Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C21H20ClN3O2, was synthesized by the reaction of 4-chloro­benzaldehyde and 3-(5,5-dimethyl-3-oxo­cyclo­hex-1-enylamino)propanoic acid with malononitrile in ethyl­ene glycol under microwave irradiation. The dihydro­pyridine ring has a boat conformation. The pyrimidine ring adopts a screw-boat conformation and the cyclo­hexene ring is in an envelope conformation. In the crystalline state, centrosymmetrically related mol­ecules form dimeric pairs through N—H...N hydrogen bonding. Weak C—H...O hydrogen bonds are also observed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807042389/ci2454sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807042389/ci2454Isup2.hkl
Contains datablock I

CCDC reference: 664190

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.008 Å
  • R factor = 0.064
  • wR factor = 0.223
  • Data-to-parameter ratio = 13.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT026_ALERT_3_C Ratio Observed / Unique Reflections too Low .... 40 Perc. PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C18 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C17 PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 8 PLAT431_ALERT_2_C Short Inter HL..A Contact Cl1 .. N3 .. 3.16 Ang. PLAT432_ALERT_2_C Short Inter X...Y Contact O2 .. C12 .. 3.01 Ang.
Alert level G PLAT793_ALERT_1_G Check the Absolute Configuration of C3 = ... S
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Pyrido[1,2-a]pyrimidine core has been successfully used a motif for the development of biologically interesting molecules, including pirenperone, a tranquilizer (Smith et al., 1995), barmastine, an antiallergic agent (Awouters et al., 1986), an antiulcerative agent (Matsutani et al., 1989), and pemirolast, an antiasthmatic agent (Yanagihara et al., 1988). Pyrimido[1,2-a]quinoline belongs to a class of compounds which are special not only because of their interesting chemical and physical properties, but also due to their immense utility in the pharmaceutical industries. We report here the crystal structure of the title compound, a pyrimido[1,2-a]quinoline derivative.

In the title molecule, the dihydropyridine ring is planar, with a maximum deviation of 0.039 (4) Å for atom C4 (Fig. 1). The pyrimidine ring adopts a screw-boat conformation, with atoms C11 and C10 deviating from the C12/N1/C1/N2 plane by 0.876 (10) and 0.451 (10) Å (Fig. 1). The cyclohexene ring adopts an envelope conformation, with atom C7 deviating by 0.620 (8) Å from the C4/C5/C6/C8/C9 plane. The C1—C4/C9/N1 plane forms dihedral angles 0.5 (4)° and 8.8 (3)°, respectively, with the C12/N1/C1/N2 and C4—C6/C8/C9 planes. The dihedral angle between the dihydropyridine and chlorophenyl rings is 88.6 (2)°.

In the crystalline state, centrosymmetrically related molecules form dimeric pairs through N—H···O hydrogen bonding. In addition, weak C—H···O hydrogen bonds are observed (Table 1).

Related literature top

For general background, see: Awouters et al. (1986); Matsutani & Mizushima (1989); Smith et al. (1995); Yanagihara et al. (1988).

Experimental top

The title compound was prepared by the reaction of 4-chlorobenzaldehyde (0.141 g, 1 mmol), 3-(5,5-dimethyl-3-oxocyclohex-1-enylamino)propanoic acid (0.211 g, 1 mmol) with malononitrile (0.066 g, 1 mmol) in ethylene glycol (2.0 ml) at 393 K under microwave irradiation (maximum power 200 W, initial power 100 W) for 6 min (yield: 0.324 g, 85%; m.p. 539–541 K). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution (95%).

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C). Owing to the large number of weak high-angle reflections, the ratio of observed to unique reflections is low (40%).

Structure description top

Pyrido[1,2-a]pyrimidine core has been successfully used a motif for the development of biologically interesting molecules, including pirenperone, a tranquilizer (Smith et al., 1995), barmastine, an antiallergic agent (Awouters et al., 1986), an antiulcerative agent (Matsutani et al., 1989), and pemirolast, an antiasthmatic agent (Yanagihara et al., 1988). Pyrimido[1,2-a]quinoline belongs to a class of compounds which are special not only because of their interesting chemical and physical properties, but also due to their immense utility in the pharmaceutical industries. We report here the crystal structure of the title compound, a pyrimido[1,2-a]quinoline derivative.

In the title molecule, the dihydropyridine ring is planar, with a maximum deviation of 0.039 (4) Å for atom C4 (Fig. 1). The pyrimidine ring adopts a screw-boat conformation, with atoms C11 and C10 deviating from the C12/N1/C1/N2 plane by 0.876 (10) and 0.451 (10) Å (Fig. 1). The cyclohexene ring adopts an envelope conformation, with atom C7 deviating by 0.620 (8) Å from the C4/C5/C6/C8/C9 plane. The C1—C4/C9/N1 plane forms dihedral angles 0.5 (4)° and 8.8 (3)°, respectively, with the C12/N1/C1/N2 and C4—C6/C8/C9 planes. The dihedral angle between the dihydropyridine and chlorophenyl rings is 88.6 (2)°.

In the crystalline state, centrosymmetrically related molecules form dimeric pairs through N—H···O hydrogen bonding. In addition, weak C—H···O hydrogen bonds are observed (Table 1).

For general background, see: Awouters et al. (1986); Matsutani & Mizushima (1989); Smith et al. (1995); Yanagihara et al. (1988).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
6-(4-Chlorophenyl)-9,9-dimethyl-3,7-dioxo-2,3,4,6,7,8,9,10-octahydro- 1H-pyrimido[1,2-a]quinoline-5-carbonitrile top
Crystal data top
C21H20ClN3O2F(000) = 800
Mr = 381.85Dx = 1.341 Mg m3
Monoclinic, P21/cMelting point = 539–541 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.378 (5) ÅCell parameters from 981 reflections
b = 10.131 (5) Åθ = 2.8–25.1°
c = 18.143 (9) ŵ = 0.22 mm1
β = 97.406 (8)°T = 298 K
V = 1891.6 (17) Å3Block, colourless
Z = 40.25 × 0.20 × 0.14 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3340 independent reflections
Radiation source: fine-focus sealed tube1323 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.086
φ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.946, Tmax = 0.969k = 1211
9514 measured reflectionsl = 1121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.223H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.035P)2 + 2.4335P]
where P = (Fo2 + 2Fc2)/3
3340 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C21H20ClN3O2V = 1891.6 (17) Å3
Mr = 381.85Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.378 (5) ŵ = 0.22 mm1
b = 10.131 (5) ÅT = 298 K
c = 18.143 (9) Å0.25 × 0.20 × 0.14 mm
β = 97.406 (8)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3340 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1323 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.969Rint = 0.086
9514 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.223H-atom parameters constrained
S = 1.02Δρmax = 0.24 e Å3
3340 reflectionsΔρmin = 0.28 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.3493 (2)0.23717 (18)1.02619 (13)0.1007 (8)
N10.2832 (4)0.8830 (4)0.7610 (2)0.0424 (11)
N20.4295 (4)1.0056 (5)0.8419 (3)0.0555 (13)
H20.48121.00350.88290.067*
N30.3718 (5)0.9263 (5)1.0240 (3)0.0665 (15)
O10.0473 (4)0.6160 (4)0.8355 (2)0.0685 (13)
O20.5347 (6)1.1839 (5)0.8066 (3)0.124 (2)
C10.3300 (5)0.9138 (5)0.8329 (3)0.0413 (13)
C20.2840 (5)0.8574 (5)0.8912 (3)0.0404 (13)
C30.1777 (5)0.7546 (5)0.8833 (3)0.0389 (13)
H30.10560.78820.90790.047*
C40.1294 (5)0.7358 (5)0.8030 (3)0.0377 (13)
C50.0121 (6)0.6585 (6)0.7855 (3)0.0499 (15)
C60.0426 (6)0.6372 (7)0.7057 (3)0.0667 (19)
H6A0.08970.55430.70150.080*
H6B0.10400.70720.69040.080*
C70.0588 (6)0.6346 (6)0.6547 (3)0.0593 (17)
C80.1424 (5)0.7582 (5)0.6664 (3)0.0468 (14)
H8A0.21940.74640.64190.056*
H8B0.09420.83230.64290.056*
C90.1836 (5)0.7907 (5)0.7464 (3)0.0390 (13)
C100.4522 (7)1.0985 (7)0.7915 (4)0.073 (2)
C110.3695 (6)1.0920 (6)0.7190 (4)0.0691 (19)
H11A0.41411.13220.68090.083*
H11B0.28941.14020.72150.083*
C120.3395 (6)0.9501 (6)0.6998 (3)0.0619 (18)
H12A0.27860.94560.65460.074*
H12B0.41860.90520.69090.074*
C130.3332 (6)0.8955 (5)0.9641 (4)0.0499 (15)
C140.2223 (5)0.6256 (5)0.9202 (3)0.0382 (13)
C150.1652 (5)0.5741 (5)0.9779 (3)0.0491 (15)
H150.09860.62110.99560.059*
C160.2031 (6)0.4553 (6)1.0105 (3)0.0565 (16)
H160.16080.42141.04850.068*
C170.3035 (6)0.3881 (6)0.9865 (4)0.0597 (17)
C180.3645 (7)0.4362 (7)0.9297 (4)0.078 (2)
H180.43280.38980.91340.094*
C190.3238 (6)0.5540 (6)0.8970 (4)0.0638 (18)
H190.36520.58660.85830.077*
C200.1454 (7)0.5117 (6)0.6716 (4)0.085 (2)
H20A0.21090.50990.63880.128*
H20B0.09300.43360.66430.128*
H20C0.18610.51520.72210.128*
C210.0004 (7)0.6253 (7)0.5739 (3)0.080 (2)
H21A0.06760.62370.54280.120*
H21B0.05530.70050.56140.120*
H21C0.05100.54600.56650.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1119 (16)0.0658 (12)0.1244 (19)0.0265 (11)0.0145 (14)0.0319 (12)
N10.043 (3)0.041 (3)0.045 (3)0.012 (2)0.015 (2)0.003 (2)
N20.048 (3)0.054 (3)0.060 (3)0.016 (2)0.010 (3)0.014 (3)
N30.066 (4)0.073 (4)0.058 (4)0.009 (3)0.003 (3)0.016 (3)
O10.060 (3)0.094 (3)0.054 (3)0.032 (2)0.017 (2)0.004 (2)
O20.122 (5)0.110 (4)0.127 (5)0.079 (4)0.029 (4)0.038 (4)
C10.039 (3)0.032 (3)0.052 (4)0.007 (2)0.003 (3)0.000 (3)
C20.040 (3)0.036 (3)0.043 (3)0.007 (2)0.003 (3)0.006 (3)
C30.038 (3)0.038 (3)0.042 (3)0.010 (2)0.012 (3)0.006 (3)
C40.037 (3)0.042 (3)0.035 (3)0.009 (2)0.004 (3)0.008 (3)
C50.048 (4)0.059 (4)0.043 (4)0.010 (3)0.008 (3)0.000 (3)
C60.060 (4)0.090 (5)0.049 (4)0.029 (4)0.005 (4)0.002 (4)
C70.074 (4)0.061 (4)0.043 (4)0.027 (3)0.006 (3)0.009 (3)
C80.050 (3)0.050 (3)0.042 (4)0.009 (3)0.011 (3)0.005 (3)
C90.037 (3)0.038 (3)0.044 (3)0.005 (2)0.010 (3)0.003 (3)
C100.063 (5)0.066 (5)0.086 (5)0.020 (4)0.003 (4)0.008 (4)
C110.061 (4)0.069 (5)0.078 (5)0.018 (3)0.009 (4)0.012 (4)
C120.063 (4)0.064 (4)0.061 (4)0.014 (3)0.017 (4)0.012 (3)
C130.053 (4)0.045 (4)0.051 (4)0.003 (3)0.006 (3)0.001 (3)
C140.040 (3)0.038 (3)0.038 (3)0.004 (2)0.011 (3)0.004 (3)
C150.060 (4)0.046 (3)0.045 (3)0.003 (3)0.019 (3)0.007 (3)
C160.057 (4)0.061 (4)0.054 (4)0.003 (3)0.018 (3)0.006 (3)
C170.062 (4)0.049 (4)0.068 (4)0.010 (3)0.005 (4)0.010 (3)
C180.072 (5)0.079 (5)0.090 (5)0.020 (4)0.034 (4)0.010 (4)
C190.061 (4)0.064 (4)0.071 (5)0.007 (3)0.028 (4)0.019 (4)
C200.113 (6)0.062 (5)0.086 (6)0.013 (4)0.034 (5)0.013 (4)
C210.108 (6)0.087 (5)0.045 (4)0.044 (4)0.006 (4)0.015 (4)
Geometric parameters (Å, º) top
Cl1—C171.731 (6)C8—C91.496 (7)
N1—C11.368 (7)C8—H8A0.97
N1—C91.394 (6)C8—H8B0.97
N1—C121.485 (6)C10—C111.476 (9)
N2—C101.354 (7)C11—C121.503 (8)
N2—C11.384 (6)C11—H11A0.97
N2—H20.86C11—H11B0.97
N3—C131.152 (7)C12—H12A0.97
O1—C51.239 (6)C12—H12B0.97
O2—C101.224 (7)C14—C151.371 (7)
C1—C21.343 (7)C14—C191.388 (7)
C2—C131.408 (8)C15—C161.376 (7)
C2—C31.511 (6)C15—H150.93
C3—C41.492 (7)C16—C171.363 (7)
C3—C141.513 (7)C16—H160.93
C3—H30.98C17—C181.366 (8)
C4—C91.351 (6)C18—C191.376 (8)
C4—C51.448 (7)C18—H180.93
C5—C61.500 (8)C19—H190.93
C6—C71.489 (8)C20—H20A0.96
C6—H6A0.97C20—H20B0.96
C6—H6B0.97C20—H20C0.96
C7—C211.517 (8)C21—H21A0.96
C7—C81.523 (7)C21—H21B0.96
C7—C201.543 (9)C21—H21C0.96
C1—N1—C9119.8 (4)O2—C10—C11122.7 (6)
C1—N1—C12118.9 (4)N2—C10—C11116.1 (6)
C9—N1—C12121.3 (5)C10—C11—C12109.1 (6)
C10—N2—C1125.4 (5)C10—C11—H11A109.9
C10—N2—H2117.3C12—C11—H11A109.9
C1—N2—H2117.3C10—C11—H11B109.9
C2—C1—N1122.4 (5)C12—C11—H11B109.9
C2—C1—N2121.9 (5)H11A—C11—H11B108.3
N1—C1—N2115.7 (5)N1—C12—C11110.7 (5)
C1—C2—C13120.0 (5)N1—C12—H12A109.5
C1—C2—C3123.2 (5)C11—C12—H12A109.5
C13—C2—C3116.8 (5)N1—C12—H12B109.5
C4—C3—C2109.3 (4)C11—C12—H12B109.5
C4—C3—C14111.5 (4)H12A—C12—H12B108.1
C2—C3—C14112.0 (4)N3—C13—C2179.1 (7)
C4—C3—H3107.9C15—C14—C19116.9 (5)
C2—C3—H3107.9C15—C14—C3121.9 (5)
C14—C3—H3107.9C19—C14—C3121.2 (5)
C9—C4—C5118.5 (5)C14—C15—C16122.2 (5)
C9—C4—C3124.7 (4)C14—C15—H15118.9
C5—C4—C3116.7 (5)C16—C15—H15118.9
O1—C5—C4120.8 (5)C17—C16—C15119.2 (6)
O1—C5—C6119.7 (5)C17—C16—H16120.4
C4—C5—C6119.4 (5)C15—C16—H16120.4
C7—C6—C5113.1 (5)C16—C17—C18120.7 (6)
C7—C6—H6A109.0C16—C17—Cl1119.2 (5)
C5—C6—H6A109.0C18—C17—Cl1120.0 (5)
C7—C6—H6B109.0C17—C18—C19119.2 (6)
C5—C6—H6B109.0C17—C18—H18120.4
H6A—C6—H6B107.8C19—C18—H18120.4
C6—C7—C21111.8 (6)C18—C19—C14121.7 (6)
C6—C7—C8109.5 (5)C18—C19—H19119.1
C21—C7—C8109.8 (5)C14—C19—H19119.1
C6—C7—C20109.3 (5)C7—C20—H20A109.5
C21—C7—C20107.1 (5)C7—C20—H20B109.5
C8—C7—C20109.2 (5)H20A—C20—H20B109.5
C9—C8—C7113.7 (4)C7—C20—H20C109.5
C9—C8—H8A108.8H20A—C20—H20C109.5
C7—C8—H8A108.8H20B—C20—H20C109.5
C9—C8—H8B108.8C7—C21—H21A109.5
C7—C8—H8B108.8C7—C21—H21B109.5
H8A—C8—H8B107.7H21A—C21—H21B109.5
C4—C9—N1120.2 (5)C7—C21—H21C109.5
C4—C9—C8123.4 (5)H21A—C21—H21C109.5
N1—C9—C8116.4 (4)H21B—C21—H21C109.5
O2—C10—N2121.2 (7)
C9—N1—C1—C20.5 (8)C3—C4—C9—N17.2 (8)
C12—N1—C1—C2180.0 (5)C5—C4—C9—C810.5 (8)
C9—N1—C1—N2179.5 (4)C3—C4—C9—C8172.9 (5)
C12—N1—C1—N21.0 (7)C1—N1—C9—C42.8 (7)
C10—N2—C1—C2156.1 (6)C12—N1—C9—C4176.7 (5)
C10—N2—C1—N125.0 (8)C1—N1—C9—C8177.3 (5)
N1—C1—C2—C13178.2 (5)C12—N1—C9—C83.2 (7)
N2—C1—C2—C132.9 (8)C7—C8—C9—C414.4 (8)
N1—C1—C2—C30.4 (8)C7—C8—C9—N1165.7 (5)
N2—C1—C2—C3178.5 (5)C1—N2—C10—O2172.9 (6)
C1—C2—C3—C43.9 (7)C1—N2—C10—C115.4 (9)
C13—C2—C3—C4174.8 (5)O2—C10—C11—C12147.4 (7)
C1—C2—C3—C14120.3 (5)N2—C10—C11—C1234.3 (8)
C13—C2—C3—C1461.1 (6)C1—N1—C12—C1137.7 (7)
C2—C3—C4—C97.3 (7)C9—N1—C12—C11141.8 (5)
C14—C3—C4—C9117.1 (5)C10—C11—C12—N153.8 (7)
C2—C3—C4—C5169.4 (4)C4—C3—C14—C15118.8 (5)
C14—C3—C4—C566.2 (6)C2—C3—C14—C15118.4 (5)
C9—C4—C5—O1173.6 (5)C4—C3—C14—C1961.4 (6)
C3—C4—C5—O13.3 (8)C2—C3—C14—C1961.5 (7)
C9—C4—C5—C62.4 (8)C19—C14—C15—C161.8 (8)
C3—C4—C5—C6179.3 (5)C3—C14—C15—C16178.4 (5)
O1—C5—C6—C7153.3 (6)C14—C15—C16—C172.1 (9)
C4—C5—C6—C730.7 (8)C15—C16—C17—C181.3 (10)
C5—C6—C7—C21174.9 (5)C15—C16—C17—Cl1178.8 (5)
C5—C6—C7—C853.0 (7)C16—C17—C18—C190.2 (11)
C5—C6—C7—C2066.7 (7)Cl1—C17—C18—C19177.6 (5)
C6—C7—C8—C945.4 (7)C17—C18—C19—C140.1 (11)
C21—C7—C8—C9168.5 (5)C15—C14—C19—C180.6 (9)
C20—C7—C8—C974.3 (6)C3—C14—C19—C18179.5 (6)
C5—C4—C9—N1169.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N3i0.862.243.059 (7)159
C12—H12B···O2ii0.972.293.005 (8)130
C16—H16···O1iii0.932.573.480 (7)167
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+1, y1/2, z+3/2; (iii) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC21H20ClN3O2
Mr381.85
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.378 (5), 10.131 (5), 18.143 (9)
β (°) 97.406 (8)
V3)1891.6 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.25 × 0.20 × 0.14
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.946, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
9514, 3340, 1323
Rint0.086
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.223, 1.02
No. of reflections3340
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.28

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N3i0.862.243.059 (7)159
C12—H12B···O2ii0.972.293.005 (8)130
C16—H16···O1iii0.932.573.480 (7)167
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+1, y1/2, z+3/2; (iii) x, y+1, z+2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds