organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Meth­oxy­carbon­yl)hydrazinium chloride monohydrate

aDepartment of Chemical Engineering, Hangzhou Vocational and Technical College, Hangzhou 310018, People's Republic of China, and bResearch Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: zgdhxc@126.com

(Received 21 September 2008; accepted 29 September 2008; online 4 October 2008)

In the title compound, C2H7N2O2+·Cl·H2O, the non-H atoms of the cation are approximately coplanar. The organic cations, chloride ions and water mol­ecules are linked into a two-dimensional network parallel to the bc plane by N—H⋯O, N—H⋯Cl and O—H⋯Cl hydrogen bonds.

Related literature

For applications of benzaldehyde­hydrazone derivatives, see: Parashar et al. (1988[Parashar, R. K., Sharma, R. C., Kumar, A. & Mohanm, G. (1988). Inorg. Chim. Acta, 151, 201-208.]); Hadjoudis et al. (1987[Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345-1360.]). For the crystal structure of a nickel methyl­carbazate complex, see: Song et al. (2003[Song, J. C., Zhang, T. L., Zhang, J. G., Ma, G. X., Li, Y. F. & Yu, K. B. (2003). Huaxue Xuebao, 61, 1444-1448.]).

[Scheme 1]

Experimental

Crystal data
  • C2H7N2O2+·Cl·H2O

  • Mr = 144.56

  • Monoclinic, P 21 /c

  • a = 12.6621 (13) Å

  • b = 7.6444 (7) Å

  • c = 6.6948 (7) Å

  • β = 97.199 (4)°

  • V = 642.91 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 123 (2) K

  • 0.28 × 0.24 × 0.23 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.861, Tmax = 0.881

  • 7105 measured reflections

  • 1445 independent reflections

  • 1360 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.080

  • S = 1.04

  • 1445 reflections

  • 97 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1W 0.92 (2) 1.84 (2) 2.743 (2) 167 (2)
N1—H1B⋯Cl1i 0.93 (2) 2.20 (2) 3.1152 (14) 168 (2)
N1—H1C⋯O1ii 0.89 (2) 2.00 (2) 2.8443 (17) 158 (2)
O1W—H1W⋯Cl1iii 0.85 (2) 2.41 (3) 3.2172 (16) 161 (3)
N2—H2⋯Cl1iv 0.86 (1) 2.33 (1) 3.1833 (13) 171 (2)
O1W—H2W⋯Cl1 0.82 (2) 2.58 (3) 3.1959 (14) 133 (3)
Symmetry codes: (i) x, y, z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzaldehydehydrazone derivatives have received considerable attention for a long time due to their pharmacological activity (Parashar et al., 1988) and their photochromic properties (Hadjoudis et al., 1987). The title compound is an important intermediate in the synthesis of benzaldehydehydrazone derivatives. We report here the crystal structure of the title compound (Fig. 1).

In the cation, atoms O1, O2, N2, C1 and C2 are coplanar (r.m.s. deviation 0.029 Å) and atom N1 deviates by 0.260 (2) Å from the C1/C2/O1/O2/N2 plane. The bond lengths and angles in the organic cation are comparable to those in a related structure (Song et al., 2003).

The molecules are linked into a two-dimensional network parallel to the bc plane by N–H···O, N—H···Cl and O—H···Cl hydrogen bonds involving the water molecule and chloride ions (Table 1 and Fig.2).

Related literature top

For applications of benzaldehydehydrazone derivatives, see: Parashar et al. (1988); Hadjoudis et al. (1987). For the crystal structure of a nickel methylcarbazate complex, see: Song et al. (2003).

Experimental top

Methyl hydrazinecarboxylate (0.90 g, 0.01 mol) was dissolved in ethanol- dilute HCl and single crystals suitable for X-ray analysis were obtained by slow evaporation at room temperature (m.p. 463–465 K).

Refinement top

O- and N-bound H atoms were located in a difference map and were refined with O-H and N2-H2 distances restrained to 0.85 (2) Å and 0.87 (1) Å, respectively. The methyl H atoms were disordered over two orientations and their occupancies were initially refined and later fixed at 0.75 and 0.25, with C-H = 0.96 å and Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed approximately along the c axis. Hydrogen bonds are shown as dashed lines.
(Methoxycarbonyl)hydrazinium chloride monohydrate top
Crystal data top
C2H7N2O2+·Cl·H2OF(000) = 304
Mr = 144.56Dx = 1.494 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1122 reflections
a = 12.6621 (13) Åθ = 1.6–25.0°
b = 7.6444 (7) ŵ = 0.53 mm1
c = 6.6948 (7) ÅT = 123 K
β = 97.199 (4)°Block, colourless
V = 642.91 (11) Å30.28 × 0.24 × 0.23 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1445 independent reflections
Radiation source: fine-focus sealed tube1360 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1415
Tmin = 0.861, Tmax = 0.881k = 99
7105 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0389P)2 + 0.2916P]
where P = (Fo2 + 2Fc2)/3
1445 reflections(Δ/σ)max = 0.001
97 parametersΔρmax = 0.59 e Å3
3 restraintsΔρmin = 0.30 e Å3
Crystal data top
C2H7N2O2+·Cl·H2OV = 642.91 (11) Å3
Mr = 144.56Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.6621 (13) ŵ = 0.53 mm1
b = 7.6444 (7) ÅT = 123 K
c = 6.6948 (7) Å0.28 × 0.24 × 0.23 mm
β = 97.199 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1445 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1360 reflections with I > 2σ(I)
Tmin = 0.861, Tmax = 0.881Rint = 0.021
7105 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0303 restraints
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.59 e Å3
1445 reflectionsΔρmin = 0.30 e Å3
97 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.83051 (8)0.17986 (13)0.89504 (15)0.0351 (2)
O20.88232 (9)0.10131 (13)0.86201 (17)0.0380 (3)
N10.69905 (11)0.07910 (18)1.1544 (2)0.0343 (3)
H1A0.6428 (16)0.110 (3)1.061 (3)0.047 (6)*
H1B0.6731 (14)0.031 (3)1.267 (3)0.042 (5)*
H1C0.7342 (16)0.174 (3)1.203 (3)0.047 (5)*
N20.77164 (10)0.04049 (16)1.08177 (18)0.0337 (3)
H20.7430 (14)0.1422 (16)1.064 (3)0.045 (5)*
C10.82736 (11)0.02547 (18)0.93676 (19)0.0287 (3)
C20.93930 (14)0.0505 (2)0.6966 (3)0.0441 (4)
H2A0.97690.14980.65300.066*0.75
H2B0.98920.04050.74020.066*0.75
H2C0.88960.00860.58690.066*0.75
H2D0.92690.07120.66700.066*0.25
H2E0.91460.11910.57990.066*0.25
H2F1.01410.07000.73320.066*0.25
O1W0.55461 (12)0.1831 (2)0.8367 (2)0.0561 (4)
H1W0.4948 (17)0.216 (4)0.867 (4)0.095 (10)*
H2W0.537 (3)0.109 (4)0.751 (4)0.115 (12)*
Cl10.64630 (3)0.09761 (5)0.54932 (5)0.03710 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0401 (6)0.0279 (5)0.0388 (5)0.0011 (4)0.0106 (4)0.0032 (4)
O20.0416 (6)0.0320 (5)0.0426 (6)0.0058 (4)0.0136 (5)0.0020 (4)
N10.0351 (7)0.0369 (7)0.0323 (6)0.0037 (5)0.0101 (5)0.0023 (5)
N20.0381 (7)0.0275 (6)0.0371 (6)0.0032 (5)0.0113 (5)0.0010 (5)
C10.0276 (6)0.0293 (6)0.0285 (6)0.0009 (5)0.0013 (5)0.0005 (5)
C20.0430 (9)0.0471 (9)0.0455 (8)0.0020 (7)0.0182 (7)0.0039 (7)
O1W0.0544 (8)0.0635 (9)0.0482 (7)0.0110 (7)0.0022 (6)0.0172 (6)
Cl10.0391 (2)0.0390 (2)0.0344 (2)0.00628 (14)0.00935 (14)0.00276 (13)
Geometric parameters (Å, º) top
O1—C11.2146 (17)C2—H2A0.96
O2—C11.3272 (17)C2—H2B0.96
O2—C21.4486 (19)C2—H2C0.96
N1—N21.4243 (17)C2—H2D0.96
N1—H1A0.92 (2)C2—H2E0.96
N1—H1B0.93 (2)C2—H2F0.96
N1—H1C0.89 (2)O1W—H1W0.847 (17)
N2—C11.3661 (17)O1W—H2W0.819 (18)
N2—H20.860 (9)
C1—O2—C2115.31 (12)H2B—C2—H2C109.5
N2—N1—H1A114.1 (12)O2—C2—H2D109.5
N2—N1—H1B109.4 (12)H2A—C2—H2D141.1
H1A—N1—H1B109.2 (16)H2B—C2—H2D56.3
N2—N1—H1C109.5 (13)H2C—C2—H2D56.3
H1A—N1—H1C110.5 (18)O2—C2—H2E109.5
H1B—N1—H1C103.5 (17)H2A—C2—H2E56.3
C1—N2—N1114.74 (12)H2B—C2—H2E141.1
C1—N2—H2118.7 (13)H2C—C2—H2E56.3
N1—N2—H2110.5 (13)H2D—C2—H2E109.5
O1—C1—O2126.08 (13)O2—C2—H2F109.5
O1—C1—N2123.84 (13)H2A—C2—H2F56.3
O2—C1—N2109.90 (12)H2B—C2—H2F56.3
O2—C2—H2A109.5H2C—C2—H2F141.1
O2—C2—H2B109.5H2D—C2—H2F109.5
H2A—C2—H2B109.5H2E—C2—H2F109.5
O2—C2—H2C109.5H1W—O1W—H2W102 (3)
H2A—C2—H2C109.5
C2—O2—C1—O18.8 (2)N1—N2—C1—O112.3 (2)
C2—O2—C1—N2175.92 (13)N1—N2—C1—O2172.27 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1W0.92 (2)1.84 (2)2.743 (2)167 (2)
N1—H1B···Cl1i0.93 (2)2.20 (2)3.1152 (14)168 (2)
N1—H1C···O1ii0.89 (2)2.00 (2)2.8443 (17)158 (2)
O1W—H1W···Cl1iii0.85 (2)2.41 (3)3.2172 (16)161 (3)
N2—H2···Cl1iv0.86 (1)2.33 (1)3.1833 (13)171 (2)
O1W—H2W···Cl10.82 (2)2.58 (3)3.1959 (14)133 (3)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1/2, z+3/2; (iv) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC2H7N2O2+·Cl·H2O
Mr144.56
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)12.6621 (13), 7.6444 (7), 6.6948 (7)
β (°) 97.199 (4)
V3)642.91 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.53
Crystal size (mm)0.28 × 0.24 × 0.23
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.861, 0.881
No. of measured, independent and
observed [I > 2σ(I)] reflections
7105, 1445, 1360
Rint0.021
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.080, 1.05
No. of reflections1445
No. of parameters97
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.59, 0.30

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1W0.92 (2)1.84 (2)2.743 (2)167 (2)
N1—H1B···Cl1i0.93 (2)2.20 (2)3.1152 (14)168 (2)
N1—H1C···O1ii0.89 (2)2.00 (2)2.8443 (17)158 (2)
O1W—H1W···Cl1iii0.85 (2)2.41 (3)3.2172 (16)161 (3)
N2—H2···Cl1iv0.86 (1)2.33 (1)3.1833 (13)171 (2)
O1W—H2W···Cl10.82 (2)2.58 (3)3.1959 (14)133 (3)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1/2, z+3/2; (iv) x, y1/2, z+1/2.
 

Acknowledgements

The authors thank Hangzhou Vocational and Technical College, China, for financial support.

References

First citationBruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationParashar, R. K., Sharma, R. C., Kumar, A. & Mohanm, G. (1988). Inorg. Chim. Acta, 151, 201–208.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, J. C., Zhang, T. L., Zhang, J. G., Ma, G. X., Li, Y. F. & Yu, K. B. (2003). Huaxue Xuebao, 61, 1444–1448.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds