Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title mol­ecule, C21H25NO3, the piperidine ring is in a chair conformation. The dihedral angle between the two benzene rings is 48.4 (1)°. The meth­oxy groups are almost coplanar with the attached benzene rings. The mol­ecular and crystal structures are stabilized by C—H...π inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807041475/ci2447sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807041475/ci2447Isup2.hkl
Contains datablock I

CCDC reference: 663710

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.066
  • wR factor = 0.220
  • Data-to-parameter ratio = 14.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT420_ALERT_2_C D-H Without Acceptor N1 - H1 ... ?
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT793_ALERT_1_G Check the Absolute Configuration of C2 = ... S PLAT793_ALERT_1_G Check the Absolute Configuration of C3 = ... R PLAT793_ALERT_1_G Check the Absolute Configuration of C6 = ... R
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 5 ALERT level G = General alerts; check 5 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Nitrogen heterocycles, in particular piperidone alkaloids, occur in both plants and animals and some of them possess a variety of biological activities, including cytotoxic and anti-cancer properties (Dimmock et al., 1990; Mutus et al., 1989). In view of the above importance, the X-ray crystal structure determination of the title compound has been undertaken.

Bond lengths and angles (Fig. 1) are comparable to those observed for 3-methyl-2,6-diphenyl-4-piperidone (Sekar et al., 1990). The piperidine ring adopts a chair conformation, with a puckering amplitude QT of 0.577 (3) Å (Nardelli, 1995). The two benzene rings are in equatorial orientation with respect to the piperidine ring which is evidenced from the torsion angles C15—C6—C5—C4 of 174.7 (3)° and C4—C3—C2—C9 of -178.6 (2)°. The ethyl group substitued at C3 is also oriented equatorially with the N1—C2—C3—C7 torsion angle being 178.4 (2)°. The dihedral angle between the two benzene rings is 48.4 (1)°. The methoxy groups are almost coplanar with the attached benzene rings.

The molecular structure is stabilized by a C—H···π interaction involving the C9—C14 benzene ring (centroid Cg1). The crystal structure is stabilized by C—H···π interactions (Desiraju, 1989) involving the C15—C20 benzene ring (centroid Cg2). The packing of the molecules viewed down the a axis is shown in Fig.2. In addition to the above-mentioned interactions, the structure is also stabilized by van der Waals forces

Related literature top

For related literature, see: Desiraju (1989); Dimmock et al. (1990); Sekar et al. (1990); Mutus et al. (1989).

Experimental top

The condensation reaction involving anisaldehyde (24.3 ml, 200 mmol), ammonium acetate (7.7 g, 100 mmol) and pentan-2-one (10.7 ml, 100 mmol) afforded the title compound. Single crystals of the title compound were obtained by slow evaporation of a benzene-petroleum ether (8:1) solution.

Refinement top

The N-bound H atom was located in a difference map and refined isotropically. C-bound H atoms were included in calculated positions [C—H = 0.93–0.98 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Structure description top

Nitrogen heterocycles, in particular piperidone alkaloids, occur in both plants and animals and some of them possess a variety of biological activities, including cytotoxic and anti-cancer properties (Dimmock et al., 1990; Mutus et al., 1989). In view of the above importance, the X-ray crystal structure determination of the title compound has been undertaken.

Bond lengths and angles (Fig. 1) are comparable to those observed for 3-methyl-2,6-diphenyl-4-piperidone (Sekar et al., 1990). The piperidine ring adopts a chair conformation, with a puckering amplitude QT of 0.577 (3) Å (Nardelli, 1995). The two benzene rings are in equatorial orientation with respect to the piperidine ring which is evidenced from the torsion angles C15—C6—C5—C4 of 174.7 (3)° and C4—C3—C2—C9 of -178.6 (2)°. The ethyl group substitued at C3 is also oriented equatorially with the N1—C2—C3—C7 torsion angle being 178.4 (2)°. The dihedral angle between the two benzene rings is 48.4 (1)°. The methoxy groups are almost coplanar with the attached benzene rings.

The molecular structure is stabilized by a C—H···π interaction involving the C9—C14 benzene ring (centroid Cg1). The crystal structure is stabilized by C—H···π interactions (Desiraju, 1989) involving the C15—C20 benzene ring (centroid Cg2). The packing of the molecules viewed down the a axis is shown in Fig.2. In addition to the above-mentioned interactions, the structure is also stabilized by van der Waals forces

For related literature, see: Desiraju (1989); Dimmock et al. (1990); Sekar et al. (1990); Mutus et al. (1989).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 20% probability level. For the sake of clarity, H atoms have been omitted.
[Figure 2] Fig. 2. Crystal packing viewed down the a axis.
3-Ethyl-2,6-bis(4-methoxyphenyl)piperidin-4-one top
Crystal data top
C21H25NO3F(000) = 728
Mr = 339.42Dx = 1.246 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3270 reflections
a = 14.012 (2) Åθ = 1.6–25.3°
b = 7.8060 (14) ŵ = 0.08 mm1
c = 17.655 (3) ÅT = 293 K
β = 110.401 (5)°Block, colourless
V = 1810.0 (5) Å30.15 × 0.13 × 0.10 mm
Z = 4
Data collection top
Bruker Kappa APEX II area-detector
diffractometer
2348 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.060
Graphite monochromatorθmax = 25.3°, θmin = 1.6°
ω and φ scansh = 1516
15103 measured reflectionsk = 99
3270 independent reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.220H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.1169P)2 + 0.8076P]
where P = (Fo2 + 2Fc2)/3
3270 reflections(Δ/σ)max = 0.001
230 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C21H25NO3V = 1810.0 (5) Å3
Mr = 339.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.012 (2) ŵ = 0.08 mm1
b = 7.8060 (14) ÅT = 293 K
c = 17.655 (3) Å0.15 × 0.13 × 0.10 mm
β = 110.401 (5)°
Data collection top
Bruker Kappa APEX II area-detector
diffractometer
2348 reflections with I > 2σ(I)
15103 measured reflectionsRint = 0.060
3270 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.220H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.26 e Å3
3270 reflectionsΔρmin = 0.27 e Å3
230 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H10.465 (2)0.530 (5)0.1687 (19)0.057 (9)*
C20.54806 (18)0.3215 (4)0.17902 (16)0.0411 (7)
H20.54700.27820.23080.049*
C30.54152 (19)0.1662 (4)0.12238 (16)0.0422 (7)
H30.53900.21190.07000.051*
C40.4410 (2)0.0763 (4)0.10928 (18)0.0462 (7)
C50.3484 (2)0.1890 (4)0.08452 (18)0.0492 (7)
H5A0.29040.12340.08630.059*
H5B0.33370.22700.02930.059*
C60.36336 (19)0.3454 (4)0.13980 (17)0.0418 (7)
H60.37050.30660.19430.050*
C70.6321 (2)0.0451 (4)0.1516 (2)0.0544 (8)
H7A0.65940.04860.21020.065*
H7B0.60820.07060.13580.065*
C80.7175 (3)0.0832 (5)0.1204 (2)0.0678 (10)
H8A0.77120.00110.14210.102*
H8B0.74330.19630.13680.102*
H8C0.69230.07630.06250.102*
C90.64449 (19)0.4237 (4)0.19468 (16)0.0400 (6)
C100.7234 (2)0.4118 (4)0.26803 (16)0.0427 (7)
H100.71510.34500.30890.051*
C110.81529 (19)0.4977 (4)0.28201 (16)0.0446 (7)
H110.86800.48670.33140.054*
C120.8272 (2)0.5987 (4)0.22232 (17)0.0429 (7)
C130.7491 (2)0.6126 (4)0.14879 (17)0.0484 (7)
H130.75760.67950.10800.058*
C140.6584 (2)0.5277 (4)0.13550 (17)0.0472 (7)
H140.60570.54020.08620.057*
C150.27395 (19)0.4669 (4)0.11000 (16)0.0399 (6)
C160.2672 (2)0.5889 (4)0.05091 (17)0.0478 (7)
H160.31980.59930.03060.057*
C170.1835 (2)0.6948 (4)0.02204 (17)0.0481 (7)
H170.18040.77590.01730.058*
C180.10395 (19)0.6814 (4)0.05126 (16)0.0422 (7)
C190.10883 (19)0.5612 (4)0.10976 (17)0.0447 (7)
H190.05580.55080.12970.054*
C200.1939 (2)0.4555 (4)0.13862 (17)0.0438 (7)
H200.19700.37500.17820.053*
C210.9997 (2)0.6714 (5)0.3003 (2)0.0695 (10)
H21A1.05390.74360.29770.104*
H21B1.02130.55400.30510.104*
H21C0.98220.70240.34650.104*
C220.0592 (2)0.7846 (5)0.0444 (2)0.0583 (9)
H22A0.10790.87110.01750.087*
H22B0.03760.80160.10180.087*
H22C0.08990.67350.03110.087*
N10.45796 (16)0.4296 (3)0.14268 (15)0.0451 (6)
O10.43561 (17)0.0761 (3)0.12028 (19)0.0785 (8)
O20.91367 (15)0.6923 (3)0.22939 (13)0.0614 (6)
O30.02622 (15)0.7956 (3)0.01916 (13)0.0572 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0278 (13)0.0504 (16)0.0437 (14)0.0004 (12)0.0109 (11)0.0018 (12)
C30.0321 (14)0.0487 (16)0.0465 (15)0.0016 (12)0.0145 (12)0.0041 (12)
C40.0365 (15)0.0428 (17)0.0587 (18)0.0027 (12)0.0160 (13)0.0059 (13)
C50.0323 (15)0.0490 (17)0.0615 (18)0.0029 (12)0.0102 (13)0.0046 (14)
C60.0290 (13)0.0486 (16)0.0475 (15)0.0016 (11)0.0129 (11)0.0004 (12)
C70.0368 (15)0.0480 (18)0.080 (2)0.0054 (13)0.0223 (15)0.0078 (15)
C80.0468 (18)0.060 (2)0.107 (3)0.0027 (15)0.0401 (19)0.0070 (19)
C90.0292 (13)0.0446 (15)0.0437 (14)0.0004 (11)0.0094 (11)0.0019 (12)
C100.0336 (14)0.0506 (16)0.0433 (15)0.0004 (12)0.0124 (11)0.0045 (12)
C110.0280 (13)0.0567 (18)0.0435 (15)0.0014 (12)0.0056 (11)0.0035 (13)
C120.0317 (14)0.0445 (16)0.0511 (16)0.0017 (12)0.0125 (12)0.0010 (13)
C130.0435 (16)0.0490 (17)0.0496 (16)0.0021 (13)0.0124 (13)0.0087 (13)
C140.0346 (15)0.0544 (18)0.0449 (15)0.0006 (13)0.0040 (12)0.0060 (13)
C150.0266 (13)0.0485 (16)0.0428 (14)0.0004 (11)0.0099 (11)0.0020 (12)
C160.0325 (14)0.0616 (19)0.0550 (17)0.0008 (13)0.0226 (13)0.0010 (14)
C170.0392 (15)0.0566 (18)0.0528 (16)0.0026 (13)0.0213 (13)0.0106 (14)
C180.0303 (14)0.0456 (15)0.0490 (15)0.0002 (12)0.0118 (11)0.0025 (12)
C190.0274 (13)0.0550 (17)0.0561 (17)0.0013 (12)0.0201 (12)0.0013 (14)
C200.0329 (14)0.0506 (17)0.0496 (16)0.0029 (12)0.0165 (12)0.0033 (13)
C210.0327 (16)0.082 (2)0.081 (2)0.0140 (16)0.0043 (15)0.0105 (19)
C220.0329 (15)0.066 (2)0.076 (2)0.0050 (14)0.0195 (14)0.0070 (17)
N10.0272 (12)0.0445 (14)0.0599 (15)0.0008 (10)0.0106 (10)0.0070 (12)
O10.0477 (14)0.0490 (15)0.141 (2)0.0038 (11)0.0357 (14)0.0003 (14)
O20.0366 (11)0.0731 (16)0.0672 (14)0.0154 (10)0.0090 (10)0.0132 (11)
O30.0362 (11)0.0648 (14)0.0737 (14)0.0122 (10)0.0231 (10)0.0125 (11)
Geometric parameters (Å, º) top
C2—N11.468 (3)C11—H110.93
C2—C91.509 (4)C12—C131.380 (4)
C2—C31.554 (4)C12—O21.382 (3)
C2—H20.98C13—C141.379 (4)
C3—C41.517 (4)C13—H130.93
C3—C71.521 (4)C14—H140.93
C3—H30.98C15—C201.384 (4)
C4—O11.212 (4)C15—C161.391 (4)
C4—C51.502 (4)C16—C171.379 (4)
C5—C61.531 (4)C16—H160.93
C5—H5A0.97C17—C181.385 (4)
C5—H5B0.97C17—H170.93
C6—N11.464 (3)C18—O31.368 (3)
C6—C151.512 (4)C18—C191.379 (4)
C6—H60.98C19—C201.392 (4)
C7—C81.511 (4)C19—H190.93
C7—H7A0.97C20—H200.93
C7—H7B0.97C21—O21.413 (4)
C8—H8A0.96C21—H21A0.96
C8—H8B0.96C21—H21B0.96
C8—H8C0.96C21—H21C0.96
C9—C101.382 (4)C22—O31.418 (3)
C9—C141.389 (4)C22—H22A0.96
C10—C111.395 (4)C22—H22B0.96
C10—H100.93C22—H22C0.96
C11—C121.372 (4)N1—H10.90 (3)
N1—C2—C9110.8 (2)C12—C11—H11120.3
N1—C2—C3108.6 (2)C10—C11—H11120.3
C9—C2—C3112.2 (2)C11—C12—C13119.9 (3)
N1—C2—H2108.4C11—C12—O2124.9 (2)
C9—C2—H2108.4C13—C12—O2115.2 (2)
C3—C2—H2108.4C14—C13—C12120.3 (3)
C4—C3—C7112.6 (2)C14—C13—H13119.9
C4—C3—C2107.6 (2)C12—C13—H13119.9
C7—C3—C2114.3 (2)C13—C14—C9121.0 (2)
C4—C3—H3107.3C13—C14—H14119.5
C7—C3—H3107.3C9—C14—H14119.5
C2—C3—H3107.3C20—C15—C16117.7 (2)
O1—C4—C5121.7 (3)C20—C15—C6120.7 (2)
O1—C4—C3122.4 (3)C16—C15—C6121.5 (2)
C5—C4—C3115.8 (2)C17—C16—C15121.0 (3)
C4—C5—C6111.7 (2)C17—C16—H16119.5
C4—C5—H5A109.3C15—C16—H16119.5
C6—C5—H5A109.3C16—C17—C18120.5 (3)
C4—C5—H5B109.3C16—C17—H17119.7
C6—C5—H5B109.3C18—C17—H17119.7
H5A—C5—H5B107.9O3—C18—C19125.3 (2)
N1—C6—C15111.1 (2)O3—C18—C17115.1 (3)
N1—C6—C5107.5 (2)C19—C18—C17119.6 (3)
C15—C6—C5111.4 (2)C18—C19—C20119.3 (2)
N1—C6—H6108.9C18—C19—H19120.3
C15—C6—H6108.9C20—C19—H19120.3
C5—C6—H6108.9C15—C20—C19121.9 (3)
C8—C7—C3115.3 (3)C15—C20—H20119.1
C8—C7—H7A108.5C19—C20—H20119.1
C3—C7—H7A108.5O2—C21—H21A109.5
C8—C7—H7B108.5O2—C21—H21B109.5
C3—C7—H7B108.5H21A—C21—H21B109.5
H7A—C7—H7B107.5O2—C21—H21C109.5
C7—C8—H8A109.5H21A—C21—H21C109.5
C7—C8—H8B109.5H21B—C21—H21C109.5
H8A—C8—H8B109.5O3—C22—H22A109.5
C7—C8—H8C109.5O3—C22—H22B109.5
H8A—C8—H8C109.5H22A—C22—H22B109.5
H8B—C8—H8C109.5O3—C22—H22C109.5
C10—C9—C14117.9 (2)H22A—C22—H22C109.5
C10—C9—C2120.6 (2)H22B—C22—H22C109.5
C14—C9—C2121.5 (2)C6—N1—C2112.8 (2)
C9—C10—C11121.4 (3)C6—N1—H1110 (2)
C9—C10—H10119.3C2—N1—H1111 (2)
C11—C10—H10119.3C12—O2—C21117.9 (2)
C12—C11—C10119.5 (2)C18—O3—C22117.9 (2)
N1—C2—C3—C455.8 (3)C12—C13—C14—C91.5 (5)
C9—C2—C3—C4178.6 (2)C10—C9—C14—C131.7 (4)
N1—C2—C3—C7178.4 (2)C2—C9—C14—C13176.1 (3)
C9—C2—C3—C755.5 (3)N1—C6—C15—C20146.8 (3)
C7—C3—C4—O11.0 (4)C5—C6—C15—C2093.3 (3)
C2—C3—C4—O1127.8 (3)N1—C6—C15—C1635.8 (4)
C7—C3—C4—C5176.9 (3)C5—C6—C15—C1684.1 (3)
C2—C3—C4—C550.1 (3)C20—C15—C16—C170.1 (4)
O1—C4—C5—C6128.2 (3)C6—C15—C16—C17177.6 (3)
C3—C4—C5—C649.7 (3)C15—C16—C17—C180.2 (5)
C4—C5—C6—N152.6 (3)C16—C17—C18—O3178.7 (3)
C4—C5—C6—C15174.6 (2)C16—C17—C18—C190.1 (4)
C4—C3—C7—C8144.8 (3)O3—C18—C19—C20178.4 (3)
C2—C3—C7—C892.0 (3)C17—C18—C19—C200.2 (4)
N1—C2—C9—C10133.4 (3)C16—C15—C20—C190.2 (4)
C3—C2—C9—C10105.0 (3)C6—C15—C20—C19177.3 (2)
N1—C2—C9—C1448.8 (4)C18—C19—C20—C150.3 (4)
C3—C2—C9—C1472.8 (3)C15—C6—N1—C2174.2 (2)
C14—C9—C10—C111.5 (4)C5—C6—N1—C263.6 (3)
C2—C9—C10—C11176.3 (3)C9—C2—N1—C6169.6 (2)
C9—C10—C11—C121.1 (4)C3—C2—N1—C666.7 (3)
C10—C11—C12—C130.9 (4)C11—C12—O2—C215.9 (5)
C10—C11—C12—O2178.8 (3)C13—C12—O2—C21174.3 (3)
C11—C12—C13—C141.1 (5)C19—C18—O3—C223.6 (4)
O2—C12—C13—C14178.6 (3)C17—C18—O3—C22177.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···Cg10.962.793.662 (4)152
C10—H10···Cg2i0.932.873.647 (3)142
C22—H22C···Cg2ii0.962.773.637 (4)151
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC21H25NO3
Mr339.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.012 (2), 7.8060 (14), 17.655 (3)
β (°) 110.401 (5)
V3)1810.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.15 × 0.13 × 0.10
Data collection
DiffractometerBruker Kappa APEX II area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15103, 3270, 2348
Rint0.060
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.220, 1.10
No. of reflections3270
No. of parameters230
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.27

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 (Sheldrick, 1997) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···Cg10.9602.793.662 (4)152
C10—H10···Cg2i0.9302.873.647 (3)142
C22—H22C···Cg2ii0.9602.773.637 (4)151
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds