organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(pyrimidin-2-yl)terephthalamide dihydrate1

aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cDepartment of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711 103, India
*Correspondence e-mail: hkfun@usm.my

(Received 27 November 2007; accepted 5 December 2007; online 12 December 2007)

This manuscript is dedicated to His Majesty Thai King Bhumibol Adulyadej on the occasion of His Majesty's 80th Birthday on 5 December 2007.

The organic mol­ecule of the title compound, C16H12N6O2·2H2O, lies across a crystallographic inversion centre. The dihedral angle between the pyrimidine and benzene rings is 80.78 (6)°. The two pyrimidine rings are parallel by virtue of the centre of symmetry. The pyrimidine and benzene rings form dihedral angles of 41.41 (7) and 40.26 (7)°, respectively, with the amide plane. The mol­ecules are linked by N—H⋯N and C—H⋯N hydrogen bonds into a two-dimensional network parallel to the (1[\overline{1}]1) plane. O—H⋯O and C—H⋯O hydrogen bonds involving the water mol­ecules link the adjacent layers into a three-dimensional network. In addition, a C—H⋯π inter­action involving the benzene ring is observed.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related literature on supra­molecular chemistry, see: Desiraju (1989[Desiraju, G. R. (1989). Crystal Engineering. The Design of Organic Solids. Amsterdam: Elsevier.]); Lehn (1995[Lehn, J. M. (1995). Supramolecular Chemistry: Concepts and Perspectives. Weinheim: VCH.]). For related structures, see: Goswami, Jana, Das et al. (2007[Goswami, S., Jana, S., Das, N. K., Fun, H.-K. & Chantrapromma, S. (2007). J. Mol. Struct. doi:10.1016/j.molstruc.2007.07.005. In the press.]); Goswami, Jana, Hazra et al. (2007[Goswami, S., Jana, S., Hazra, A., Fun, H.-K. & Chantrapromma, S. (2007). Supramol. Chem. 19. In the press.]). For related literature on the coordination chemistry and applications of amino­pyrimidine derivatives, see: Aakeroy et al. (2006[Aakeroy, C. B., Schultheiss, N., Desper, J. & Moore, C. (2006). New J. Chem. 30, 1452-1460.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]); Fun et al. (2006[Fun, H.-K., Goswami, S., Jana, S. & Chantrapromma, S. (2006). Acta Cryst. E62, o5332-o5334.]); Gallagher et al. (2004[Gallagher, J. F., Goswami, S., Chatterjee, B., Jana, S. & Dutta, K. (2004). Acta Cryst. C60, o229-o231.]); Goswami & Mahapatra (1999[Goswami, S. P. & Mahapatra, A. K. (1999). Supramol. Chem. 11, 25-33.]); Smith et al. (1998[Smith, G., Cloutt, B. A., Lynch, D. E., Byriel, K. A. & Kennard, C. H. L. (1998). Inorg. Chem. 37, 3236-3242.]); Wang et al. (2006[Wang, Y.-H., Chu, K.-L., Chen, H.-C., Yeh, C.-W., Chan, Z.-K., Suen, M.-C., Chen, J.-D. & Wang, J.-C. (2006). CrystEngComm, 8, 84-93.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12N6O2·2H2O

  • Mr = 356.35

  • Triclinic, [P \overline 1]

  • a = 5.0733 (1) Å

  • b = 8.3233 (1) Å

  • c = 9.9622 (2) Å

  • α = 68.220 (1)°

  • β = 75.441 (1)°

  • γ = 82.333 (1)°

  • V = 377.72 (1) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100.0 (1) K

  • 0.33 × 0.22 × 0.08 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.963, Tmax = 0.991

  • 12751 measured reflections

  • 2202 independent reflections

  • 1982 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.106

  • S = 1.12

  • 2202 reflections

  • 154 parameters

  • 3 restraints

  • All H-atom parameters refined

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2WA⋯O1Wi 0.80 (4) 1.99 (4) 2.791 (2) 171 (6)
O1W—H1W⋯O1 0.81 (2) 1.98 (2) 2.785 (2) 177 (3)
O1W—H2WB⋯O1Wii 0.80 (6) 2.04 (5) 2.795 (2) 156 (6)
N3—H1N3⋯N1iii 0.89 (2) 2.14 (2) 3.017 (2) 169 (2)
C1—H1⋯N2iv 0.98 (2) 2.61 (2) 3.206 (2) 119 (1)
C2—H2⋯O1Wiv 0.95 (2) 2.58 (2) 3.508 (2) 164 (1)
C3—H3⋯Cg1v 0.97 (2) 2.98 (2) 3.914 (2) 164 (2)
C3—H3⋯Cg1iii 0.97 (2) 2.98 (2) 3.914 (2) 164 (2)
Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x+1, -y+2, -z+1; (iii) -x+1, -y+1, -z; (iv) -x+2, -y+2, -z; (v) x+1, y, z-1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 1998[Sheldrick, G. M. (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Substituted 2-aminopyrimidines are very important compounds in molecular recognition and supramolecular chemistry (Desiraju, 1989; Lehn, 1995) for the presence of nice donor-acceptor arrays (Aakeroy et al., 2006; Etter, 1990; Fun et al., 2006; Gallagher, et al., 2004; Goswami & Mahapatra, 1999). The donor-acceptor arrangement of the title molecule differs from the 2-aminopyrimidine based compounds (Goswami, Jana, Das et al., 2007; Goswami, Jana, Hazra et al., 2007). These types of compounds are also important for the metal coordination and related studies (Smith et al., 1998; Wang et al., 2006). The coordination chemistry of the title compound is under investigations.

Molecules of the title compound lie across a crystallographic inversion centre (Fig. 1). All bond lengths and angles have normal values (Allen et al., 1987). The N,N-di-pyrimidin-2-yl-terepthalamide molecule has a staggered conformation. The orientation of the pyrimidine ring (C1–C4/N1/N2) with respect to the benzene ring (C6–C8/C6A–C8A) can be described by the dihedral angle formed by these planes of 80.78 (6)° and the torsion angle C4–N3–C5–C6 of -169.50 (11)°. The two pyrimidine rings are parallel by virtue of the centre of symmetry. The pyrimidine and benzene rings form dihedral angles of 41.41 (7)° and 40.26 (7)°, respectively, with the amide plane.

The structure shows O—H···O and C—H···O hydrogen bond between water and N,N-di-pyrimidin-2-yl-terepthalamide molecule. In the crystal packing (Fig. 2), the molecules are linked by N—H···N and C—H···N hydrogen bonds into a two-dimensional network parallel to the (1 1 1) plane. The O—H···O and C—H···O hydrogen bonds (Table 1) involving the water molecules link the adjacent layers into a three-dimensional network. The crystal structure is further stablilized by C—H···π interactions involving the benzene ring (centroid Cg1).

Related literature top

For bond-length data, see: Allen et al. (1987). For related literature on supramolecular chemistry, see: Desiraju (1989); Lehn (1995). For related structures, see: Goswami, Jana, Das et al. (2007); Goswami, Jana, Hazra et al. (2007). For related literaure on coordination chemistry and applications of aminopyrimidine derivatives, see: Aakeroy et al. (2006); Etter (1990); Fun et al. (2006); Gallagher et al. (2004); Goswami & Mahapatra (1999); Smith et al. (1998); Wang et al. (2006).

Experimental top

A solution of terepthaloyl chloride (203 mg, 1 mmol), in dry CH2Cl2 (20 ml) was put in a round bottle flask under nitrogen atmosphere. 2-Aminopyrimidine (190 mg, 2 mmol) containing triethylamine (0.55 ml) in dry CH2Cl2 (15 ml) was added dropwise. The reaction mixture was stirred at room temperature for 10 h. The reaction mixture was dried, washed with sodium bicarbonate solution, and then extracted with CH2Cl2 (4 × 20 ml). The crude mixture was purified by column chromatography (silica gel, 100–200 mesh) using 20% ethyl acetate-petroleum ether solution as eluent to afford a white solid compound (188 mg, 65%). Single crystals of the title compound were grown by slow evaporation of a CHCl3—CH3OH (3:1 v/v) solution (m.p. 457–459 K).

Refinement top

All H atoms were located from the difference map and isotropically refined. One of the water hydrogen atoms is disordered over two positions with occupancies each 0.50. The O—H distances were restrained to be equal within 0.03 Å.

Structure description top

Substituted 2-aminopyrimidines are very important compounds in molecular recognition and supramolecular chemistry (Desiraju, 1989; Lehn, 1995) for the presence of nice donor-acceptor arrays (Aakeroy et al., 2006; Etter, 1990; Fun et al., 2006; Gallagher, et al., 2004; Goswami & Mahapatra, 1999). The donor-acceptor arrangement of the title molecule differs from the 2-aminopyrimidine based compounds (Goswami, Jana, Das et al., 2007; Goswami, Jana, Hazra et al., 2007). These types of compounds are also important for the metal coordination and related studies (Smith et al., 1998; Wang et al., 2006). The coordination chemistry of the title compound is under investigations.

Molecules of the title compound lie across a crystallographic inversion centre (Fig. 1). All bond lengths and angles have normal values (Allen et al., 1987). The N,N-di-pyrimidin-2-yl-terepthalamide molecule has a staggered conformation. The orientation of the pyrimidine ring (C1–C4/N1/N2) with respect to the benzene ring (C6–C8/C6A–C8A) can be described by the dihedral angle formed by these planes of 80.78 (6)° and the torsion angle C4–N3–C5–C6 of -169.50 (11)°. The two pyrimidine rings are parallel by virtue of the centre of symmetry. The pyrimidine and benzene rings form dihedral angles of 41.41 (7)° and 40.26 (7)°, respectively, with the amide plane.

The structure shows O—H···O and C—H···O hydrogen bond between water and N,N-di-pyrimidin-2-yl-terepthalamide molecule. In the crystal packing (Fig. 2), the molecules are linked by N—H···N and C—H···N hydrogen bonds into a two-dimensional network parallel to the (1 1 1) plane. The O—H···O and C—H···O hydrogen bonds (Table 1) involving the water molecules link the adjacent layers into a three-dimensional network. The crystal structure is further stablilized by C—H···π interactions involving the benzene ring (centroid Cg1).

For bond-length data, see: Allen et al. (1987). For related literature on supramolecular chemistry, see: Desiraju (1989); Lehn (1995). For related structures, see: Goswami, Jana, Das et al. (2007); Goswami, Jana, Hazra et al. (2007). For related literaure on coordination chemistry and applications of aminopyrimidine derivatives, see: Aakeroy et al. (2006); Etter (1990); Fun et al. (2006); Gallagher et al. (2004); Goswami & Mahapatra (1999); Smith et al. (1998); Wang et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL (Sheldrick, 1998); molecular graphics: SHELXTL (Sheldrick, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 1998) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 60% probability displacement ellipsoids and the atomic numbering. One of the H atoms of the water molecule is disordered over two positions. The dashed line indicates a hydrogen bond. Atoms labelled with the suffix A are generated by the symmetry operation (-x, 1 - y, 1 - z).
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.
N,N'-Bis(pyrimidin-2-yl)terephthalamide dihydrate top
Crystal data top
C16H12N6O2·2H2OZ = 1
Mr = 356.35F(000) = 186
Triclinic, P1Dx = 1.567 Mg m3
Hall symbol: -P 1Melting point = 457–459 K
a = 5.0733 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.3233 (1) ÅCell parameters from 2202 reflections
c = 9.9622 (2) Åθ = 2.3–30.0°
α = 68.220 (1)°µ = 0.12 mm1
β = 75.441 (1)°T = 100 K
γ = 82.333 (1)°Block, colourless
V = 377.72 (1) Å30.33 × 0.22 × 0.08 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2202 independent reflections
Radiation source: fine-focus sealed tube1982 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 8.33 pixels mm-1θmax = 30.0°, θmin = 2.3°
ω scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1111
Tmin = 0.963, Tmax = 0.991l = 1314
12751 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106All H-atom parameters refined
S = 1.12 w = 1/[σ2(Fo2) + (0.0387P)2 + 0.2638P]
where P = (Fo2 + 2Fc2)/3
2202 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.39 e Å3
3 restraintsΔρmin = 0.26 e Å3
Crystal data top
C16H12N6O2·2H2Oγ = 82.333 (1)°
Mr = 356.35V = 377.72 (1) Å3
Triclinic, P1Z = 1
a = 5.0733 (1) ÅMo Kα radiation
b = 8.3233 (1) ŵ = 0.12 mm1
c = 9.9622 (2) ÅT = 100 K
α = 68.220 (1)°0.33 × 0.22 × 0.08 mm
β = 75.441 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2202 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1982 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.991Rint = 0.035
12751 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0443 restraints
wR(F2) = 0.106All H-atom parameters refined
S = 1.12Δρmax = 0.39 e Å3
2202 reflectionsΔρmin = 0.26 e Å3
154 parameters
Special details top

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.40513 (19)0.85138 (12)0.21674 (10)0.0152 (2)
N10.7704 (2)0.64103 (14)0.09155 (12)0.0131 (2)
N20.9113 (2)0.77862 (14)0.05021 (12)0.0134 (2)
N30.5215 (2)0.61544 (14)0.14450 (12)0.0124 (2)
H1N30.441 (4)0.530 (2)0.1395 (19)0.013 (4)*
C11.1248 (3)0.83918 (16)0.06205 (14)0.0135 (2)
H11.248 (4)0.908 (2)0.0464 (19)0.016 (4)*
C21.1741 (3)0.80284 (17)0.19128 (14)0.0144 (2)
H21.328 (4)0.846 (2)0.270 (2)0.018 (4)*
C30.9898 (3)0.70138 (17)0.20052 (14)0.0144 (2)
H31.021 (4)0.669 (2)0.287 (2)0.015 (4)*
C40.7440 (2)0.68481 (15)0.02820 (13)0.0113 (2)
C50.3775 (2)0.69938 (16)0.23761 (13)0.0121 (2)
C60.1803 (2)0.59197 (16)0.37078 (13)0.0114 (2)
C70.0689 (3)0.67033 (16)0.41794 (14)0.0131 (2)
H70.118 (4)0.789 (2)0.3599 (19)0.015 (4)*
C80.2492 (2)0.42173 (16)0.45293 (14)0.0126 (2)
H80.419 (4)0.368 (2)0.4211 (19)0.014 (4)*
O1W0.2790 (3)0.96683 (17)0.45548 (13)0.0296 (3)
H1W0.309 (5)0.934 (3)0.386 (2)0.034 (6)*
H2WA0.123 (6)0.994 (7)0.484 (6)0.050 (15)*0.50
H2WB0.380 (10)1.013 (7)0.479 (7)0.064 (18)*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0159 (4)0.0143 (4)0.0149 (4)0.0037 (3)0.0011 (3)0.0063 (3)
N10.0123 (5)0.0147 (5)0.0122 (5)0.0017 (4)0.0013 (4)0.0054 (4)
N20.0125 (5)0.0142 (5)0.0132 (5)0.0022 (4)0.0009 (4)0.0053 (4)
N30.0117 (5)0.0136 (5)0.0116 (5)0.0040 (4)0.0014 (4)0.0057 (4)
C10.0118 (5)0.0128 (5)0.0151 (6)0.0018 (4)0.0026 (4)0.0040 (4)
C20.0110 (5)0.0168 (6)0.0128 (5)0.0028 (4)0.0002 (4)0.0035 (4)
C30.0134 (5)0.0179 (6)0.0116 (5)0.0016 (4)0.0009 (4)0.0057 (5)
C40.0104 (5)0.0112 (5)0.0111 (5)0.0006 (4)0.0008 (4)0.0033 (4)
C50.0108 (5)0.0148 (5)0.0105 (5)0.0018 (4)0.0013 (4)0.0047 (4)
C60.0106 (5)0.0145 (5)0.0098 (5)0.0035 (4)0.0006 (4)0.0052 (4)
C70.0127 (5)0.0140 (5)0.0123 (5)0.0012 (4)0.0014 (4)0.0049 (4)
C80.0104 (5)0.0154 (5)0.0124 (5)0.0014 (4)0.0006 (4)0.0064 (4)
O1W0.0388 (7)0.0353 (7)0.0186 (5)0.0039 (5)0.0004 (5)0.0170 (5)
Geometric parameters (Å, º) top
O1—C51.2252 (15)C3—H30.970 (18)
N1—C41.3429 (15)C5—C61.5006 (16)
N1—C31.3441 (16)C6—C81.3967 (17)
N2—C41.3325 (16)C6—C71.3976 (17)
N2—C11.3403 (16)C7—C8i1.3937 (17)
N3—C51.3734 (15)C7—H70.980 (18)
N3—C41.4037 (15)C8—C7i1.3937 (17)
N3—H1N30.886 (18)C8—H80.951 (18)
C1—C21.3850 (17)O1W—H1W0.807 (19)
C1—H10.976 (18)O1W—H2WA0.80 (2)
C2—C31.3810 (17)O1W—H2WB0.80 (2)
C2—H20.956 (18)
C4—N1—C3115.24 (10)N1—C4—N3115.16 (10)
C4—N2—C1115.74 (11)O1—C5—N3123.59 (11)
C5—N3—C4123.80 (10)O1—C5—C6120.82 (11)
C5—N3—H1N3117.2 (11)N3—C5—C6115.59 (10)
C4—N3—H1N3116.3 (11)C8—C6—C7120.14 (11)
N2—C1—C2122.42 (11)C8—C6—C5121.39 (11)
N2—C1—H1116.0 (10)C7—C6—C5118.30 (11)
C2—C1—H1121.5 (10)C8i—C7—C6119.91 (11)
C3—C2—C1116.73 (11)C8i—C7—H7119.9 (10)
C3—C2—H2121.6 (11)C6—C7—H7120.2 (10)
C1—C2—H2121.7 (11)C7i—C8—C6119.95 (11)
N1—C3—C2122.62 (11)C7i—C8—H8119.9 (11)
N1—C3—H3118.1 (11)C6—C8—H8120.2 (11)
C2—C3—H3119.3 (11)H1W—O1W—H2WA116 (4)
N2—C4—N1127.22 (11)H1W—O1W—H2WB128 (5)
N2—C4—N3117.53 (11)H2WA—O1W—H2WB111 (6)
C4—N2—C1—C21.83 (18)C4—N3—C5—O110.1 (2)
N2—C1—C2—C30.61 (19)C4—N3—C5—C6169.50 (11)
C4—N1—C3—C20.68 (19)O1—C5—C6—C8137.21 (13)
C1—C2—C3—N10.72 (19)N3—C5—C6—C842.36 (16)
C1—N2—C4—N11.96 (19)O1—C5—C6—C738.15 (17)
C1—N2—C4—N3178.50 (11)N3—C5—C6—C7142.27 (12)
C3—N1—C4—N20.73 (19)C8—C6—C7—C8i0.1 (2)
C3—N1—C4—N3177.34 (11)C5—C6—C7—C8i175.54 (11)
C5—N3—C4—N236.36 (18)C7—C6—C8—C7i0.1 (2)
C5—N3—C4—N1146.68 (12)C5—C6—C8—C7i175.39 (11)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2WA···O1Wii0.80 (4)1.99 (4)2.791 (2)171 (6)
O1W—H1W···O10.81 (2)1.98 (2)2.785 (2)177 (3)
O1W—H2WB···O1Wiii0.80 (6)2.04 (5)2.795 (2)156 (6)
N3—H1N3···N1iv0.89 (2)2.14 (2)3.017 (2)169 (2)
C1—H1···N2v0.98 (2)2.61 (2)3.206 (2)119 (1)
C2—H2···O1Wv0.95 (2)2.58 (2)3.508 (2)164 (1)
C3—H3···Cg1vi0.97 (2)2.98 (2)3.914 (2)164 (2)
C3—H3···Cg1iv0.97 (2)2.98 (2)3.914 (2)164 (2)
Symmetry codes: (ii) x, y+2, z+1; (iii) x+1, y+2, z+1; (iv) x+1, y+1, z; (v) x+2, y+2, z; (vi) x+1, y, z1.

Experimental details

Crystal data
Chemical formulaC16H12N6O2·2H2O
Mr356.35
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.0733 (1), 8.3233 (1), 9.9622 (2)
α, β, γ (°)68.220 (1), 75.441 (1), 82.333 (1)
V3)377.72 (1)
Z1
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.33 × 0.22 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.963, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
12751, 2202, 1982
Rint0.035
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.106, 1.12
No. of reflections2202
No. of parameters154
No. of restraints3
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.39, 0.26

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 1998) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2WA···O1Wi0.80 (4)1.99 (4)2.791 (2)171 (6)
O1W—H1W···O10.81 (2)1.98 (2)2.785 (2)177 (3)
O1W—H2WB···O1Wii0.80 (6)2.04 (5)2.795 (2)156 (6)
N3—H1N3···N1iii0.89 (2)2.14 (2)3.017 (2)169 (2)
C1—H1···N2iv0.98 (2)2.61 (2)3.206 (2)119 (1)
C2—H2···O1Wiv0.95 (2)2.58 (2)3.508 (2)164 (1)
C3—H3···Cg1v0.97 (2)2.98 (2)3.914 (2)164 (2)
C3—H3···Cg1iii0.97 (2)2.98 (2)3.914 (2)164 (2)
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+2, z+1; (iii) x+1, y+1, z; (iv) x+2, y+2, z; (v) x+1, y, z1.
 

Footnotes

1This paper is dedicated to His Majesty, Thai King Bhumibol Adulyadej on the occasion of his 80th Birthday Anniversary which fell on December 5th, 2007.

Additional correspondence author, email: suchada.c@psu.ac.th.

Acknowledgements

SJ, AH and SG acknowledge the DST (grant No. SR/S1/OC-13/2005) and CSIR [grant No. 01(1913)/04/EMR-II], Government of India, for financial support. SJ and AH thank the CSIR, Government of India, for research fellowships. SC thanks the Prince of Songkla University, Thailand, for support. The authors also thank the Malaysian Government and Universiti Sains Malaysia for a Scientific Advancement Grant Allocation (SAGA, grant No. 304/PFIZIK/653003/A118).

References

First citationAakeroy, C. B., Schultheiss, N., Desper, J. & Moore, C. (2006). New J. Chem. 30, 1452–1460.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. (1989). Crystal Engineering. The Design of Organic Solids. Amsterdam: Elsevier.  Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFun, H.-K., Goswami, S., Jana, S. & Chantrapromma, S. (2006). Acta Cryst. E62, o5332–o5334.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGallagher, J. F., Goswami, S., Chatterjee, B., Jana, S. & Dutta, K. (2004). Acta Cryst. C60, o229–o231.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGoswami, S., Jana, S., Das, N. K., Fun, H.-K. & Chantrapromma, S. (2007). J. Mol. Struct. doi:10.1016/j.molstruc.2007.07.005. In the press.  Google Scholar
First citationGoswami, S., Jana, S., Hazra, A., Fun, H.-K. & Chantrapromma, S. (2007). Supramol. Chem. 19. In the press.  Google Scholar
First citationGoswami, S. P. & Mahapatra, A. K. (1999). Supramol. Chem. 11, 25–33.  Web of Science CSD CrossRef CAS Google Scholar
First citationLehn, J. M. (1995). Supramolecular Chemistry: Concepts and Perspectives. Weinheim: VCH.  Google Scholar
First citationSheldrick, G. M. (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSmith, G., Cloutt, B. A., Lynch, D. E., Byriel, K. A. & Kennard, C. H. L. (1998). Inorg. Chem. 37, 3236–3242.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y.-H., Chu, K.-L., Chen, H.-C., Yeh, C.-W., Chan, Z.-K., Suen, M.-C., Chen, J.-D. & Wang, J.-C. (2006). CrystEngComm, 8, 84–93.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds