Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [Ag(C7H8NO3S)(C2H3N)(C18H15P)(H2O)]·0.5H2O, has a mononuclear structure in which the AgI ion is four-coordinated by the N atoms from a 3-amino-4-methyl­benzene­sulfonate anion and an acetonitrile mol­ecule, one P atom from a triphenyl­phosphine ligand and one O atom from a water mol­ecule, forming a distorted tetra­hedral configuration. Mol­ecules are linked into a ribbon-like structure along the a axis by O(water)—H...O hydrogen bonds involving the coordinated water mol­ecule, and N—H...O hydrogen bonds. The uncoordinated water mol­ecule is disordered across an inversion centre.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807051549/ci2475sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807051549/ci2475Isup2.hkl
Contains datablock I

CCDC reference: 667215

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • Disorder in solvent or counterion
  • R factor = 0.035
  • wR factor = 0.110
  • Data-to-parameter ratio = 17.8

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT220_ALERT_2_B Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.73 Ratio PLAT222_ALERT_3_B Large Non-Solvent H Ueq(max)/Ueq(min) ... 4.51 Ratio
Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.97 PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT045_ALERT_1_C Calculated and Reported Z Differ by ............ 0.50 Ratio PLAT153_ALERT_1_C The su's on the Cell Axes are Equal (x 100000) 500 Ang. PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 500 Deg. PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C26 PLAT302_ALERT_4_C Anion/Solvent Disorder ......................... 50.00 Perc. PLAT415_ALERT_2_C Short Inter D-H..H-X H2W2 .. H27B .. 2.13 Ang. PLAT432_ALERT_2_C Short Inter X...Y Contact C24 .. C24 .. 3.18 Ang. PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 6 PLAT731_ALERT_1_C Bond Calc 0.86(3), Rep 0.854(10) ...... 3.00 su-Ra O1W -H1W1 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.86(3), Rep 0.853(10) ...... 3.00 su-Ra O1W -H1W2 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.86(3), Rep 0.854(10) ...... 3.00 su-Ra O1W -H1# 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.86(3), Rep 0.853(10) ...... 3.00 su-Ra O1W -H2# 1.555 1.555 PLAT736_ALERT_1_C H...A Calc 1.95(3), Rep 1.952(13) ...... 2.31 su-Ra H1# -O2 1.555 2.667 PLAT736_ALERT_1_C H...A Calc 2.09(3), Rep 2.091(12) ...... 2.50 su-Ra H2# -O3 1.555 1.655
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 15
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 17 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 13 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Recently, intense interest has been focused on silver(I) sulfonates because of their interesting structures and properties (Han & Li, 2007a). So far, some silver(I) sulfonate compounds modified by secondary ligands that display different structures have been reported (Han & Li, 2007b). We selected 3-amino-4-methylbenzenesulfonic acid (HL) as a sulfonate ligand and triphenylphosphine (TPP) as a secondary ligand, generating a new coordination complex, [Ag(L)(TPP)(CNCH3)(H2O)].0.5H2O, which is reported here.

In compound (I), each AgI cation is four-coordinated by two N atoms one each from a 3-amino-4-methylbenzenesulfonate anion and a acetonitrile molecule, one P atom from a triphenylphosphine ligand, and one O atom from the water molecule, forming a distorted tetrahedral configuration (Fig. 1). The Ag—N (sulfonate) distance of the title complex is comparable to that found in a related structure (Han & Li, 2007b). The molecules are linked through Ow—H···O and N—H···O hydrogen bonds (Table 2) to form a ribbon like structure along the a axis.

Related literature top

For studies on silver sulfonates, see: Han & Li (2007a,b).

Experimental top

An aqueous solution (12 ml) of 3-amino-4-methylbenzenesulfonic acid (0.5 mmol) was added to solid Ag2CO3 (0.25 mmol) and stirred for several minutes until no further CO2 was given off. Triphenylphosphine (0.5 mmol) in acetonitrile (5 ml) was then added and a solution formed. Crystals of the title compound were obtained by slow evaporation of the solvent for several days at room temperature.

Refinement top

The amino H atoms were located in a difference map, and were refined with distance restraints of N—H = 0.90 (1) Å and H···H = 1.37 (2) Å, and with Uiso(H) = 1.5Ueq(N). H-atoms of the water molecules were located in a difference map, and were refined with distance restraints of O–H = 0.85 (1) Å and H···H = 1.39 (2) Å, and with Uiso(H) = 1.5Ueq(N). C-bound H atoms were positioned geometrically (C—H = 0.93 Å) and refined as riding, with U(H) = 1.2–1.5Ueq(C). Atom O2W is disordered across an inversion centre and it was refined with an occupancy of 0.50. The Uij components of O2W were approximated to isotropic behaviour.

Structure description top

Recently, intense interest has been focused on silver(I) sulfonates because of their interesting structures and properties (Han & Li, 2007a). So far, some silver(I) sulfonate compounds modified by secondary ligands that display different structures have been reported (Han & Li, 2007b). We selected 3-amino-4-methylbenzenesulfonic acid (HL) as a sulfonate ligand and triphenylphosphine (TPP) as a secondary ligand, generating a new coordination complex, [Ag(L)(TPP)(CNCH3)(H2O)].0.5H2O, which is reported here.

In compound (I), each AgI cation is four-coordinated by two N atoms one each from a 3-amino-4-methylbenzenesulfonate anion and a acetonitrile molecule, one P atom from a triphenylphosphine ligand, and one O atom from the water molecule, forming a distorted tetrahedral configuration (Fig. 1). The Ag—N (sulfonate) distance of the title complex is comparable to that found in a related structure (Han & Li, 2007b). The molecules are linked through Ow—H···O and N—H···O hydrogen bonds (Table 2) to form a ribbon like structure along the a axis.

For studies on silver sulfonates, see: Han & Li (2007a,b).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
(Acetonitrile-κN)(3-amino-4-methylbenzenesulfonato- κN)aqua(triphenylphosphine-κP)silver(I) hemihydrate top
Crystal data top
[Ag(C7H8NO3S)(C2H3N)(C18H15P)(H2O)]·0.5H2OZ = 2
Mr = 624.42F(000) = 638
Triclinic, P1Dx = 1.448 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 9.058 (5) ÅCell parameters from 6198 reflections
b = 12.300 (5) Åθ = 3.0–27.5°
c = 13.500 (5) ŵ = 0.87 mm1
α = 90.526 (5)°T = 293 K
β = 105.382 (5)°Block, colourless
γ = 98.637 (5)°0.27 × 0.24 × 0.19 mm
V = 1431.9 (11) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6265 independent reflections
Radiation source: rotating anode4674 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 1.6°
ω scansh = 011
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1515
Tmin = 0.786, Tmax = 0.849l = 1716
16198 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0706P)2]
where P = (Fo2 + 2Fc2)/3
6265 reflections(Δ/σ)max = 0.001
351 parametersΔρmax = 0.65 e Å3
15 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Ag(C7H8NO3S)(C2H3N)(C18H15P)(H2O)]·0.5H2Oγ = 98.637 (5)°
Mr = 624.42V = 1431.9 (11) Å3
Triclinic, P1Z = 2
a = 9.058 (5) ÅMo Kα radiation
b = 12.300 (5) ŵ = 0.87 mm1
c = 13.500 (5) ÅT = 293 K
α = 90.526 (5)°0.27 × 0.24 × 0.19 mm
β = 105.382 (5)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6265 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4674 reflections with I > 2σ(I)
Tmin = 0.786, Tmax = 0.849Rint = 0.032
16198 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03515 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.65 e Å3
6265 reflectionsΔρmin = 0.60 e Å3
351 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.82067 (3)0.71412 (2)0.812387 (19)0.05643 (11)
S10.24990 (7)0.64963 (6)1.03695 (5)0.03917 (16)
P10.89270 (8)0.83242 (6)0.68962 (5)0.03976 (17)
O10.1360 (2)0.72108 (19)1.00246 (19)0.0587 (6)
O20.2681 (3)0.6244 (2)1.14346 (18)0.0603 (6)
O30.2255 (2)0.55291 (18)0.96984 (19)0.0582 (6)
O1W0.9384 (3)0.5422 (2)0.8028 (2)0.0617 (6)
H1W10.868 (3)0.497 (3)0.819 (3)0.092*
H1W21.021 (3)0.550 (4)0.853 (2)0.092*
O2W0.0549 (18)0.4784 (15)0.5433 (11)0.237 (7)0.50
H2W10.00000.50000.50000.355*
H2W20.000 (12)0.50 (2)0.6040 (16)0.355*0.50
N10.7966 (2)0.6867 (2)0.97637 (19)0.0424 (5)
H1N10.782 (3)0.6141 (9)0.979 (3)0.064*
H1N20.8959 (17)0.709 (2)1.011 (2)0.064*
C11.0808 (3)0.8162 (2)0.6725 (2)0.0414 (6)
C21.1987 (4)0.8086 (3)0.7591 (2)0.0547 (8)
H21.17840.80620.82310.066*
C31.3482 (4)0.8046 (4)0.7521 (3)0.0700 (10)
H31.42820.80080.81100.084*
C41.3763 (4)0.8063 (3)0.6554 (3)0.0740 (11)
H41.47570.80380.64960.089*
C51.2592 (4)0.8117 (3)0.5700 (3)0.0697 (10)
H51.27860.81170.50570.084*
C61.1114 (4)0.8171 (3)0.5775 (2)0.0577 (8)
H61.03210.82140.51830.069*
C70.7559 (3)0.8004 (2)0.5636 (2)0.0455 (6)
C80.6856 (5)0.6923 (3)0.5389 (3)0.0700 (10)
H80.70950.63900.58650.084*
C90.5807 (6)0.6623 (4)0.4452 (3)0.0878 (13)
H90.53520.58910.42930.105*
C100.5433 (5)0.7408 (4)0.3747 (3)0.0885 (14)
H100.47220.72060.31140.106*
C110.6097 (5)0.8475 (4)0.3974 (3)0.0802 (12)
H110.58470.90050.34970.096*
C120.7160 (4)0.8775 (3)0.4929 (3)0.0619 (9)
H120.76040.95090.50870.074*
C130.9072 (3)0.9809 (2)0.7080 (2)0.0430 (6)
C140.7906 (4)1.0222 (3)0.7386 (2)0.0559 (8)
H140.70720.97450.74970.067*
C150.7994 (5)1.1354 (3)0.7526 (3)0.0688 (10)
H150.72051.16310.77190.083*
C160.9230 (5)1.2066 (3)0.7384 (3)0.0706 (10)
H160.92841.28210.74890.085*
C171.0364 (5)1.1670 (3)0.7093 (3)0.0662 (9)
H171.11971.21570.69940.079*
C181.0311 (4)1.0546 (3)0.6936 (2)0.0542 (8)
H181.11051.02860.67340.065*
C190.5426 (3)0.6758 (2)1.0080 (2)0.0354 (5)
H190.52310.60060.99140.043*
C200.4308 (3)0.7267 (2)1.0332 (2)0.0367 (6)
C210.4580 (3)0.8378 (2)1.0601 (2)0.0469 (7)
H210.38280.87161.07800.056*
C220.6002 (4)0.8980 (2)1.0597 (3)0.0509 (7)
H220.62010.97271.07870.061*
C230.7131 (3)0.8505 (2)1.0321 (2)0.0406 (6)
C240.8614 (3)0.9190 (3)1.0249 (3)0.0539 (8)
H24A0.94730.89671.07470.081*
H24B0.85810.99531.03840.081*
H24C0.87380.90890.95720.081*
C250.6851 (3)0.7374 (2)1.00730 (19)0.0346 (5)
N20.5710 (4)0.5851 (3)0.7540 (3)0.0848 (10)
C260.4561 (6)0.5415 (4)0.7544 (4)0.0868 (12)
C270.3062 (7)0.4811 (5)0.7599 (5)0.129 (2)
H27A0.31030.40360.76030.194*
H27B0.22630.49590.70120.194*
H27C0.28380.50440.82170.194*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.06167 (17)0.06053 (17)0.05768 (17)0.01306 (12)0.03202 (12)0.01829 (11)
S10.0240 (3)0.0411 (4)0.0537 (4)0.0004 (3)0.0156 (3)0.0031 (3)
P10.0409 (4)0.0445 (4)0.0372 (4)0.0092 (3)0.0149 (3)0.0054 (3)
O10.0282 (10)0.0637 (14)0.0861 (16)0.0109 (10)0.0164 (10)0.0087 (11)
O20.0504 (12)0.0696 (14)0.0584 (13)0.0098 (11)0.0211 (10)0.0121 (11)
O30.0404 (11)0.0536 (13)0.0801 (16)0.0093 (10)0.0252 (11)0.0142 (11)
O1W0.0545 (13)0.0586 (14)0.0737 (16)0.0033 (12)0.0234 (12)0.0091 (12)
O2W0.238 (10)0.224 (9)0.246 (10)0.058 (8)0.051 (8)0.025 (8)
N10.0279 (10)0.0525 (14)0.0506 (14)0.0078 (10)0.0160 (10)0.0148 (11)
C10.0425 (14)0.0416 (14)0.0440 (15)0.0119 (12)0.0157 (12)0.0043 (11)
C20.0546 (18)0.068 (2)0.0478 (17)0.0212 (16)0.0174 (14)0.0113 (14)
C30.0513 (19)0.094 (3)0.067 (2)0.0285 (19)0.0103 (17)0.012 (2)
C40.053 (2)0.083 (3)0.099 (3)0.0261 (19)0.036 (2)0.009 (2)
C50.068 (2)0.096 (3)0.063 (2)0.032 (2)0.0375 (19)0.0152 (19)
C60.0546 (18)0.080 (2)0.0454 (17)0.0218 (17)0.0198 (14)0.0096 (15)
C70.0393 (14)0.0556 (17)0.0414 (15)0.0054 (13)0.0117 (12)0.0015 (13)
C80.083 (3)0.058 (2)0.062 (2)0.0081 (19)0.0110 (19)0.0077 (17)
C90.093 (3)0.072 (3)0.081 (3)0.003 (2)0.002 (2)0.026 (2)
C100.072 (3)0.115 (4)0.064 (3)0.021 (3)0.009 (2)0.023 (3)
C110.070 (3)0.098 (3)0.061 (2)0.020 (2)0.0063 (19)0.005 (2)
C120.0559 (19)0.067 (2)0.0537 (19)0.0054 (17)0.0019 (15)0.0075 (16)
C130.0464 (15)0.0482 (15)0.0367 (14)0.0138 (13)0.0117 (12)0.0029 (11)
C140.0483 (17)0.067 (2)0.0537 (18)0.0158 (16)0.0123 (14)0.0024 (15)
C150.077 (3)0.074 (2)0.061 (2)0.039 (2)0.0134 (18)0.0072 (18)
C160.104 (3)0.0498 (19)0.060 (2)0.029 (2)0.016 (2)0.0022 (16)
C170.090 (3)0.0454 (18)0.065 (2)0.0023 (18)0.0281 (19)0.0037 (15)
C180.066 (2)0.0505 (17)0.0548 (18)0.0129 (16)0.0290 (16)0.0056 (14)
C190.0276 (12)0.0347 (13)0.0458 (14)0.0038 (10)0.0133 (10)0.0070 (11)
C200.0246 (11)0.0392 (14)0.0466 (15)0.0015 (11)0.0120 (10)0.0068 (11)
C210.0391 (14)0.0376 (14)0.070 (2)0.0051 (12)0.0261 (14)0.0026 (13)
C220.0526 (17)0.0343 (14)0.067 (2)0.0023 (13)0.0239 (15)0.0010 (13)
C230.0310 (12)0.0440 (15)0.0438 (14)0.0059 (12)0.0114 (11)0.0053 (11)
C240.0406 (15)0.0572 (18)0.0580 (18)0.0154 (14)0.0160 (13)0.0039 (14)
C250.0246 (11)0.0429 (14)0.0366 (13)0.0038 (11)0.0093 (10)0.0099 (10)
N20.0546 (19)0.095 (3)0.094 (3)0.0099 (19)0.0144 (18)0.002 (2)
C260.081 (3)0.092 (3)0.083 (3)0.006 (3)0.020 (2)0.009 (2)
C270.104 (4)0.161 (6)0.116 (4)0.044 (4)0.055 (4)0.026 (4)
Geometric parameters (Å, º) top
Ag1—N12.304 (2)C9—H90.93
Ag1—P12.3712 (9)C10—C111.355 (6)
Ag1—N22.491 (4)C10—H100.93
Ag1—O1W2.524 (3)C11—C121.396 (5)
S1—O11.441 (2)C11—H110.93
S1—O31.442 (2)C12—H120.93
S1—O21.445 (2)C13—C181.390 (4)
S1—C201.779 (3)C13—C141.391 (4)
P1—C11.818 (3)C14—C151.391 (5)
P1—C71.818 (3)C14—H140.93
P1—C131.821 (3)C15—C161.371 (6)
O1W—H1W10.854 (10)C15—H150.93
O1W—H1W20.853 (10)C16—C171.345 (6)
O2W—O2Wi1.762 (17)C16—H160.93
O2W—H2W10.881 (9)C17—C181.388 (5)
O2W—H2W20.845 (10)C17—H170.93
N1—C251.411 (4)C18—H180.93
N1—H1N10.885 (10)C19—C201.379 (4)
N1—H1N20.896 (10)C19—C251.397 (3)
C1—C21.373 (4)C19—H190.93
C1—C61.383 (4)C20—C211.379 (4)
C2—C31.390 (5)C21—C221.387 (4)
C2—H20.93C21—H210.93
C3—C41.393 (6)C22—C231.379 (4)
C3—H30.9300C22—H220.93
C4—C51.353 (6)C23—C251.397 (4)
C4—H40.93C23—C241.502 (4)
C5—C61.380 (5)C24—H24A0.96
C5—H50.93C24—H24B0.96
C6—H60.93C24—H24C0.96
C7—C121.371 (5)N2—C261.099 (6)
C7—C81.382 (5)C26—C271.467 (7)
C8—C91.374 (5)C27—H27A0.96
C8—H80.93C27—H27B0.96
C9—C101.377 (7)C27—H27C0.96
N1—Ag1—P1150.06 (7)C9—C10—H10119.9
N1—Ag1—N285.71 (11)C10—C11—C12119.6 (4)
P1—Ag1—N2117.20 (9)C10—C11—H11120.2
N1—Ag1—O1W94.06 (8)C12—C11—H11120.2
P1—Ag1—O1W106.81 (6)C7—C12—C11121.0 (4)
N2—Ag1—O1W83.54 (11)C7—C12—H12119.5
O1—S1—O3113.35 (15)C11—C12—H12119.5
O1—S1—O2112.03 (15)C18—C13—C14118.7 (3)
O3—S1—O2112.98 (15)C18—C13—P1122.6 (2)
O1—S1—C20106.06 (13)C14—C13—P1118.7 (2)
O3—S1—C20106.33 (13)C13—C14—C15119.5 (3)
O2—S1—C20105.33 (13)C13—C14—H14120.2
C1—P1—C7105.53 (13)C15—C14—H14120.2
C1—P1—C13103.30 (13)C16—C15—C14120.9 (4)
C7—P1—C13103.75 (14)C16—C15—H15119.6
C1—P1—Ag1112.36 (9)C14—C15—H15119.6
C7—P1—Ag1110.54 (10)C17—C16—C15119.8 (3)
C13—P1—Ag1120.07 (10)C17—C16—H16120.1
Ag1—O1W—H1W197 (3)C15—C16—H16120.1
Ag1—O1W—H1W2105 (3)C16—C17—C18121.1 (4)
H1W1—O1W—H1W2109 (2)C16—C17—H17119.5
H2W1—O2W—H2W2109 (3)C18—C17—H17119.5
C25—N1—Ag1117.66 (16)C17—C18—C13120.1 (3)
C25—N1—H1N1114 (2)C17—C18—H18120.0
Ag1—N1—H1N1103 (2)C13—C18—H18120.0
C25—N1—H1N2116 (2)C20—C19—C25120.0 (2)
Ag1—N1—H1N298 (2)C20—C19—H19120.0
H1N1—N1—H1N2105 (2)C25—C19—H19120.0
C2—C1—C6119.2 (3)C19—C20—C21121.1 (2)
C2—C1—P1117.8 (2)C19—C20—S1120.8 (2)
C6—C1—P1123.0 (2)C21—C20—S1118.0 (2)
C1—C2—C3120.7 (3)C20—C21—C22118.3 (3)
C1—C2—H2119.6C20—C21—H21120.8
C3—C2—H2119.6C22—C21—H21120.8
C2—C3—C4119.0 (3)C23—C22—C21122.1 (3)
C2—C3—H3120.5C23—C22—H22118.9
C4—C3—H3120.5C21—C22—H22118.9
C5—C4—C3120.2 (3)C22—C23—C25118.8 (2)
C5—C4—H4119.9C22—C23—C24121.0 (3)
C3—C4—H4119.9C25—C23—C24120.1 (3)
C4—C5—C6120.6 (3)C23—C24—H24A109.5
C4—C5—H5119.7C23—C24—H24B109.5
C6—C5—H5119.7H24A—C24—H24B109.5
C5—C6—C1120.3 (3)C23—C24—H24C109.5
C5—C6—H6119.9H24A—C24—H24C109.5
C1—C6—H6119.9H24B—C24—H24C109.5
C12—C7—C8118.2 (3)C19—C25—C23119.5 (2)
C12—C7—P1123.8 (2)C19—C25—N1120.1 (2)
C8—C7—P1117.9 (3)C23—C25—N1120.2 (2)
C9—C8—C7121.0 (4)C26—N2—Ag1158.9 (4)
C9—C8—H8119.5N2—C26—C27177.2 (6)
C7—C8—H8119.5C26—C27—H27A109.5
C8—C9—C10119.9 (4)C26—C27—H27B109.5
C8—C9—H9120.1H27A—C27—H27B109.5
C10—C9—H9120.1C26—C27—H27C109.5
C11—C10—C9120.3 (4)H27A—C27—H27C109.5
C11—C10—H10119.9H27B—C27—H27C109.5
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O2ii0.85 (1)1.95 (1)2.797 (3)170 (4)
O1W—H1W2···O3iii0.85 (1)2.09 (1)2.940 (4)174 (5)
N1—H1N2···O1iii0.90 (1)2.19 (2)2.965 (3)144 (3)
N1—H1N1···O3ii0.89 (1)2.17 (1)3.032 (4)164 (3)
Symmetry codes: (ii) x+1, y+1, z+2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ag(C7H8NO3S)(C2H3N)(C18H15P)(H2O)]·0.5H2O
Mr624.42
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.058 (5), 12.300 (5), 13.500 (5)
α, β, γ (°)90.526 (5), 105.382 (5), 98.637 (5)
V3)1431.9 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.87
Crystal size (mm)0.27 × 0.24 × 0.19
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.786, 0.849
No. of measured, independent and
observed [I > 2σ(I)] reflections
16198, 6265, 4674
Rint0.032
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.110, 1.00
No. of reflections6265
No. of parameters351
No. of restraints15
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.65, 0.60

Computer programs: PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1990).

Selected geometric parameters (Å, º) top
Ag1—N12.304 (2)Ag1—N22.491 (4)
Ag1—P12.3712 (9)Ag1—O1W2.524 (3)
N1—Ag1—P1150.06 (7)N1—Ag1—O1W94.06 (8)
N1—Ag1—N285.71 (11)P1—Ag1—O1W106.81 (6)
P1—Ag1—N2117.20 (9)N2—Ag1—O1W83.54 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O2i0.854 (10)1.952 (13)2.797 (3)170 (4)
O1W—H1W2···O3ii0.853 (10)2.091 (12)2.940 (4)174 (5)
N1—H1N2···O1ii0.896 (10)2.19 (2)2.965 (3)144 (3)
N1—H1N1···O3i0.885 (10)2.171 (14)3.032 (4)164 (3)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds