metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1168-m1169

(4-Oxido-2-oxo-1,2-di­hydro­pyrimidine-5-carboxyl­ato-κ2O4,O5)(4-oxido-2-oxo-1,2-di­hydro­pyrimidin-3-ium-5-carboxyl­ato-κ2O4,O5)bis­­(1,10-phenanthroline-κ2N,N′)gadolinium(III) dihydrate

aCollege of Chemistry and Chemical Engineering, Guangxi Normal University, Yucai Road 15, Guilin 541004, People's Republic of China
*Correspondence e-mail: chenziluczl@yahoo.co.uk

(Received 25 July 2008; accepted 9 August 2008; online 16 August 2008)

The title compound, [Gd(C5H2N2O4)(C5H3N2O4)(C12H8N2)2]·2H2O, was obtained from a solvothermal reaction of 2,4-dihydroxy­pyrimidine-5-carboxylic acid (H3iso), GdCl3·6H2O and 1,10-phenanthroline (phen). The GdIII ion is located on a twofold rotation axis and is coordinated by four N atoms from two chelating phen ligands and four O atoms (5-carboxyl­ate and 4-oxido O atoms) from H2iso and Hiso2− ligands. The mol­ecules are linked into a three-dimensional network by N—H⋯O, N—H⋯N and O—H⋯O hydrogen bonds. The H atom involved in an N—H⋯N hydrogen bond is disordered around a twofold rotation axis with half occupancy.

Related literature

For isostructural lanthanide complexes with 2,4-dioxo-1,2,3,4-tetra­hydro­pyrimidine-5-carboxylic acid, see: Sun & Jin (2004a[Sun, C.-Y. & Jin, L.-P. (2004a). Polyhedron, 23, 2227-2233.],b[Sun, C.-Y. & Jin, L.-P. (2004b). Polyhedron, 23, 2085-2093.]); Xing et al. (2008a[Xing, H.-H., Chen, Z.-L. & Ng, S. W. (2008a). Acta Cryst. E64, m418.]). For related literature, see: Hueso-Ureña et al. (1993[Hueso-Ureña, F., Moreno-Carretero, M. N., Romero-Molina, M. A., Salas-Peregrin, J. M., Sanchez-Sanchez, M. P., Alvarez de Cienfuegos-Lopez, G. & Faure, R. (1993). J. Inorg. Biochem. 51, 613-632.], 1996[Hueso-Ureña, F., Moreno-Carretero, M. N., Quirós-Olozábal, M., Salas-Peregrín, J. M., Faure, R. & Cienfuegos-López, G. A. (1996). Inorg. Chim. Acta, 241, 61-69.]); Baran et al. (1996[Baran, E., Mercaser, R. C., Hueso-Ureña, F., Moreno-Carretero, M. N., Quiros-Olozabal, M. & Salas-Peregrin, J. M. (1996). Polyhedron, 15, 1717-1724.]); Luo et al. (2002[Luo, J.-H., Hong, M.-C., Zhao, Y.-J., Cao, R. & Weng, J.-B. (2002). Chin. J. Struct. Chem. 21, 392-395.]); Maistralis et al. (1991[Maistralis, G., Katsaros, N., Mentzafos, D. & Terzis, A. (1991). Acta Cryst. C47, 740-743.], 1992[Maistralis, G., Katsaros, N., Perlepes, S. P. & Kovala-Demertzi, D. (1992). J. Inorg. Biochem. 45, 1-12.]); Xing et al. (2008b[Xing, H.-H., Chen, Z.-L. & Ng, S. W. (2008b). Acta Cryst. E64, m419-m420.]).

[Scheme 1]

Experimental

Crystal data
  • [Gd(C5H2N2O4)(C5H3N2O4)(C12H8N2)2]·2H2O

  • Mr = 862.87

  • Monoclinic, C 2/c

  • a = 17.158 (8) Å

  • b = 14.504 (7) Å

  • c = 13.197 (7) Å

  • β = 99.955 (5)°

  • V = 3235 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.13 mm−1

  • T = 273 (2) K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.676, Tmax = 0.816

  • 9884 measured reflections

  • 3686 independent reflections

  • 3212 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.064

  • S = 1.05

  • 3686 reflections

  • 240 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Selected geometric parameters (Å, °)

Gd1—O1 2.288 (2)
Gd1—O3 2.344 (2)
Gd1—N3 2.586 (3)
Gd1—N4 2.603 (3)
O1—Gd1—O1i 88.22 (11)
O1—Gd1—O3i 82.54 (8)
O1—Gd1—O3 73.65 (8)
O3i—Gd1—O3 146.71 (11)
O1—Gd1—N3i 148.84 (8)
O3—Gd1—N3i 135.03 (8)
O1—Gd1—N3 105.26 (9)
O3—Gd1—N3 74.86 (8)
O1—Gd1—N4 80.80 (8)
O3—Gd1—N4 122.38 (8)
N3—Gd1—N4 63.39 (8)
O1—Gd1—N4i 147.64 (8)
O3—Gd1—N4i 74.79 (8)
N3—Gd1—N4i 72.83 (8)
N4—Gd1—N4i 123.04 (11)
Symmetry code: (i) [-x+1, y, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2ii 0.86 2.04 2.898 (3) 178
N1—H1⋯O1ii 0.86 2.60 3.160 (4) 124
N2—H2⋯N2iii 0.86 1.81 2.669 (5) 174
O5—H5A⋯O4iv 0.85 2.14 2.970 (4) 164
O5—H5B⋯O2v 0.85 2.14 2.985 (4) 173
Symmetry codes: (ii) [x, -y, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z]; (iv) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (v) x, y+1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2,4-Dihydroxypyrimidine-5-carboxylic acid has been extensively used in the preparation of metal complexes because of its versatile coordination modes. It can connect metal ions to form robust networks or some porous coordination polymers. Though various transition metal complexes with 2,4-dihydroxypyrimidine-5-carboxylate have been reported (Maistralis et al., 1991, 1992; Hueso-Ureña et al., 1993, 1996; Baran et al., 1996; Luo et al., 2002; Sun & Jin 2004a), lanthanide complexes are very limited. Only lanthanide complexes of YbIII, TbIII, PrIII, EuIII, NdIII and ErIII have been reported (Sun & Jin 2004b; Xing et al.,2008a,b). In this paper, we report a new GdIII complex, Gd(Hiso)(H2iso)(phen)2.2H2O, (I).

In compound (I), the GdIII atom is located on a twofold rotation axis and coordinated in a square antiprismatic geometry by four N atoms belonging to two chelating phen ligands and four O atoms from one monovalent and one divalent 2,4-dihydroxypyrimidine-5-carboxylate anions. The Gd—O bond lengths [2.288 (2) and 2.334 (2) Å] are shorter than the Gd—N bond lengths [2.586 (3) and 2.603 (3) Å].

The molecules are linked into a three-dimensional network by N—H···O, N—H···N and O—H···O hydrogen bonds (Table 2).

Related literature top

For isostructural lanthanide complexes with 2,4-dioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylic acid, see: Sun & Jin (2004a,b); Xing et al. (2008a). For related literature, see: Hueso-Ureña et al. (1993, 1996); Baran et al. (1996); Luo et al. (2002); Maistralis et al. (1991, 1992); Xing et al. (2008b).

Experimental top

A mixture of 2,4-dihydroxypyrimidine-5-carboxylic acid (0.0312 g, 0.2 mmol), GdCl3.6H2O (0.0743 g, 0.2 mmol), phen.H2O (0.0396 g, 0.2 mmol), NaOH (0.008 g, 0.2 mmol) and water (15 ml) was sealed in a 25 ml Teflon-lined stainless-steel reactor and heated at 383 K for 120 h. It was then cooled over a period of 48 h, light yellow crystals were isolated in 80% yield. Elemental analysis for C34H25GdN8O10, calculated: C 47.32, H 2.92, N 12.98%; found: C 47.59,H 2.96, N 13.24%.

Refinement top

H atoms of the water molecule were located in a difference Fourier map and allowed to ride on the O atom with Uiso(H) = 1.5Ueq(O). The remaining H atoms were placed at calculated positions (C—H = 0.93 Å and N—H = 0.86 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Unlabelled atoms are related to labelled atoms by the symmetry operation (1-x, y, 1/2-z).
(4-Oxido-2-oxo-1,2-dihydropyrimidine-5-carboxylato-κ2O4,O5)(4- oxido-2-oxo-1,2-dihydropyrimidin-3-ium-5-carboxylato- κ2O4,O5)bis(1,10-phenanthroline-κ2N,N')gadolinium(III) dihydrate top
Crystal data top
[Gd(C5H2N2O4)(C5H3N2O4)(C12H8N2)2]·2H2OF(000) = 1716
Mr = 862.87Dx = 1.772 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3284 reflections
a = 17.158 (8) Åθ = 2.3–25.5°
b = 14.504 (7) ŵ = 2.13 mm1
c = 13.197 (7) ÅT = 273 K
β = 99.955 (5)°Block, colourless
V = 3235 (3) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3686 independent reflections
Radiation source: fine-focus sealed tube3212 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 2122
Tmin = 0.676, Tmax = 0.816k = 1813
9884 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0258P)2]
where P = (Fo2 + 2Fc2)/3
3686 reflections(Δ/σ)max = 0.001
240 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
[Gd(C5H2N2O4)(C5H3N2O4)(C12H8N2)2]·2H2OV = 3235 (3) Å3
Mr = 862.87Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.158 (8) ŵ = 2.13 mm1
b = 14.504 (7) ÅT = 273 K
c = 13.197 (7) Å0.20 × 0.10 × 0.10 mm
β = 99.955 (5)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3686 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3212 reflections with I > 2σ(I)
Tmin = 0.676, Tmax = 0.816Rint = 0.039
9884 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.064H-atom parameters constrained
S = 1.05Δρmax = 0.74 e Å3
3686 reflectionsΔρmin = 0.65 e Å3
240 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Gd10.50000.111515 (14)0.25000.02254 (7)
O10.42801 (12)0.00176 (14)0.31169 (16)0.0329 (5)
O20.34603 (14)0.11272 (15)0.33997 (16)0.0352 (5)
O30.40327 (12)0.06523 (14)0.11160 (16)0.0320 (5)
O40.26936 (15)0.11830 (15)0.13464 (17)0.0424 (6)
N10.33231 (15)0.02639 (17)0.00642 (19)0.0296 (6)
H10.33710.01570.05080.035*
N20.28238 (16)0.16877 (18)0.0304 (2)0.0361 (7)
H20.25890.22010.01250.043*0.50
N30.40482 (14)0.25042 (17)0.2136 (2)0.0300 (6)
N40.46494 (14)0.19709 (17)0.40957 (19)0.0282 (6)
C10.34878 (17)0.0740 (2)0.1674 (2)0.0248 (7)
C20.36429 (17)0.0080 (2)0.0939 (2)0.0251 (7)
C30.29303 (19)0.1061 (2)0.0434 (2)0.0304 (7)
C40.3080 (2)0.1512 (2)0.1292 (2)0.0348 (8)
H40.29730.19490.17650.042*
C50.37526 (17)0.0627 (2)0.2800 (2)0.0248 (6)
C60.37014 (18)0.2746 (2)0.1201 (3)0.0372 (8)
H60.36890.23190.06720.045*
C70.3352 (2)0.3608 (3)0.0960 (3)0.0475 (10)
H70.31130.37470.02900.057*
C80.3372 (2)0.4239 (3)0.1725 (3)0.0499 (10)
H80.31570.48220.15770.060*
C90.3710 (2)0.4014 (2)0.2728 (3)0.0428 (9)
C100.3742 (2)0.4633 (3)0.3580 (4)0.0592 (12)
H100.35470.52290.34610.071*
C110.4042 (3)0.4380 (3)0.4535 (4)0.0618 (12)
H110.40560.48030.50680.074*
C120.4346 (2)0.3467 (3)0.4763 (3)0.0442 (9)
C130.4638 (2)0.3150 (3)0.5755 (3)0.0577 (11)
H130.46480.35430.63140.069*
C140.4906 (2)0.2274 (3)0.5910 (3)0.0510 (10)
H140.50880.20560.65710.061*
C150.49028 (19)0.1703 (3)0.5054 (2)0.0359 (8)
H150.50890.11030.51660.043*
C160.43530 (18)0.2836 (2)0.3944 (2)0.0298 (7)
C170.40366 (18)0.3123 (2)0.2911 (3)0.0317 (7)
O50.3084 (2)0.6863 (2)0.3396 (2)0.0901 (11)
H5A0.27770.67080.28470.135*
H5B0.31660.74390.34410.135*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Gd10.02861 (12)0.01718 (12)0.01966 (12)0.0000.00192 (8)0.000
O10.0440 (13)0.0318 (13)0.0208 (11)0.0131 (11)0.0007 (10)0.0008 (9)
O20.0496 (14)0.0348 (13)0.0209 (11)0.0118 (11)0.0055 (10)0.0019 (10)
O30.0427 (13)0.0250 (12)0.0243 (12)0.0113 (10)0.0055 (10)0.0032 (9)
O40.0627 (16)0.0363 (14)0.0217 (12)0.0031 (12)0.0108 (11)0.0055 (10)
N10.0409 (15)0.0272 (15)0.0179 (13)0.0076 (12)0.0023 (11)0.0023 (11)
N20.0533 (18)0.0244 (15)0.0264 (15)0.0114 (13)0.0043 (13)0.0024 (12)
N30.0299 (14)0.0263 (15)0.0319 (15)0.0024 (11)0.0000 (12)0.0012 (11)
N40.0324 (14)0.0271 (14)0.0244 (14)0.0016 (11)0.0028 (11)0.0010 (11)
C10.0306 (16)0.0229 (16)0.0197 (15)0.0035 (13)0.0005 (13)0.0026 (12)
C20.0286 (16)0.0229 (16)0.0215 (16)0.0005 (13)0.0022 (13)0.0024 (12)
C30.0350 (17)0.0259 (17)0.0268 (17)0.0014 (14)0.0045 (14)0.0039 (14)
C40.049 (2)0.0291 (18)0.0247 (17)0.0116 (16)0.0025 (15)0.0013 (14)
C50.0331 (17)0.0219 (16)0.0191 (15)0.0014 (13)0.0031 (13)0.0010 (12)
C60.0365 (18)0.039 (2)0.0339 (19)0.0071 (16)0.0002 (15)0.0067 (15)
C70.043 (2)0.051 (2)0.047 (2)0.0128 (18)0.0026 (18)0.0207 (19)
C80.049 (2)0.033 (2)0.068 (3)0.0107 (18)0.010 (2)0.019 (2)
C90.040 (2)0.028 (2)0.062 (3)0.0083 (15)0.0133 (18)0.0040 (17)
C100.069 (3)0.030 (2)0.079 (3)0.016 (2)0.015 (2)0.006 (2)
C110.077 (3)0.037 (2)0.071 (3)0.014 (2)0.013 (3)0.025 (2)
C120.050 (2)0.039 (2)0.045 (2)0.0016 (18)0.0112 (18)0.0138 (18)
C130.063 (3)0.068 (3)0.043 (2)0.007 (2)0.010 (2)0.023 (2)
C140.054 (2)0.069 (3)0.029 (2)0.012 (2)0.0063 (18)0.0081 (19)
C150.0372 (18)0.043 (2)0.0270 (18)0.0053 (16)0.0051 (15)0.0013 (15)
C160.0294 (17)0.0257 (17)0.0348 (19)0.0005 (13)0.0067 (14)0.0027 (14)
C170.0271 (16)0.0278 (18)0.041 (2)0.0021 (13)0.0089 (15)0.0027 (15)
O50.133 (3)0.051 (2)0.070 (2)0.000 (2)0.027 (2)0.0100 (16)
Geometric parameters (Å, º) top
Gd1—O12.288 (2)C1—C51.485 (4)
Gd1—O1i2.288 (2)C4—H40.93
Gd1—O3i2.344 (2)C6—C71.399 (5)
Gd1—O32.344 (2)C6—H60.93
Gd1—N3i2.586 (3)C7—C81.358 (6)
Gd1—N32.586 (3)C7—H70.93
Gd1—N42.603 (3)C8—C91.389 (5)
Gd1—N4i2.603 (3)C8—H80.93
O1—C51.282 (3)C9—C171.414 (4)
O2—C51.242 (3)C9—C101.432 (6)
O3—C21.256 (3)C10—C111.329 (6)
O4—C31.216 (4)C10—H100.93
N1—C21.369 (4)C11—C121.435 (6)
N1—C31.383 (4)C11—H110.93
N1—H10.86C12—C131.396 (5)
N2—C41.327 (4)C12—C161.417 (5)
N2—C31.367 (4)C13—C141.355 (5)
N2—H20.86C13—H130.93
N3—C61.322 (4)C14—C151.399 (5)
N3—C171.364 (4)C14—H140.93
N4—C151.323 (4)C15—H150.93
N4—C161.356 (4)C16—C171.439 (4)
C1—C41.369 (4)O5—H5A0.85
C1—C21.421 (4)O5—H5B0.85
O1—Gd1—O1i88.22 (11)N1—C2—C1116.0 (3)
O1—Gd1—O3i82.54 (8)O4—C3—N2123.0 (3)
O1i—Gd1—O3i73.65 (8)O4—C3—N1122.0 (3)
O1—Gd1—O373.65 (8)N2—C3—N1114.9 (3)
O1i—Gd1—O382.54 (8)N2—C4—C1125.5 (3)
O3i—Gd1—O3146.71 (11)N2—C4—H4117.3
O1—Gd1—N3i148.84 (8)C1—C4—H4117.3
O1i—Gd1—N3i105.26 (9)O2—C5—O1122.3 (3)
O3i—Gd1—N3i74.86 (8)O2—C5—C1119.0 (3)
O3—Gd1—N3i135.03 (8)O1—C5—C1118.6 (3)
O1—Gd1—N3105.26 (9)N3—C6—C7123.7 (3)
O1i—Gd1—N3148.84 (8)N3—C6—H6118.1
O3i—Gd1—N3135.03 (8)C7—C6—H6118.1
O3—Gd1—N374.86 (8)C8—C7—C6118.6 (4)
N3i—Gd1—N377.63 (12)C8—C7—H7120.7
O1—Gd1—N480.80 (8)C6—C7—H7120.7
O1i—Gd1—N4147.64 (8)C7—C8—C9120.2 (4)
O3i—Gd1—N474.79 (8)C7—C8—H8119.9
O3—Gd1—N4122.38 (8)C9—C8—H8119.9
N3i—Gd1—N472.83 (8)C8—C9—C17117.7 (4)
N3—Gd1—N463.39 (8)C8—C9—C10123.7 (4)
O1—Gd1—N4i147.64 (8)C17—C9—C10118.6 (4)
O1i—Gd1—N4i80.80 (8)C11—C10—C9121.9 (4)
O3i—Gd1—N4i122.38 (8)C11—C10—H10119.1
O3—Gd1—N4i74.79 (8)C9—C10—H10119.1
N3i—Gd1—N4i63.39 (8)C10—C11—C12121.4 (4)
N3—Gd1—N4i72.83 (8)C10—C11—H11119.3
N4—Gd1—N4i123.04 (11)C12—C11—H11119.3
C5—O1—Gd1140.60 (19)C13—C12—C16116.9 (3)
C2—O3—Gd1132.05 (19)C13—C12—C11124.0 (4)
C2—N1—C3126.4 (3)C16—C12—C11119.1 (4)
C2—N1—H1116.8C14—C13—C12120.5 (4)
C3—N1—H1116.8C14—C13—H13119.7
C4—N2—C3120.6 (3)C12—C13—H13119.7
C4—N2—H2119.7C13—C14—C15118.7 (4)
C3—N2—H2119.7C13—C14—H14120.7
C6—N3—C17117.6 (3)C15—C14—H14120.7
C6—N3—Gd1123.3 (2)N4—C15—C14123.6 (3)
C17—N3—Gd1117.6 (2)N4—C15—H15118.2
C15—N4—C16117.7 (3)C14—C15—H15118.2
C15—N4—Gd1123.4 (2)N4—C16—C12122.5 (3)
C16—N4—Gd1117.1 (2)N4—C16—C17118.5 (3)
C4—C1—C2116.3 (3)C12—C16—C17119.0 (3)
C4—C1—C5120.5 (3)N3—C17—C9122.0 (3)
C2—C1—C5123.2 (3)N3—C17—C16118.0 (3)
O3—C2—N1117.1 (3)C9—C17—C16120.0 (3)
O3—C2—C1126.9 (3)H5A—O5—H5B113.1
O1i—Gd1—O1—C572.3 (3)C4—N2—C3—O4178.6 (3)
O3i—Gd1—O1—C5146.0 (3)C4—N2—C3—N10.8 (5)
O3—Gd1—O1—C510.5 (3)C2—N1—C3—O4176.8 (3)
N3i—Gd1—O1—C5170.5 (3)C2—N1—C3—N23.9 (5)
N3—Gd1—O1—C579.2 (3)C3—N2—C4—C12.7 (5)
N4—Gd1—O1—C5138.3 (3)C2—C1—C4—N20.2 (5)
N4i—Gd1—O1—C52.7 (4)C5—C1—C4—N2179.2 (3)
O1—Gd1—O3—C223.0 (3)Gd1—O1—C5—O2176.9 (2)
O1i—Gd1—O3—C267.3 (3)Gd1—O1—C5—C13.6 (5)
O3i—Gd1—O3—C223.1 (3)C4—C1—C5—O215.4 (5)
N3i—Gd1—O3—C2171.5 (2)C2—C1—C5—O2165.2 (3)
N3—Gd1—O3—C2134.3 (3)C4—C1—C5—O1164.1 (3)
N4—Gd1—O3—C290.5 (3)C2—C1—C5—O115.2 (5)
N4i—Gd1—O3—C2149.8 (3)C17—N3—C6—C72.5 (5)
O1—Gd1—N3—C6104.0 (2)Gd1—N3—C6—C7163.2 (3)
O1i—Gd1—N3—C68.9 (3)N3—C6—C7—C80.3 (6)
O3i—Gd1—N3—C6161.3 (2)C6—C7—C8—C92.0 (6)
O3—Gd1—N3—C636.1 (2)C7—C8—C9—C170.9 (5)
N3i—Gd1—N3—C6108.0 (3)C7—C8—C9—C10178.9 (4)
N4—Gd1—N3—C6175.2 (3)C8—C9—C10—C11177.3 (4)
N4i—Gd1—N3—C642.3 (2)C17—C9—C10—C112.5 (6)
O1—Gd1—N3—C1790.3 (2)C9—C10—C11—C120.4 (7)
O1i—Gd1—N3—C17156.8 (2)C10—C11—C12—C13177.2 (4)
O3i—Gd1—N3—C174.4 (3)C10—C11—C12—C162.5 (6)
O3—Gd1—N3—C17158.2 (2)C16—C12—C13—C140.5 (6)
N3i—Gd1—N3—C1757.7 (2)C11—C12—C13—C14179.1 (4)
N4—Gd1—N3—C1719.1 (2)C12—C13—C14—C151.6 (6)
N4i—Gd1—N3—C17123.4 (2)C16—N4—C15—C142.3 (5)
O1—Gd1—N4—C1564.5 (2)Gd1—N4—C15—C14162.0 (3)
O1i—Gd1—N4—C157.1 (3)C13—C14—C15—N40.2 (6)
O3i—Gd1—N4—C1520.2 (2)C15—N4—C16—C123.4 (5)
O3—Gd1—N4—C15128.4 (2)Gd1—N4—C16—C12161.8 (3)
N3i—Gd1—N4—C1598.7 (3)C15—N4—C16—C17176.8 (3)
N3—Gd1—N4—C15176.8 (3)Gd1—N4—C16—C1718.0 (3)
N4i—Gd1—N4—C15139.2 (3)C13—C12—C16—N42.1 (5)
O1—Gd1—N4—C16131.1 (2)C11—C12—C16—N4178.2 (3)
O1i—Gd1—N4—C16157.20 (19)C13—C12—C16—C17178.2 (3)
O3i—Gd1—N4—C16144.2 (2)C11—C12—C16—C171.5 (5)
O3—Gd1—N4—C1667.3 (2)C6—N3—C17—C93.7 (5)
N3i—Gd1—N4—C1665.6 (2)Gd1—N3—C17—C9162.9 (2)
N3—Gd1—N4—C1618.8 (2)C6—N3—C17—C16174.8 (3)
N4i—Gd1—N4—C1625.13 (19)Gd1—N3—C17—C1618.6 (4)
Gd1—O3—C2—N1158.7 (2)C8—C9—C17—N32.0 (5)
Gd1—O3—C2—C122.2 (5)C10—C9—C17—N3178.1 (3)
C3—N1—C2—O3174.5 (3)C8—C9—C17—C16176.4 (3)
C3—N1—C2—C16.2 (5)C10—C9—C17—C163.4 (5)
C4—C1—C2—O3176.9 (3)N4—C16—C17—N30.3 (4)
C5—C1—C2—O32.5 (5)C12—C16—C17—N3179.9 (3)
C4—C1—C2—N13.9 (4)N4—C16—C17—C9178.8 (3)
C5—C1—C2—N1176.7 (3)C12—C16—C17—C91.4 (5)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2ii0.862.042.898 (3)178
N1—H1···O1ii0.862.603.160 (4)124
N2—H2···N2iii0.861.812.669 (5)174
O5—H5A···O4iv0.852.142.970 (4)164
O5—H5B···O2v0.852.142.985 (4)173
Symmetry codes: (ii) x, y, z1/2; (iii) x+1/2, y1/2, z; (iv) x+1/2, y+1/2, z; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Gd(C5H2N2O4)(C5H3N2O4)(C12H8N2)2]·2H2O
Mr862.87
Crystal system, space groupMonoclinic, C2/c
Temperature (K)273
a, b, c (Å)17.158 (8), 14.504 (7), 13.197 (7)
β (°) 99.955 (5)
V3)3235 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.13
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.676, 0.816
No. of measured, independent and
observed [I > 2σ(I)] reflections
9884, 3686, 3212
Rint0.039
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.064, 1.05
No. of reflections3686
No. of parameters240
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.65

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Gd1—O12.288 (2)Gd1—N32.586 (3)
Gd1—O32.344 (2)Gd1—N42.603 (3)
O1—Gd1—O1i88.22 (11)O1—Gd1—N480.80 (8)
O1—Gd1—O3i82.54 (8)O3—Gd1—N4122.38 (8)
O1—Gd1—O373.65 (8)N3—Gd1—N463.39 (8)
O3i—Gd1—O3146.71 (11)O1—Gd1—N4i147.64 (8)
O1—Gd1—N3i148.84 (8)O3—Gd1—N4i74.79 (8)
O3—Gd1—N3i135.03 (8)N3—Gd1—N4i72.83 (8)
O1—Gd1—N3105.26 (9)N4—Gd1—N4i123.04 (11)
O3—Gd1—N374.86 (8)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2ii0.862.042.898 (3)178
N1—H1···O1ii0.862.603.160 (4)124
N2—H2···N2iii0.861.812.669 (5)174
O5—H5A···O4iv0.852.142.970 (4)164
O5—H5B···O2v0.852.142.985 (4)173
Symmetry codes: (ii) x, y, z1/2; (iii) x+1/2, y1/2, z; (iv) x+1/2, y+1/2, z; (v) x, y+1, z.
 

Acknowledgements

The authors thank the Science Foundation of Guangxi Province, China (Guikeqing 0542021), and the Scientific Research Foundation of Guangxi Normal University for financial support.

References

First citationBaran, E., Mercaser, R. C., Hueso-Ureña, F., Moreno-Carretero, M. N., Quiros-Olozabal, M. & Salas-Peregrin, J. M. (1996). Polyhedron, 15, 1717–1724.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHueso-Ureña, F., Moreno-Carretero, M. N., Romero-Molina, M. A., Salas-Peregrin, J. M., Sanchez-Sanchez, M. P., Alvarez de Cienfuegos-Lopez, G. & Faure, R. (1993). J. Inorg. Biochem. 51, 613–632.  CSD CrossRef Web of Science Google Scholar
First citationHueso-Ureña, F., Moreno-Carretero, M. N., Quirós-Olozábal, M., Salas-Peregrín, J. M., Faure, R. & Cienfuegos-López, G. A. (1996). Inorg. Chim. Acta, 241, 61–69.  CSD CrossRef Web of Science Google Scholar
First citationLuo, J.-H., Hong, M.-C., Zhao, Y.-J., Cao, R. & Weng, J.-B. (2002). Chin. J. Struct. Chem. 21, 392–395.  CAS Google Scholar
First citationMaistralis, G., Katsaros, N., Mentzafos, D. & Terzis, A. (1991). Acta Cryst. C47, 740–743.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMaistralis, G., Katsaros, N., Perlepes, S. P. & Kovala-Demertzi, D. (1992). J. Inorg. Biochem. 45, 1–12.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, C.-Y. & Jin, L.-P. (2004a). Polyhedron, 23, 2227–2233.  Web of Science CSD CrossRef CAS Google Scholar
First citationSun, C.-Y. & Jin, L.-P. (2004b). Polyhedron, 23, 2085–2093.  Web of Science CSD CrossRef CAS Google Scholar
First citationXing, H.-H., Chen, Z.-L. & Ng, S. W. (2008a). Acta Cryst. E64, m418.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXing, H.-H., Chen, Z.-L. & Ng, S. W. (2008b). Acta Cryst. E64, m419–m420.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1168-m1169
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds