
N1—C7—H7A107.2H19A—C19—H19B113.4
N1—C7—H7B107.0H19A—C19—H19C108.2
C6—C7—H7A109.2H19B—C19—H19C110.6
C6—C7—H7B108.9C20—C21—H21119.8
H7A—C7—H7B107.2C22—C21—H21119.3
N1—C8—H8A107.8C21—C22—H22119.8
N1—C8—H8B108.6C23—C22—H22119.1
C9—C8—H8A107.9C23—C24—H24119.5
C9—C8—H8B109.4C25—C24—H24119.5
H8A—C8—H8B107.4C25—C26—H26119.8
C8—C9—H9A107.8C27—C26—H26120.6
C8—C9—H9B109.2C26—C27—H27118.8
C10—C9—H9A110.3C28—C27—H27119.0
C10—C9—H9B110.4C20—C29—H29119.3
H9A—C9—H9B107.5C28—C29—H29119.2
C9—C10—H10A108.9
O1—S1—C20—C21178.7 (2)C8—C9—C10—C11A70.7 (5)
O1—S1—C20—C291.7 (2)C8—C9—C10—C11B6 (2)
O2—S1—C20—C2159.9 (3)N1—C12—C13—C14177.0 (3)
O2—S1—C20—C29120.5 (2)C12—C13—C14—C15171.9 (4)
O3—S1—C20—C2158.9 (2)N1—C16—C17—C18171.6 (3)
O3—S1—C20—C29120.8 (2)C16—C17—C18—C19167.4 (4)
C7—N1—C8—C961.7 (3)S1—C20—C21—C22178.9 (2)
C8—N1—C7—C665.9 (3)S1—C20—C29—C28178.9 (2)
C7—N1—C12—C1368.0 (3)C21—C20—C29—C280.7 (4)
C12—N1—C7—C652.5 (3)C29—C20—C21—C220.8 (4)
C7—N1—C16—C17173.9 (3)C20—C21—C22—C230.2 (4)
C16—N1—C7—C6173.0 (2)C21—C22—C23—C24177.5 (3)
C8—N1—C12—C13170.5 (3)C21—C22—C23—C281.3 (4)
C12—N1—C8—C9177.1 (3)C22—C23—C24—C25178.8 (3)
C8—N1—C16—C1752.4 (4)C22—C23—C28—C27179.8 (2)
C16—N1—C8—C956.6 (4)C22—C23—C28—C291.3 (4)
C12—N1—C16—C1765.3 (3)C24—C23—C28—C271.1 (4)
C16—N1—C12—C1349.8 (4)C24—C23—C28—C29177.5 (2)
C2—C1—C6—C52.0 (7)C28—C23—C24—C250.1 (3)
C2—C1—C6—C7177.1 (4)C23—C24—C25—O4178.4 (2)
C6—C1—C2—C32.3 (8)C23—C24—C25—C260.8 (4)
C1—C2—C3—C40.7 (9)O4—C25—C26—C27178.5 (3)
C2—C3—C4—C51.0 (9)C24—C25—C26—C270.8 (4)
C3—C4—C5—C61.2 (9)C25—C26—C27—C280.2 (4)
C4—C5—C6—C10.3 (7)C26—C27—C28—C231.1 (4)
C4—C5—C6—C7175.5 (5)C26—C27—C28—C29177.4 (3)
C1—C6—C7—N179.8 (5)C23—C28—C29—C200.3 (4)
C5—C6—C7—N1105.2 (4)C27—C28—C29—C20178.8 (3)
N1—C8—C9—C10175.5 (3)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1/2, z+1/2; (v) x+1, y, z+1; (vi) x, y+1/2, z+1/2; (vii) x+1, y+1, z+1; (viii) x+2, y+1/2, z+3/2; (ix) x, y+1/2, z1/2; (x) x+2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O2ii0.821.882.696 (3)177
C12—H12B···O2ix0.962.523.470 (4)173
C16—H16B···O3ii0.982.343.251 (4)155
Symmetry codes: (ii) x, y+1, z; (ix) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC19H34N+·C10H7O4S
Mr499.70
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)16.9616 (4), 10.4422 (2), 17.6700 (4)
β (°) 116.2570 (11)
V3)2806.73 (11)
Z4
Radiation typeCu Kα
µ (mm1)1.28
Crystal size (mm)0.50 × 0.25 × 0.04
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.720, 0.954
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
24483, 5103, 2818
Rint0.032
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.191, 1.10
No. of reflections5103
No. of parameters328
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.40

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2006), SIR2004 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O2i0.821.882.696 (3)177
C12—H12B···O2ii0.962.523.470 (4)173
C16—H16B···O3i0.982.343.251 (4)155
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z1/2.
 

Acknowledgements

The authors express their sincere thanks to Mr O. Yamate at Orient Chemical Industries, Ltd. for the preparation of the sample.

References

First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMizuguchi, J., Sato, Y., Uta, K. & Sato, K. (2007). Acta Cryst. E63, o2509–o2510.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNash, R. J., Grande, M. L. & Muller, R. N. (2001). Proceedings of the 7th International Conference on Advances in Non-Impact Printing Technology, pp. 358–364.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds