organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(2-Hy­droxy­benzyl­­idene)-2-meth­oxy­benzohydrazide monohydrate

aSchool of Chemistry and Environmental Science, Shaanxi University of Technology, Hanzhong 723000, People's Republic of China
*Correspondence e-mail: jiufulu@163.com

(Received 28 July 2008; accepted 31 July 2008; online 6 August 2008)

In the title compound, C15H14N2O3·H2O, the Schiff base mol­ecule is approximately planar, with a dihedral angle between the two aromatic rings of 10.2 (3)°. The mol­ecular structure is stabilized by O—H⋯N and N—H⋯O hydrogen bonds. In the crystal structure, the Schiff base and water mol­ecules are linked together by inter­molecular O—H⋯O hydrogen bonds, forming chains parallel to the a axis.

Related literature

For general background on Schiff bases derived from condensation of aldehydes with benzohydrazides, see: Fun et al. (2008[Fun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594-o1595.]); Alhadi et al. (2008[Alhadi, A. A., Ali, H. M., Puvaneswary, S., Robinson, W. T. & Ng, S. W. (2008). Acta Cryst. E64, o1584.]); Ali et al. (2007[Ali, H. M., Zuraini, K., Wan Jefrey, B. & Ng, S. W. (2007). Acta Cryst. E63, o1729-o1730.]); Zou et al. (2004[Zou, W., Yu, H. & Meng, J. (2004). Acta Cryst. E60, o671-o673.]); Shan et al. (2008[Shan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1363.]); Bedia et al. (2006[Bedia, K.-K., Elcin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253-1261.]); Terzioglu & Gürsoy (2003[Terzioglu, N. & Gürsoy, A. (2003). Eur. J. Med. Chem. 38, 781-786.]). For related structures, see: Nie (2008[Nie, Y. (2008). Acta Cryst. E64, o471.]); He (2008[He, L. (2008). Acta Cryst. E64, o82.]); Shi et al. (2007[Shi, X.-F., Liu, C.-Y., Liu, B. & Yuan, C.-C. (2007). Acta Cryst. E63, o1295-o1296.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N2O3·H2O

  • Mr = 288.30

  • Orthorhombic, P 21 21 21

  • a = 4.761 (2) Å

  • b = 14.035 (3) Å

  • c = 21.073 (4) Å

  • V = 1408.1 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 (2) K

  • 0.17 × 0.16 × 0.15 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.983, Tmax = 0.985

  • 11662 measured reflections

  • 1808 independent reflections

  • 1345 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.130

  • S = 1.06

  • 1808 reflections

  • 201 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.97 2.669 (3) 143
N2—H2⋯O3 0.90 (1) 1.97 (3) 2.629 (3) 129 (3)
O4—H4B⋯O2 0.88 (3) 2.01 (3) 2.880 (4) 171 (3)
O4—H4A⋯O2i 0.88 (3) 2.04 (2) 2.893 (4) 165 (4)
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases derived from the condensation of aldehydes with benzohydrazides have been widely investigated, either for their structures (Fun et al., 2008; Alhadi et al., 2008; Ali et al., 2007; Zou et al., 2004; Shan et al., 2008) or for their biological properties (Bedia et al., 2006; Terzioglu & Gürsoy, 2003). This study extends the structural study on such compounds. We report here the crystal structure of the title new Schiff base compound.

The asymmetric unit of the title compound consists of a Schiff base molecule and a water molecule of crystallization (Fig. 1). The bond lengths are within normal values (Allen et al., 1987), and are comparable to the values observed in similar compounds (Nie, 2008; He, 2008; Shi et al., 2007). The dihedral angle between the two aromatic rings in the Schiff base molecule is 10.2 (3)°, indicating that the molecule is approximately coplanar. The molecular structure is stabilized by O—H···N and N—H···O hydrogen bonds.

In the crystal structure (Fig. 2), the Schiff base and water molecules are linked into chains running parallel to the a axis by intermolecular O—H···O hydrogen bonds (Table 1).

Related literature top

For general background on Schiff bases derived from condensation of aldehydes with benzohydrazides, see: Fun et al. (2008); Alhadi et al. (2008); Ali et al. (2007); Zou et al. (2004); Shan et al. (2008); Bedia et al. (2006); Terzioglu & Gürsoy (2003). For related structures, see: Nie (2008); He (2008); Shi et al. (2007). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by the Schiff base condensation of salicylaldehyde (0.1 mol) and 2-methoxybenzohydrazide (0.1 mmol) in ethanol (50 ml). The excess ethanol was removed by distillation. The colourless solid obtained was filtered and washed with ethanol. Single crystals suitable for X-ray diffraction were grown by slow evaporation from an ethanol solution at room temperature.

Refinement top

The imino and water H atoms were located in a difference map and refined with N–H, O–H, and H···H distances restrained to 0.90 (1), 0.85 (1), and 1.37 (2) Å, respectively. The other H atoms were positioned geometrically [C–H = 0.93-0.96 Å and O–H = 0.82 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C15 and O1). In the absence of significant anomalous scattering, Friedel pairs were merged.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed approximately along the b axis.
N'-(2-Hydroxybenzylidene)-2-methoxybenzohydrazide monohydrate top
Crystal data top
C15H14N2O3·H2OF(000) = 608
Mr = 288.30Dx = 1.360 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1886 reflections
a = 4.761 (2) Åθ = 2.5–24.3°
b = 14.035 (3) ŵ = 0.10 mm1
c = 21.073 (4) ÅT = 298 K
V = 1408.1 (7) Å3Block, colourless
Z = 40.17 × 0.16 × 0.15 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1808 independent reflections
Radiation source: fine-focus sealed tube1345 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω scansθmax = 27.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 66
Tmin = 0.983, Tmax = 0.985k = 1717
11662 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0693P)2 + 0.0505P]
where P = (Fo2 + 2Fc2)/3
1808 reflections(Δ/σ)max = 0.001
201 parametersΔρmax = 0.19 e Å3
4 restraintsΔρmin = 0.24 e Å3
Crystal data top
C15H14N2O3·H2OV = 1408.1 (7) Å3
Mr = 288.30Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.761 (2) ŵ = 0.10 mm1
b = 14.035 (3) ÅT = 298 K
c = 21.073 (4) Å0.17 × 0.16 × 0.15 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1808 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1345 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.985Rint = 0.047
11662 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0494 restraints
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.19 e Å3
1808 reflectionsΔρmin = 0.24 e Å3
201 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0565 (6)0.25999 (15)0.11044 (10)0.0662 (7)
H10.94430.25160.13940.099*
O20.5284 (6)0.30810 (15)0.26095 (10)0.0632 (7)
O30.4681 (5)0.04698 (14)0.35246 (10)0.0600 (6)
O40.0300 (7)0.40911 (16)0.22254 (13)0.0761 (8)
N10.8661 (5)0.17231 (17)0.21429 (11)0.0447 (6)
N20.6938 (6)0.15858 (18)0.26624 (11)0.0475 (6)
C11.2024 (6)0.1040 (2)0.14441 (13)0.0430 (7)
C21.2117 (7)0.1808 (2)0.10233 (13)0.0454 (7)
C31.3847 (8)0.1756 (2)0.04953 (14)0.0596 (10)
H31.39080.22660.02140.072*
C41.5436 (8)0.0984 (2)0.03827 (15)0.0614 (9)
H41.65730.09680.00240.074*
C51.5411 (8)0.0215 (2)0.07896 (15)0.0617 (9)
H51.65330.03140.07110.074*
C61.3700 (8)0.0247 (2)0.13124 (15)0.0539 (8)
H61.36540.02720.15860.065*
C71.0217 (7)0.10236 (19)0.19971 (13)0.0450 (7)
H71.01970.04840.22530.054*
C80.5265 (7)0.2299 (2)0.28622 (13)0.0457 (7)
C90.3359 (7)0.2092 (2)0.34123 (13)0.0429 (7)
C100.3100 (7)0.1214 (2)0.37297 (13)0.0470 (7)
C110.1233 (7)0.1132 (3)0.42336 (14)0.0573 (9)
H110.10550.05530.44450.069*
C120.0358 (8)0.1904 (3)0.44229 (15)0.0637 (9)
H120.16160.18380.47580.076*
C130.0103 (8)0.2763 (2)0.41233 (14)0.0565 (8)
H130.11650.32830.42550.068*
C140.1751 (7)0.2848 (2)0.36233 (14)0.0509 (8)
H140.19250.34350.34220.061*
C150.4542 (10)0.0415 (2)0.38602 (17)0.0750 (12)
H15A0.49180.03060.43020.112*
H15B0.59130.08470.36910.112*
H15C0.27000.06840.38130.112*
H20.695 (9)0.0996 (11)0.2825 (15)0.080*
H4A0.113 (5)0.371 (2)0.2284 (19)0.080*
H4B0.169 (5)0.373 (2)0.2359 (18)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0823 (19)0.0551 (13)0.0613 (14)0.0192 (14)0.0190 (13)0.0106 (10)
O20.0598 (15)0.0610 (13)0.0688 (14)0.0056 (14)0.0168 (14)0.0188 (11)
O30.0623 (15)0.0557 (12)0.0621 (13)0.0040 (12)0.0182 (13)0.0086 (10)
O40.0771 (18)0.0626 (15)0.0885 (18)0.0020 (16)0.0056 (18)0.0012 (13)
N10.0417 (14)0.0533 (15)0.0390 (13)0.0045 (13)0.0031 (12)0.0012 (11)
N20.0474 (15)0.0540 (15)0.0412 (13)0.0037 (14)0.0074 (13)0.0013 (11)
C10.0423 (17)0.0448 (15)0.0418 (15)0.0052 (14)0.0015 (14)0.0042 (13)
C20.0482 (18)0.0461 (16)0.0417 (15)0.0004 (16)0.0002 (14)0.0049 (13)
C30.069 (2)0.059 (2)0.0506 (19)0.002 (2)0.0155 (17)0.0066 (15)
C40.060 (2)0.075 (2)0.0495 (18)0.000 (2)0.0131 (17)0.0117 (17)
C50.063 (2)0.0592 (19)0.063 (2)0.0121 (19)0.0074 (19)0.0126 (17)
C60.065 (2)0.0448 (16)0.0517 (17)0.0021 (17)0.0014 (17)0.0021 (14)
C70.0477 (18)0.0438 (15)0.0434 (15)0.0057 (16)0.0056 (15)0.0007 (12)
C80.0374 (17)0.0563 (17)0.0433 (15)0.0044 (17)0.0000 (15)0.0030 (14)
C90.0359 (16)0.0546 (17)0.0381 (14)0.0061 (14)0.0052 (14)0.0049 (13)
C100.0400 (17)0.0591 (18)0.0420 (15)0.0043 (16)0.0003 (14)0.0050 (14)
C110.053 (2)0.070 (2)0.0495 (18)0.0070 (19)0.0073 (16)0.0069 (16)
C120.054 (2)0.087 (2)0.0494 (18)0.005 (2)0.0116 (18)0.0080 (17)
C130.048 (2)0.071 (2)0.0506 (17)0.0055 (19)0.0003 (18)0.0131 (16)
C140.0474 (18)0.0572 (18)0.0482 (17)0.0020 (17)0.0032 (17)0.0058 (15)
C150.085 (3)0.064 (2)0.075 (2)0.012 (2)0.012 (2)0.0219 (18)
Geometric parameters (Å, º) top
O1—C21.346 (4)C5—C61.371 (4)
O1—H10.8200C5—H50.93
O2—C81.220 (3)C6—H60.93
O3—C101.358 (4)C7—H70.93
O3—C151.430 (4)C8—C91.501 (4)
O4—H4A0.88 (3)C9—C141.383 (4)
O4—H4B0.88 (3)C9—C101.407 (4)
N1—C71.268 (3)C10—C111.389 (4)
N1—N21.381 (3)C11—C121.380 (5)
N2—C81.347 (4)C11—H110.93
N2—H20.897 (10)C12—C131.366 (5)
C1—C61.397 (4)C12—H120.93
C1—C21.397 (4)C13—C141.380 (4)
C1—C71.449 (4)C13—H130.93
C2—C31.386 (4)C14—H140.93
C3—C41.343 (5)C15—H15A0.96
C3—H30.93C15—H15B0.96
C4—C51.378 (4)C15—H15C0.96
C4—H40.93
C2—O1—H1109.5O2—C8—N2121.9 (3)
C10—O3—C15119.0 (3)O2—C8—C9121.1 (3)
H4A—O4—H4B101.2 (19)N2—C8—C9117.0 (3)
C7—N1—N2115.5 (2)C14—C9—C10118.1 (3)
C8—N2—N1119.7 (2)C14—C9—C8115.7 (3)
C8—N2—H2125 (3)C10—C9—C8126.2 (3)
N1—N2—H2115 (3)O3—C10—C11122.3 (3)
C6—C1—C2118.1 (3)O3—C10—C9118.2 (3)
C6—C1—C7119.1 (3)C11—C10—C9119.5 (3)
C2—C1—C7122.8 (3)C12—C11—C10120.5 (3)
O1—C2—C3118.1 (3)C12—C11—H11119.8
O1—C2—C1122.7 (3)C10—C11—H11119.8
C3—C2—C1119.2 (3)C13—C12—C11120.7 (3)
C4—C3—C2121.3 (3)C13—C12—H12119.7
C4—C3—H3119.4C11—C12—H12119.7
C2—C3—H3119.4C12—C13—C14119.1 (3)
C3—C4—C5121.1 (3)C12—C13—H13120.4
C3—C4—H4119.4C14—C13—H13120.4
C5—C4—H4119.4C13—C14—C9122.2 (3)
C6—C5—C4118.7 (3)C13—C14—H14118.9
C6—C5—H5120.7C9—C14—H14118.9
C4—C5—H5120.7O3—C15—H15A109.5
C5—C6—C1121.7 (3)O3—C15—H15B109.5
C5—C6—H6119.2H15A—C15—H15B109.5
C1—C6—H6119.2O3—C15—H15C109.5
N1—C7—C1122.0 (3)H15A—C15—H15C109.5
N1—C7—H7119.0H15B—C15—H15C109.5
C1—C7—H7119.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.972.669 (3)143
N2—H2···O30.90 (1)1.97 (3)2.629 (3)129 (3)
O4—H4B···O20.88 (3)2.01 (3)2.880 (4)171 (3)
O4—H4A···O2i0.88 (3)2.04 (2)2.893 (4)165 (4)
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC15H14N2O3·H2O
Mr288.30
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)4.761 (2), 14.035 (3), 21.073 (4)
V3)1408.1 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.17 × 0.16 × 0.15
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.983, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
11662, 1808, 1345
Rint0.047
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.130, 1.06
No. of reflections1808
No. of parameters201
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.24

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.972.669 (3)143
N2—H2···O30.90 (1)1.97 (3)2.629 (3)129 (3)
O4—H4B···O20.88 (3)2.01 (3)2.880 (4)171 (3)
O4—H4A···O2i0.88 (3)2.04 (2)2.893 (4)165 (4)
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The authors acknowledge Shaanxi University of Technology for the research fund.

References

First citationAlhadi, A. A., Ali, H. M., Puvaneswary, S., Robinson, W. T. & Ng, S. W. (2008). Acta Cryst. E64, o1584.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAli, H. M., Zuraini, K., Wan Jefrey, B. & Ng, S. W. (2007). Acta Cryst. E63, o1729–o1730.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBedia, K.-K., Elcin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253–1261.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594–o1595.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHe, L. (2008). Acta Cryst. E64, o82.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNie, Y. (2008). Acta Cryst. E64, o471.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1363.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, X.-F., Liu, C.-Y., Liu, B. & Yuan, C.-C. (2007). Acta Cryst. E63, o1295–o1296.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTerzioglu, N. & Gürsoy, A. (2003). Eur. J. Med. Chem. 38, 781–786.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZou, W., Yu, H. & Meng, J. (2004). Acta Cryst. E60, o671–o673.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds