Download citation
Download citation
link to html
In the title compound, [ZnCl2(C19H15N3)], the ZnII atom is four-coordinated by two N atoms from the 1-(1-naphthyl­meth­yl)-3-(2-pyrid­yl)-1H-pyrazole (L) ligand and two terminal Cl atoms in a distorted tetra­hedral coordination environment. In the crystal structure, inversion-related ZnII mononuclear units are linked to form dimers through π–π stacking inter­actions between the pyridine and pyrazole rings, the centroid–centroid distance being 3.5166 (19) Å. The dimers are inter­linked to form a chain along the a axis by C—H...π inter­actions involving both benzene rings of the L ligand.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807036756/ci2416sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807036756/ci2416Isup2.hkl
Contains datablock I

CCDC reference: 660049

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.035
  • wR factor = 0.093
  • Data-to-parameter ratio = 16.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.95
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Zn1 (2) 1.98
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

In recent years, much attention has been focused on the synthetic approach and the structural control of metal-organic coordination architectures with ligands based on pyrazolyl-pyridine chelating units (Steel et al., 2005; Ward et al., 2001). Many novel functional complexes with 3-(2-pyridyl)pyrazole and/or 3-(2-pyridyl)pyrazole ligands have been reported (Bell et al., 2003; Paul et al., 2004; Ward et al., 2001). Recently, we have reported the preparation of a non-planar flexible ligand, 1-[3-(2-pyridyl)pyrazol-1-ylmethyl]naphthalene (L) (Zhang et al., 2005). Now we report here the crystal structure of a zinc(II) complex of this ligand, [Zn(L)Cl2], the title compound.

In the title compound, the ZnII center is four-coordinated by two N donors from one L ligand and two Cl- anions (Table 1). The coordination geometry around the ZnII center can be described as a distorted tetrahedron (Fig. 1).

In the crystal structure, the ZnII mononuclear units at (x, y, z) and (-x, -y, -z) are interconnected to form a dimer through π-π stacking interactions between the adjacent pyridine and pyrazole rings of the L ligand, with their centroids separated by 3.5166 (19) Å. The dimers are linked to form a chain along the a axis by C—H···π interactions (Table 2) involving the C2—C6/C11 (centroid Cg1) and C6—C11 (centroid Cg2) benzene rings of the L ligand (Fig. 2).

Related literature top

For synthesis, see: Zhang et al. (2005). For related literature, see: Bell et al. (2003); Paul et al. (2004); Steel (2005); Ward et al. (2001).

Experimental top

The ligand 1-[3-(2-pyridyl)pyrazol-1-ylmethyl]naphthalene (L) was synthesized according to the method reported in the literature (Zhang et al., 2005). A solution of ZnCl2 (0.1 mmol) in methanol (15 ml) was added to L (0.1 mmol). A yellow solid formed was filtered off and the resulting solution was kept at room temperature. Yellow single crystals suitable for X-ray analysis were obtained by slow evaporation of the solvent after several days (yield: 30%). Analysis calculated for (C19H15ZnCl2N3): C 54.12, H 3.59, N 9.97%; found: C 54.26, H 3.44, N 10.11%.

Refinement top

H atoms were included in calculated positions and treated in the subsequent refinement as riding atoms, with C—H = 0.93 (aromatic) or 0.97 Å (methylene) and Uiso(H) = 1.2Ueq(C).

Structure description top

In recent years, much attention has been focused on the synthetic approach and the structural control of metal-organic coordination architectures with ligands based on pyrazolyl-pyridine chelating units (Steel et al., 2005; Ward et al., 2001). Many novel functional complexes with 3-(2-pyridyl)pyrazole and/or 3-(2-pyridyl)pyrazole ligands have been reported (Bell et al., 2003; Paul et al., 2004; Ward et al., 2001). Recently, we have reported the preparation of a non-planar flexible ligand, 1-[3-(2-pyridyl)pyrazol-1-ylmethyl]naphthalene (L) (Zhang et al., 2005). Now we report here the crystal structure of a zinc(II) complex of this ligand, [Zn(L)Cl2], the title compound.

In the title compound, the ZnII center is four-coordinated by two N donors from one L ligand and two Cl- anions (Table 1). The coordination geometry around the ZnII center can be described as a distorted tetrahedron (Fig. 1).

In the crystal structure, the ZnII mononuclear units at (x, y, z) and (-x, -y, -z) are interconnected to form a dimer through π-π stacking interactions between the adjacent pyridine and pyrazole rings of the L ligand, with their centroids separated by 3.5166 (19) Å. The dimers are linked to form a chain along the a axis by C—H···π interactions (Table 2) involving the C2—C6/C11 (centroid Cg1) and C6—C11 (centroid Cg2) benzene rings of the L ligand (Fig. 2).

For synthesis, see: Zhang et al. (2005). For related literature, see: Bell et al. (2003); Paul et al. (2004); Steel (2005); Ward et al. (2001).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
Dichlorido[1-(1-naphthylmethyl)-3-(2-pyridyl)-1H-pyrazole- κ2N2,N3]zinc(II) top
Crystal data top
[ZnCl2(C19H15N3)]F(000) = 856
Mr = 421.61Dx = 1.559 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3039 reflections
a = 12.069 (2) Åθ = 2.3–25.2°
b = 10.9474 (18) ŵ = 1.67 mm1
c = 13.609 (2) ÅT = 293 K
β = 92.662 (3)°Block, yellow
V = 1796.1 (5) Å30.24 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3673 independent reflections
Radiation source: fine-focus sealed tube2533 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
φ and ω scansθmax = 26.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1514
Tmin = 0.731, Tmax = 0.776k = 913
10232 measured reflectionsl = 1715
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0371P)2 + 0.4714P]
where P = (Fo2 + 2Fc2)/3
3673 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[ZnCl2(C19H15N3)]V = 1796.1 (5) Å3
Mr = 421.61Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.069 (2) ŵ = 1.67 mm1
b = 10.9474 (18) ÅT = 293 K
c = 13.609 (2) Å0.24 × 0.20 × 0.18 mm
β = 92.662 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3673 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2533 reflections with I > 2σ(I)
Tmin = 0.731, Tmax = 0.776Rint = 0.046
10232 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.02Δρmax = 0.46 e Å3
3673 reflectionsΔρmin = 0.41 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.11994 (3)0.26266 (3)0.11428 (2)0.03872 (13)
Cl10.05436 (8)0.22829 (10)0.25927 (7)0.0695 (3)
Cl20.20707 (8)0.43809 (7)0.10055 (6)0.0578 (2)
N10.29477 (18)0.0502 (2)0.06734 (18)0.0383 (6)
N20.20198 (18)0.1170 (2)0.05350 (17)0.0337 (5)
N30.01157 (18)0.2225 (2)0.00402 (17)0.0374 (6)
C10.3734 (2)0.0719 (3)0.1492 (2)0.0430 (7)
H1A0.41030.00420.16690.052*
H1B0.33350.09900.20550.052*
C20.4602 (2)0.1669 (3)0.1263 (2)0.0353 (6)
C30.4487 (3)0.2406 (3)0.0461 (2)0.0460 (8)
H30.38600.23270.00420.055*
C40.5288 (3)0.3285 (3)0.0250 (3)0.0554 (9)
H40.51860.37820.03010.066*
C50.6204 (3)0.3410 (3)0.0844 (3)0.0557 (9)
H50.67290.39990.07030.067*
C60.6377 (2)0.2655 (3)0.1679 (2)0.0461 (8)
C70.7348 (3)0.2733 (4)0.2298 (3)0.0634 (11)
H70.78890.33060.21600.076*
C80.7505 (3)0.1995 (4)0.3082 (3)0.0733 (13)
H80.81580.20470.34700.088*
C90.6694 (3)0.1152 (4)0.3315 (2)0.0648 (11)
H90.68030.06660.38720.078*
C100.5742 (3)0.1026 (3)0.2744 (2)0.0511 (8)
H100.52150.04500.29070.061*
C110.5558 (2)0.1775 (3)0.1901 (2)0.0383 (7)
C120.3038 (3)0.0296 (3)0.0065 (2)0.0491 (8)
H120.36140.08500.01320.059*
C130.2143 (3)0.0156 (3)0.0703 (2)0.0475 (8)
H130.19840.05850.12820.057*
C140.1521 (2)0.0764 (3)0.0301 (2)0.0348 (7)
C150.0460 (2)0.1310 (3)0.0620 (2)0.0359 (7)
C160.0163 (3)0.0922 (3)0.1437 (2)0.0472 (8)
H160.00840.02910.18290.057*
C170.1174 (3)0.1499 (3)0.1659 (2)0.0541 (9)
H170.16140.12530.22030.065*
C180.1514 (3)0.2421 (3)0.1078 (3)0.0553 (9)
H180.21870.28110.12190.066*
C190.0850 (2)0.2770 (3)0.0280 (3)0.0485 (8)
H190.10820.34110.01090.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0406 (2)0.0404 (2)0.0348 (2)0.00353 (16)0.00087 (14)0.00799 (16)
Cl10.0731 (6)0.0930 (8)0.0437 (5)0.0062 (5)0.0168 (4)0.0042 (5)
Cl20.0793 (6)0.0408 (5)0.0524 (5)0.0079 (4)0.0084 (4)0.0040 (4)
N10.0338 (13)0.0375 (14)0.0440 (15)0.0029 (11)0.0055 (11)0.0011 (11)
N20.0326 (12)0.0311 (13)0.0375 (13)0.0001 (10)0.0042 (10)0.0028 (10)
N30.0336 (13)0.0432 (15)0.0353 (13)0.0015 (11)0.0005 (10)0.0008 (11)
C10.0388 (17)0.0491 (19)0.0409 (17)0.0051 (14)0.0003 (14)0.0091 (14)
C20.0321 (15)0.0385 (17)0.0356 (16)0.0067 (13)0.0036 (12)0.0018 (13)
C30.0401 (17)0.051 (2)0.0463 (18)0.0010 (15)0.0032 (14)0.0073 (15)
C40.064 (2)0.049 (2)0.053 (2)0.0014 (18)0.0043 (18)0.0124 (16)
C50.057 (2)0.048 (2)0.063 (2)0.0116 (17)0.0121 (18)0.0066 (17)
C60.0394 (17)0.051 (2)0.0480 (18)0.0022 (15)0.0041 (14)0.0226 (16)
C70.046 (2)0.082 (3)0.062 (2)0.0041 (19)0.0001 (18)0.035 (2)
C80.052 (2)0.108 (3)0.058 (3)0.020 (2)0.0153 (19)0.042 (2)
C90.067 (2)0.087 (3)0.0384 (19)0.031 (2)0.0111 (18)0.0100 (18)
C100.054 (2)0.061 (2)0.0379 (18)0.0166 (17)0.0013 (15)0.0043 (15)
C110.0362 (16)0.0444 (18)0.0345 (16)0.0085 (14)0.0038 (13)0.0113 (13)
C120.051 (2)0.0397 (19)0.057 (2)0.0072 (15)0.0144 (17)0.0105 (16)
C130.061 (2)0.0406 (18)0.0415 (18)0.0003 (16)0.0081 (16)0.0126 (14)
C140.0411 (16)0.0339 (16)0.0297 (14)0.0093 (13)0.0052 (13)0.0033 (12)
C150.0399 (16)0.0370 (17)0.0306 (15)0.0126 (13)0.0009 (13)0.0030 (12)
C160.060 (2)0.0465 (19)0.0340 (16)0.0136 (16)0.0032 (15)0.0026 (14)
C170.055 (2)0.063 (2)0.0422 (19)0.0263 (18)0.0177 (16)0.0178 (18)
C180.0400 (18)0.071 (3)0.054 (2)0.0074 (17)0.0097 (15)0.018 (2)
C190.0384 (17)0.052 (2)0.055 (2)0.0029 (15)0.0005 (15)0.0057 (15)
Geometric parameters (Å, º) top
Zn1—N22.070 (2)C6—C111.422 (4)
Zn1—N32.074 (2)C7—C81.345 (6)
Zn1—Cl12.1924 (10)C7—H70.93
Zn1—Cl22.2016 (9)C8—C91.392 (5)
N1—C121.340 (4)C8—H80.93
N1—N21.344 (3)C9—C101.363 (4)
N1—C11.450 (3)C9—H90.93
N2—C141.338 (3)C10—C111.420 (4)
N3—C191.337 (4)C10—H100.93
N3—C151.352 (4)C12—C131.363 (4)
C1—C21.518 (4)C12—H120.93
C1—H1A0.97C13—C141.384 (4)
C1—H1B0.97C13—H130.93
C2—C31.359 (4)C14—C151.461 (4)
C2—C111.417 (4)C15—C161.380 (4)
C3—C41.404 (4)C16—C171.395 (4)
C3—H30.93C16—H160.93
C4—C51.345 (4)C17—C181.358 (5)
C4—H40.93C17—H170.93
C5—C61.413 (5)C18—C191.374 (5)
C5—H50.93C18—H180.93
C6—C71.414 (5)C19—H190.93
N2—Zn1—N379.77 (9)C6—C7—H7119.4
N2—Zn1—Cl1115.27 (7)C7—C8—C9120.3 (3)
N3—Zn1—Cl1114.91 (7)C7—C8—H8119.9
N2—Zn1—Cl2113.51 (7)C9—C8—H8119.9
N3—Zn1—Cl2113.93 (7)C10—C9—C8121.3 (4)
Cl1—Zn1—Cl2114.83 (4)C10—C9—H9119.3
C12—N1—N2110.3 (2)C8—C9—H9119.3
C12—N1—C1127.6 (3)C9—C10—C11119.9 (3)
N2—N1—C1122.0 (2)C9—C10—H10120.1
C14—N2—N1106.1 (2)C11—C10—H10120.1
C14—N2—Zn1113.01 (18)C2—C11—C10122.7 (3)
N1—N2—Zn1140.77 (18)C2—C11—C6118.7 (3)
C19—N3—C15118.5 (3)C10—C11—C6118.6 (3)
C19—N3—Zn1127.3 (2)N1—C12—C13108.3 (3)
C15—N3—Zn1114.23 (18)N1—C12—H12125.9
N1—C1—C2112.8 (2)C13—C12—H12125.9
N1—C1—H1A109.0C12—C13—C14105.0 (3)
C2—C1—H1A109.0C12—C13—H13127.5
N1—C1—H1B109.0C14—C13—H13127.5
C2—C1—H1B109.0N2—C14—C13110.3 (3)
H1A—C1—H1B107.8N2—C14—C15118.1 (2)
C3—C2—C11119.5 (3)C13—C14—C15131.6 (3)
C3—C2—C1121.8 (3)N3—C15—C16121.8 (3)
C11—C2—C1118.7 (2)N3—C15—C14114.7 (2)
C2—C3—C4121.7 (3)C16—C15—C14123.4 (3)
C2—C3—H3119.1C15—C16—C17118.3 (3)
C4—C3—H3119.1C15—C16—H16120.9
C5—C4—C3120.1 (3)C17—C16—H16120.9
C5—C4—H4119.9C18—C17—C16119.7 (3)
C3—C4—H4119.9C18—C17—H17120.2
C4—C5—C6120.7 (3)C16—C17—H17120.2
C4—C5—H5119.7C17—C18—C19119.1 (3)
C6—C5—H5119.7C17—C18—H18120.4
C5—C6—C7122.1 (3)C19—C18—H18120.4
C5—C6—C11119.3 (3)N3—C19—C18122.6 (3)
C7—C6—C11118.6 (3)N3—C19—H19118.7
C8—C7—C6121.2 (4)C18—C19—H19118.7
C8—C7—H7119.4
C12—N1—N2—C140.8 (3)C3—C2—C11—C60.2 (4)
C1—N1—N2—C14177.3 (2)C1—C2—C11—C6179.3 (3)
C12—N1—N2—Zn1175.0 (2)C9—C10—C11—C2178.3 (3)
C1—N1—N2—Zn11.6 (4)C9—C10—C11—C60.6 (4)
N3—Zn1—N2—C143.88 (18)C5—C6—C11—C21.2 (4)
Cl1—Zn1—N2—C14116.72 (18)C7—C6—C11—C2177.9 (3)
Cl2—Zn1—N2—C14107.90 (18)C5—C6—C11—C10179.8 (3)
N3—Zn1—N2—N1179.4 (3)C7—C6—C11—C101.1 (4)
Cl1—Zn1—N2—N167.7 (3)N2—N1—C12—C130.5 (3)
Cl2—Zn1—N2—N167.7 (3)C1—N1—C12—C13176.8 (3)
N2—Zn1—N3—C19178.1 (3)N1—C12—C13—C140.0 (3)
Cl1—Zn1—N3—C1964.9 (3)N1—N2—C14—C130.8 (3)
Cl2—Zn1—N3—C1970.6 (2)Zn1—N2—C14—C13176.28 (19)
N2—Zn1—N3—C152.49 (19)N1—N2—C14—C15178.2 (2)
Cl1—Zn1—N3—C15115.73 (18)Zn1—N2—C14—C154.8 (3)
Cl2—Zn1—N3—C15108.82 (18)C12—C13—C14—N20.5 (3)
C12—N1—C1—C288.0 (4)C12—C13—C14—C15178.3 (3)
N2—N1—C1—C287.9 (3)C19—N3—C15—C160.9 (4)
N1—C1—C2—C313.6 (4)Zn1—N3—C15—C16179.7 (2)
N1—C1—C2—C11166.0 (2)C19—N3—C15—C14179.8 (2)
C11—C2—C3—C40.6 (5)Zn1—N3—C15—C140.8 (3)
C1—C2—C3—C4179.9 (3)N2—C14—C15—N32.7 (4)
C2—C3—C4—C50.5 (5)C13—C14—C15—N3178.6 (3)
C3—C4—C5—C60.6 (5)N2—C14—C15—C16176.2 (3)
C4—C5—C6—C7177.7 (3)C13—C14—C15—C162.5 (5)
C4—C5—C6—C111.4 (5)N3—C15—C16—C170.0 (4)
C5—C6—C7—C8179.0 (3)C14—C15—C16—C17178.8 (3)
C11—C6—C7—C80.1 (5)C15—C16—C17—C180.4 (4)
C6—C7—C8—C91.6 (5)C16—C17—C18—C190.1 (5)
C7—C8—C9—C102.1 (5)C15—N3—C19—C181.4 (4)
C8—C9—C10—C110.9 (5)Zn1—N3—C19—C18179.2 (2)
C3—C2—C11—C10179.2 (3)C17—C18—C19—N31.0 (5)
C1—C2—C11—C100.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Cg1i0.932.553.400 (4)152
C13—H13···Cg2i0.932.873.536 (3)129
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[ZnCl2(C19H15N3)]
Mr421.61
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)12.069 (2), 10.9474 (18), 13.609 (2)
β (°) 92.662 (3)
V3)1796.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.67
Crystal size (mm)0.24 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.731, 0.776
No. of measured, independent and
observed [I > 2σ(I)] reflections
10232, 3673, 2533
Rint0.046
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.093, 1.02
No. of reflections3673
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.41

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998), SHELXTL and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
Zn1—N22.070 (2)Zn1—Cl12.1924 (10)
Zn1—N32.074 (2)Zn1—Cl22.2016 (9)
N2—Zn1—N379.77 (9)N2—Zn1—Cl2113.51 (7)
N2—Zn1—Cl1115.27 (7)N3—Zn1—Cl2113.93 (7)
N3—Zn1—Cl1114.91 (7)Cl1—Zn1—Cl2114.83 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Cg1i0.932.553.400 (4)152
C13—H13···Cg2i0.932.873.536 (3)129
Symmetry code: (i) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds