Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [Cu2(C2H3O2)4(C11H7NO)2], has a centrosymmetric dinuclear structure in which two symmetry-related CuII centres are bridged by four acetate groups, with a Cu...Cu separation of 2.6330 (6) Å. Each CuII centre is five-coordinated in a distorted square-pyramidal coordination geometry by four O atoms from four bridging acetate groups in the basal plane and the N atom of a benzofuropyridine ligand in the apical position. Each CuII atom is displaced from the basal plane by 0.2064 (3) Å towards the apical N atom. In the crystal structure, the complexes are linked by C—H...O inter­actions to form zigzag layers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807032242/ci2409sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807032242/ci2409Isup2.hkl
Contains datablock I

CCDC reference: 657560

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.034
  • wR factor = 0.103
  • Data-to-parameter ratio = 15.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.62 Ratio PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 59 C9 -N1 -CU1 -CU1 131.50 0.80 1.555 1.555 1.555 5.656 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 60 C2 -N1 -CU1 -CU1 -44.40 1.00 1.555 1.555 1.555 5.656 PLAT764_ALERT_4_C Overcomplete CIF Bond List Detected (Rep/Expd) . 1.12 Ratio
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (2) 2.16
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Copper(II) complexes have attracted much attention over the past decade due to their role in biological systems. A great number of copper(II) complexes with various organic ligands have been a subject of intense study because of their interesting properties from many different (chemical, structural and biological) points of view. Copper(II) complexes with bridging acetate ligands have received much attention for their various coordination geometries (Comba et al., 1999; Cox et al., 2000) and potential biological significance (Berners-Price et al., 1987). In addition, some copper(II) complexes also have shown antitumor and antiproliferative effects (Francesca et al., 2005; Nikhil et al., 2001). The furo[3,2-c]pyridine and its derivatives represent quinoline isosters, in which the benzene ring is replaced by the furan and pyridine ring can be readily coordinated to metal centers through N-donor atom (Miklovič et al., 2004; Baran et al., 2005). We report here the synthesis and crystal structure of the title compound.

Molecules of the title compound lie on centers of inversion. As illustrated in Fig.1, the two CuII atoms are bridged by four acetate groups in the syn-syn mode, forming a dinuclear structure. The Cu1···Cu1i [symmetry code: (i) 1 - x, -y, 1 - z] distance is 2.6330 (6) Å, very similar to the values found in other dimeric copper(II) carboxylate complexes (Musie et al., 2006; Su et al., 2006; Moncol et al., 2007). Each CuII atom displays an approximate square-pyramidal geometry with four acetate O atoms in the basal plane [Cu—O = 1.9562 (19)–1.9731 (19) Å] and the N atom of the benzofuro[3,2-c]pyridine ligand (BFP) in the apical position [Cu—N = 2.180 (2) Å]. Atom Cu1 is displaced from the least-squares plane defined by the basal atoms by 0.2064 (3) Å towards the apical N atom. The BFP ligand is almost planar (mean deviation is 0.01 (3) Å), the dihedral angle between the O16/O14/Cu1/O16'/O14'/Cu1' plane and the BFP ring is 24.51 (4)°.

In the crystal structure, the complexes are linked by C—H···O interactions (H···O = 2.41–2.42 Å and C···O = 3.210 (3)–3.364 (3) Å] to form zigzag layers parallel to the ab plane.

Related literature top

For related literature, see: Baran et al. (2005); Bencková & Krutošíková (1995, 1999); Berners-Price et al. (1987); Bobošík et al. (1995); Comba et al. (1999); Cox et al. (2000); Francesca et al. (2005); Miklovič et al. (2004); Moncol et al. (2007); Musie et al. (2006); Nikhil et al. (2001); Su et al. (2006).

Experimental top

The organic ligand, [1]benzofuro[3,2-c]pyridine, was prepared according literature procedures of Bobošík et al. (1995) and Bencková & Krutošíková (1995, 1999). To a Cu(CH3CO2)2.H2O (1.5 mmol) solution in ethanol (5 ml) was added the solution of [1]benzofuro[3,2-c]pyridine (3.2 mmol) in ethanol (2 ml). Small blue-green crystals were collected after 2 d. These were filtered off, washed with ethanol and recrystallized from THF.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.96 Å and Uiso set at 1.2Ueq (1.5Ueq for methyl) of the parent atom.

Structure description top

Copper(II) complexes have attracted much attention over the past decade due to their role in biological systems. A great number of copper(II) complexes with various organic ligands have been a subject of intense study because of their interesting properties from many different (chemical, structural and biological) points of view. Copper(II) complexes with bridging acetate ligands have received much attention for their various coordination geometries (Comba et al., 1999; Cox et al., 2000) and potential biological significance (Berners-Price et al., 1987). In addition, some copper(II) complexes also have shown antitumor and antiproliferative effects (Francesca et al., 2005; Nikhil et al., 2001). The furo[3,2-c]pyridine and its derivatives represent quinoline isosters, in which the benzene ring is replaced by the furan and pyridine ring can be readily coordinated to metal centers through N-donor atom (Miklovič et al., 2004; Baran et al., 2005). We report here the synthesis and crystal structure of the title compound.

Molecules of the title compound lie on centers of inversion. As illustrated in Fig.1, the two CuII atoms are bridged by four acetate groups in the syn-syn mode, forming a dinuclear structure. The Cu1···Cu1i [symmetry code: (i) 1 - x, -y, 1 - z] distance is 2.6330 (6) Å, very similar to the values found in other dimeric copper(II) carboxylate complexes (Musie et al., 2006; Su et al., 2006; Moncol et al., 2007). Each CuII atom displays an approximate square-pyramidal geometry with four acetate O atoms in the basal plane [Cu—O = 1.9562 (19)–1.9731 (19) Å] and the N atom of the benzofuro[3,2-c]pyridine ligand (BFP) in the apical position [Cu—N = 2.180 (2) Å]. Atom Cu1 is displaced from the least-squares plane defined by the basal atoms by 0.2064 (3) Å towards the apical N atom. The BFP ligand is almost planar (mean deviation is 0.01 (3) Å), the dihedral angle between the O16/O14/Cu1/O16'/O14'/Cu1' plane and the BFP ring is 24.51 (4)°.

In the crystal structure, the complexes are linked by C—H···O interactions (H···O = 2.41–2.42 Å and C···O = 3.210 (3)–3.364 (3) Å] to form zigzag layers parallel to the ab plane.

For related literature, see: Baran et al. (2005); Bencková & Krutošíková (1995, 1999); Berners-Price et al. (1987); Bobošík et al. (1995); Comba et al. (1999); Cox et al. (2000); Francesca et al. (2005); Miklovič et al. (2004); Moncol et al. (2007); Musie et al. (2006); Nikhil et al. (2001); Su et al. (2006).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Unlabelled atoms are related to labelled atoms by the symmetry operation (1 - x, -y, 1 - z).
Tetra-µ-acetato-bis[(benzofuro[3,2-c]pyridine)copper(II)] top
Crystal data top
[Cu2(C2H3O2)4(C11H7NO)2]F(000) = 1432
Mr = 701.60Dx = 1.492 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 22540 reflections
a = 13.6706 (2) Åθ = 2.9–27.0°
b = 8.2336 (1) ŵ = 1.42 mm1
c = 27.7541 (4) ÅT = 298 K
V = 3123.95 (7) Å3Block, blue-green
Z = 40.42 × 0.29 × 0.17 mm
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
3185 independent reflections
Radiation source: fine-focus sealed tube2574 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Rotation method data acquisition using ω and φ scansθmax = 26.4°, θmin = 4.1°
Absorption correction: analytical
(Clark & Reid, 1995)
h = 1717
Tmin = 0.542, Tmax = 0.785k = 1010
65563 measured reflectionsl = 3434
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0323P)2 + 2.9514P]
where P = (Fo2 + 2Fc2)/3
3185 reflections(Δ/σ)max = 0.002
201 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Cu2(C2H3O2)4(C11H7NO)2]V = 3123.95 (7) Å3
Mr = 701.60Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 13.6706 (2) ŵ = 1.42 mm1
b = 8.2336 (1) ÅT = 298 K
c = 27.7541 (4) Å0.42 × 0.29 × 0.17 mm
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
3185 independent reflections
Absorption correction: analytical
(Clark & Reid, 1995)
2574 reflections with I > 2σ(I)
Tmin = 0.542, Tmax = 0.785Rint = 0.029
65563 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.09Δρmax = 0.48 e Å3
3185 reflectionsΔρmin = 0.32 e Å3
201 parameters
Special details top

Experimental. face-indexed (CrysAlis RED; Oxford Diffraction, 2006)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.70235 (19)0.2627 (3)0.40930 (10)0.0478 (6)
H2A0.73060.25720.43970.057*
C30.7556 (2)0.3325 (4)0.37304 (10)0.0565 (7)
H3A0.81800.37430.37810.068*
C50.6905 (4)0.4181 (6)0.20420 (14)0.1018 (15)
H5A0.74670.46780.19250.122*
C60.6130 (4)0.3843 (7)0.17489 (14)0.1127 (18)
H6A0.61680.41130.14240.135*
C70.5302 (4)0.3122 (7)0.19172 (14)0.1055 (16)
H7A0.47910.29170.17050.127*
C80.5200 (3)0.2682 (6)0.23994 (12)0.0854 (12)
H8A0.46310.21940.25120.103*
C90.5702 (2)0.2094 (3)0.36038 (9)0.0459 (6)
H9A0.50700.16970.35640.055*
C100.7114 (2)0.3368 (4)0.32895 (10)0.0537 (7)
C110.6812 (3)0.3746 (5)0.25224 (12)0.0747 (10)
C120.5977 (2)0.2997 (4)0.27031 (10)0.0628 (8)
C130.6181 (2)0.2743 (4)0.32132 (9)0.0487 (6)
C150.6669 (2)0.0453 (4)0.53715 (10)0.0517 (7)
C170.7680 (2)0.0657 (5)0.55807 (13)0.0756 (10)
H17A0.76290.09310.59160.113*
H17B0.80370.03410.55470.113*
H17C0.80170.15080.54130.113*
C190.51878 (19)0.2616 (3)0.45388 (9)0.0432 (6)
C210.5319 (3)0.4195 (3)0.42755 (13)0.0645 (9)
H21A0.48420.42750.40230.097*
H21B0.52350.50820.44960.097*
H21C0.59640.42390.41390.097*
N10.61150 (15)0.2016 (2)0.40376 (7)0.0403 (5)
O40.75112 (18)0.3981 (3)0.28729 (8)0.0785 (7)
O140.66150 (14)0.0289 (3)0.49771 (7)0.0605 (5)
O160.59648 (15)0.1010 (3)0.56013 (7)0.0599 (5)
O180.54378 (14)0.1354 (2)0.43235 (7)0.0528 (5)
O200.48062 (16)0.2675 (2)0.49478 (7)0.0548 (5)
Cu10.53871 (2)0.07893 (4)0.463419 (10)0.03838 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0516 (14)0.0546 (15)0.0371 (13)0.0007 (12)0.0041 (11)0.0014 (11)
C30.0459 (14)0.073 (2)0.0507 (16)0.0091 (14)0.0022 (13)0.0041 (14)
C50.112 (3)0.143 (4)0.051 (2)0.019 (3)0.017 (2)0.037 (2)
C60.130 (4)0.169 (5)0.040 (2)0.041 (4)0.001 (2)0.027 (3)
C70.125 (4)0.148 (5)0.043 (2)0.022 (3)0.025 (2)0.007 (3)
C80.096 (3)0.114 (3)0.046 (2)0.002 (2)0.0189 (18)0.005 (2)
C90.0458 (13)0.0538 (15)0.0381 (14)0.0032 (12)0.0015 (11)0.0009 (11)
C100.0533 (15)0.0664 (18)0.0415 (15)0.0018 (13)0.0043 (12)0.0073 (13)
C110.081 (2)0.099 (3)0.0434 (17)0.005 (2)0.0041 (16)0.0211 (17)
C120.072 (2)0.078 (2)0.0377 (15)0.0072 (17)0.0059 (14)0.0064 (14)
C130.0539 (15)0.0585 (16)0.0338 (13)0.0033 (13)0.0016 (11)0.0030 (11)
C150.0570 (17)0.0584 (16)0.0396 (15)0.0185 (14)0.0043 (12)0.0090 (12)
C170.0528 (18)0.106 (3)0.068 (2)0.0206 (18)0.0119 (16)0.004 (2)
C190.0480 (13)0.0389 (13)0.0428 (15)0.0084 (11)0.0091 (11)0.0001 (11)
C210.092 (2)0.0427 (16)0.0593 (19)0.0002 (14)0.0242 (17)0.0096 (13)
N10.0463 (11)0.0432 (11)0.0315 (10)0.0019 (9)0.0000 (9)0.0002 (8)
O40.0671 (14)0.115 (2)0.0535 (13)0.0139 (13)0.0089 (12)0.0285 (13)
O140.0484 (11)0.0798 (14)0.0534 (12)0.0052 (10)0.0035 (9)0.0102 (11)
O160.0558 (12)0.0810 (15)0.0428 (11)0.0132 (10)0.0063 (9)0.0065 (10)
O180.0747 (13)0.0408 (10)0.0427 (11)0.0008 (9)0.0190 (9)0.0060 (8)
O200.0849 (14)0.0396 (10)0.0399 (10)0.0005 (9)0.0170 (10)0.0027 (8)
Cu10.0451 (2)0.0407 (2)0.02941 (19)0.00430 (12)0.00409 (12)0.00026 (12)
Geometric parameters (Å, º) top
C2—N11.349 (3)C12—C131.458 (4)
C2—C31.369 (4)C15—O161.242 (4)
C2—H2A0.93C15—O141.256 (3)
C3—C101.365 (4)C15—C171.509 (4)
C3—H3A0.93C17—H17A0.96
C5—C61.364 (7)C17—H17B0.96
C5—C111.386 (5)C17—H17C0.96
C5—H5A0.93C19—O181.246 (3)
C6—C71.360 (7)C19—O201.250 (3)
C6—H6A0.93C19—C211.503 (4)
C7—C81.393 (6)C21—H21A0.96
C7—H7A0.93C21—H21B0.96
C8—C121.381 (5)C21—H21C0.96
C8—H8A0.93N1—Cu12.180 (2)
C9—N11.331 (3)O14—Cu11.9731 (19)
C9—C131.375 (4)O16—Cu1i1.969 (2)
C9—H9A0.93O18—Cu11.9650 (19)
C10—O41.373 (3)O20—Cu1i1.9562 (19)
C10—C131.392 (4)Cu1—O20i1.9562 (19)
C11—O41.377 (4)Cu1—O16i1.969 (2)
C11—C121.391 (5)Cu1—Cu1i2.6330 (6)
N1—C2—C3124.3 (2)C15—C17—H17B109.5
N1—C2—H2A117.9H17A—C17—H17B109.5
C3—C2—H2A117.9C15—C17—H17C109.5
C10—C3—C2115.7 (3)H17A—C17—H17C109.5
C10—C3—H3A122.1H17B—C17—H17C109.5
C2—C3—H3A122.1O18—C19—O20125.6 (2)
C6—C5—C11116.8 (4)O18—C19—C21117.1 (2)
C6—C5—H5A121.6O20—C19—C21117.2 (2)
C11—C5—H5A121.6C19—C21—H21A109.5
C7—C6—C5122.0 (4)C19—C21—H21B109.5
C7—C6—H6A119.0H21A—C21—H21B109.5
C5—C6—H6A119.0C19—C21—H21C109.5
C6—C7—C8121.8 (4)H21A—C21—H21C109.5
C6—C7—H7A119.1H21B—C21—H21C109.5
C8—C7—H7A119.1C9—N1—C2118.4 (2)
C12—C8—C7117.4 (4)C9—N1—Cu1121.04 (17)
C12—C8—H8A121.3C2—N1—Cu1120.44 (17)
C7—C8—H8A121.3C10—O4—C11105.6 (2)
N1—C9—C13122.0 (2)C15—O14—Cu1124.9 (2)
N1—C9—H9A119.0C15—O16—Cu1i121.51 (18)
C13—C9—H9A119.0C19—O18—Cu1121.90 (16)
C3—C10—O4126.1 (3)C19—O20—Cu1i124.31 (18)
C3—C10—C13122.2 (3)O20i—Cu1—O18167.88 (8)
O4—C10—C13111.7 (2)O20i—Cu1—O16i89.82 (9)
O4—C11—C5125.4 (4)O18—Cu1—O16i88.29 (9)
O4—C11—C12112.2 (3)O20i—Cu1—O1489.69 (10)
C5—C11—C12122.4 (4)O18—Cu1—O1489.67 (9)
C8—C12—C11119.7 (3)O16i—Cu1—O14167.97 (9)
C8—C12—C13135.5 (3)O20i—Cu1—N198.31 (8)
C11—C12—C13104.9 (3)O18—Cu1—N193.81 (8)
C9—C13—C10117.4 (2)O16i—Cu1—N197.68 (8)
C9—C13—C12136.9 (3)O14—Cu1—N194.29 (8)
C10—C13—C12105.7 (3)O20i—Cu1—Cu1i83.12 (6)
O16—C15—O14125.6 (3)O18—Cu1—Cu1i84.80 (6)
O16—C15—C17118.1 (3)O16i—Cu1—Cu1i85.65 (6)
O14—C15—C17116.3 (3)O14—Cu1—Cu1i82.35 (6)
C15—C17—H17A109.5N1—Cu1—Cu1i176.36 (6)
N1—C2—C3—C100.5 (5)C5—C11—O4—C10179.8 (4)
C11—C5—C6—C70.3 (8)C12—C11—O4—C100.0 (4)
C5—C6—C7—C80.2 (9)O16—C15—O14—Cu11.4 (4)
C6—C7—C8—C120.4 (8)C17—C15—O14—Cu1177.9 (2)
C2—C3—C10—O4178.9 (3)O14—C15—O16—Cu1i0.0 (4)
C2—C3—C10—C130.0 (5)C17—C15—O16—Cu1i179.2 (2)
C6—C5—C11—O4179.9 (4)O20—C19—O18—Cu16.5 (4)
C6—C5—C11—C120.1 (7)C21—C19—O18—Cu1176.2 (2)
C7—C8—C12—C110.8 (6)O18—C19—O20—Cu1i5.3 (4)
C7—C8—C12—C13179.7 (4)C21—C19—O20—Cu1i177.4 (2)
O4—C11—C12—C8179.5 (3)C19—O18—Cu1—O20i8.4 (6)
C5—C11—C12—C80.7 (6)C19—O18—Cu1—O16i89.6 (2)
O4—C11—C12—C130.1 (4)C19—O18—Cu1—O1478.5 (2)
C5—C11—C12—C13179.6 (4)C19—O18—Cu1—N1172.8 (2)
N1—C9—C13—C101.8 (4)C19—O18—Cu1—Cu1i3.8 (2)
N1—C9—C13—C12178.7 (3)C15—O14—Cu1—O20i81.6 (2)
C3—C10—C13—C91.1 (5)C15—O14—Cu1—O1886.3 (2)
O4—C10—C13—C9179.9 (3)C15—O14—Cu1—O16i6.1 (6)
C3—C10—C13—C12179.3 (3)C15—O14—Cu1—N1179.9 (2)
O4—C10—C13—C120.2 (4)C15—O14—Cu1—Cu1i1.5 (2)
C8—C12—C13—C90.1 (7)C9—N1—Cu1—O20i115.6 (2)
C11—C12—C13—C9179.7 (4)C2—N1—Cu1—O20i68.5 (2)
C8—C12—C13—C10179.4 (4)C9—N1—Cu1—O1864.1 (2)
C11—C12—C13—C100.2 (4)C2—N1—Cu1—O18111.78 (19)
C13—C9—N1—C21.4 (4)C9—N1—Cu1—O16i24.6 (2)
C13—C9—N1—Cu1174.6 (2)C2—N1—Cu1—O16i159.43 (19)
C3—C2—N1—C90.2 (4)C9—N1—Cu1—O14154.1 (2)
C3—C2—N1—Cu1175.8 (2)C2—N1—Cu1—O1421.8 (2)
C3—C10—O4—C11179.2 (3)C9—N1—Cu1—Cu1i131.5 (8)
C13—C10—O4—C110.2 (4)C2—N1—Cu1—Cu1i44.4 (10)
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C2H3O2)4(C11H7NO)2]
Mr701.60
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)13.6706 (2), 8.2336 (1), 27.7541 (4)
V3)3123.95 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.42
Crystal size (mm)0.42 × 0.29 × 0.17
Data collection
DiffractometerOxford Diffraction Gemini R CCD
Absorption correctionAnalytical
(Clark & Reid, 1995)
Tmin, Tmax0.542, 0.785
No. of measured, independent and
observed [I > 2σ(I)] reflections
65563, 3185, 2574
Rint0.029
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.103, 1.09
No. of reflections3185
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.32

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), CrysAlis RED, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 2001), enCIFer (Allen et al., 2004).

 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds