Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [Zn(C36H46N2O2)(C2H6O)]·C2H5OH, adopts a square-pyramidal ZnII coordination, with the N2O2 tetra­dentate Schiff base ligand bound in the basal plane and the coordinated ethanol mol­ecule occupying the apical site. Inversion-related ZnII complex mol­ecules are linked via O—H...O hydrogen bonding involving the coordinated and uncoordinated ethanol mol­ecules, forming dimers which are stacked along the c axis. Intra­molecular C—H...O and C—H...π inter­actions are observed in the ZnII complex.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807030863/ci2400sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807030863/ci2400Isup2.hkl
Contains datablock I

CCDC reference: 654842

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.045
  • wR factor = 0.133
  • Data-to-parameter ratio = 19.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.23 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.68 Ratio PLAT230_ALERT_2_C Hirshfeld Test Diff for C37 - C38 .. 5.04 su PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for C39 PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 2
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Zn1 (2) 2.12 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Zinc, an element of strong interest in biology, medicine, materials, and catalysis, plays important roles in various biological systems such as neurotransmission, signal transduction and gene expression (Assaf & Chung, 1984; Berg & Shi, 1996). It is well known that Schiff base ligands have played an important role in the development of coordination chemistry as they readily form stable complexes with most transition metal ions (Pal et al., 2005). Zinc complexes with Schiff-bases are importance in biological systems and coordination chemistry (Collinson & Fenton, 1996; Tarafder et al., 2002). Recently, we have reported crystal structures of ZnII complexes with Schiff base ligands. As a continuation of our research on Schiff base complexes, we report here the crystal structure of the title compound, (I).

The ZnII complex is characterized by an approximately square-pyramidal ZnII coordination, with the N2O2 tetradentate Schiff-base ligand in the basal plane and an ethanol molecule in the apical site (Fig. 1). The ZnII atom is displaced 0.025 (5) Å out of the mean N1/N2/O1/O2 basal plane towards the axial atom, O4, of ethanol molecule. The cyclic skeleton of the tetradentate Schiff-base ligand is essentially planar. The dihedral angles between the central benzene ring (C8—C13) and the other two benzene rings (C1—C6 and C15—C20) are 2.96 (11)° and 9.35 (11)°, respectively. Bond lengths and angles observed in the structure are in normal ranges (Allen et al., 1987) and comparable with the related structures (Eltayeb et al., 2007a; 2007b; Eltayeb, Teoh, Fun et al., 2007; Eltayeb, Teoh, Ng et al., 2007; Eltayeb, Teoh, Teh et al., 2007).

Intramolecular C—H···O interactions (Table 1), and C—H···π interactions involving the C8—C13 (centroid Cg1) ring are observed in the complex molecule. Inversion-related ZnII complex molecules are linked via O—H···O hydrogen bonding (Table 1) involving the coordinated and two free ethanol molecules, forming dimers which are stacked along the c axis (Fig.2). Molecules in the adjacent stacks are linked via C—H···π interactions involving the C15—C20 ring (centroid Cg2).

Related literature top

For bond-length data, see: Allen et al. (1987). For general background on Schiff-base–ZnII coordination complexes, see: Pal et al. (2005); Collinson & Fenton (1996); Assaf & Chung (1984); Berg & Shi (1996); Tarafder et al. (2002). For related structures, see: Eltayeb, Teoh, Chantrapromma et al. (2007a, 2007b); Eltayeb, Teoh, Fun et al. (2007); Eltayeb, Teoh, Ng et al. (2007); Eltayeb, Teoh, Teh et al. (2007).

Experimental top

The title compound (I) was synthesized by adding 3,5-di-tert-butyl-2-hydroxybenzaldehyde (0.936 g, 4 mmol) to a solution of o-phenylenediamine (0.216 g, 2 mmol) in ethanol 95% (20 ml). The mixture was refluxed with stirring for half an hour. Zinc chloride (0.272 g, 2 mmol) in ethanol (10 ml) was then added, followed by triethylamine (0.5 ml, 3.6 mmol). The mixture was stirred at room temperature for 2 h. A yellow-orange solution was obtained and it was filtered. Orange crystals suitable for X-ray diffraction were formed after 4 d of slow evaporation of the ethanol at room temperature.

Refinement top

Hydroxyl H atoms were located in a difference map and refined with a O4-H1O4 distance restraint of 0.82 Å. The remainning H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H distances in the range 0.93–0.96 Å. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual peak is located 0.91 Å from H39B and the deepest hole is located 0.45 Å from C38.

Structure description top

Zinc, an element of strong interest in biology, medicine, materials, and catalysis, plays important roles in various biological systems such as neurotransmission, signal transduction and gene expression (Assaf & Chung, 1984; Berg & Shi, 1996). It is well known that Schiff base ligands have played an important role in the development of coordination chemistry as they readily form stable complexes with most transition metal ions (Pal et al., 2005). Zinc complexes with Schiff-bases are importance in biological systems and coordination chemistry (Collinson & Fenton, 1996; Tarafder et al., 2002). Recently, we have reported crystal structures of ZnII complexes with Schiff base ligands. As a continuation of our research on Schiff base complexes, we report here the crystal structure of the title compound, (I).

The ZnII complex is characterized by an approximately square-pyramidal ZnII coordination, with the N2O2 tetradentate Schiff-base ligand in the basal plane and an ethanol molecule in the apical site (Fig. 1). The ZnII atom is displaced 0.025 (5) Å out of the mean N1/N2/O1/O2 basal plane towards the axial atom, O4, of ethanol molecule. The cyclic skeleton of the tetradentate Schiff-base ligand is essentially planar. The dihedral angles between the central benzene ring (C8—C13) and the other two benzene rings (C1—C6 and C15—C20) are 2.96 (11)° and 9.35 (11)°, respectively. Bond lengths and angles observed in the structure are in normal ranges (Allen et al., 1987) and comparable with the related structures (Eltayeb et al., 2007a; 2007b; Eltayeb, Teoh, Fun et al., 2007; Eltayeb, Teoh, Ng et al., 2007; Eltayeb, Teoh, Teh et al., 2007).

Intramolecular C—H···O interactions (Table 1), and C—H···π interactions involving the C8—C13 (centroid Cg1) ring are observed in the complex molecule. Inversion-related ZnII complex molecules are linked via O—H···O hydrogen bonding (Table 1) involving the coordinated and two free ethanol molecules, forming dimers which are stacked along the c axis (Fig.2). Molecules in the adjacent stacks are linked via C—H···π interactions involving the C15—C20 ring (centroid Cg2).

For bond-length data, see: Allen et al. (1987). For general background on Schiff-base–ZnII coordination complexes, see: Pal et al. (2005); Collinson & Fenton (1996); Assaf & Chung (1984); Berg & Shi (1996); Tarafder et al. (2002). For related structures, see: Eltayeb, Teoh, Chantrapromma et al. (2007a, 2007b); Eltayeb, Teoh, Fun et al. (2007); Eltayeb, Teoh, Ng et al. (2007); Eltayeb, Teoh, Teh et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atomic numbering. C-bound H atoms of the ZnII complex have been omitted for clarity.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the b axis. C-bound H atoms of the ZnII complex have been omitted for clarity. Hydrogen bonds are shown as dashed lines.
(Ethanol-κO){4,4',6,6'-tetra-tert-butyl-2,2'-[1,2- phenylenebis(nitrilomethylidyne)]diphenolato- κ4O,O',N,N'}zinc(II) ethanol solvate top
Crystal data top
[Zn(C36H46N2O2)(C2H6O)]·C2H6OF(000) = 1496
Mr = 696.25Dx = 1.221 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8959 reflections
a = 13.0909 (3) Åθ = 1.6–27.5°
b = 24.8935 (6) ŵ = 0.69 mm1
c = 11.6289 (3) ÅT = 100 K
β = 92.303 (1)°Block, orange
V = 3786.55 (16) Å30.40 × 0.34 × 0.30 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8595 independent reflections
Radiation source: fine-focus sealed tube6701 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 8.33 pixels mm-1θmax = 27.5°, θmin = 1.6°
ω scansh = 1715
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 3232
Tmin = 0.770, Tmax = 0.822l = 1415
32064 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0592P)2 + 3.4587P]
where P = (Fo2 + 2Fc2)/3
8595 reflections(Δ/σ)max = 0.003
445 parametersΔρmax = 0.72 e Å3
1 restraintΔρmin = 0.56 e Å3
Crystal data top
[Zn(C36H46N2O2)(C2H6O)]·C2H6OV = 3786.55 (16) Å3
Mr = 696.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.0909 (3) ŵ = 0.69 mm1
b = 24.8935 (6) ÅT = 100 K
c = 11.6289 (3) Å0.40 × 0.34 × 0.30 mm
β = 92.303 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8595 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
6701 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 0.822Rint = 0.049
32064 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0451 restraint
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.72 e Å3
8595 reflectionsΔρmin = 0.56 e Å3
445 parameters
Special details top

Experimental. The low-temparture data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.97460 (2)0.576492 (10)0.80021 (2)0.01646 (9)
O11.08663 (13)0.62577 (7)0.78053 (17)0.0225 (4)
O20.87455 (13)0.63224 (7)0.83442 (16)0.0202 (4)
O30.92767 (16)0.55880 (8)0.62450 (18)0.0261 (4)
H1O30.971 (3)0.5634 (13)0.586 (3)0.031 (10)*
O40.9358 (2)0.44593 (10)0.5413 (2)0.0513 (6)
H1O40.917 (3)0.4741 (11)0.572 (4)0.077*
N11.07893 (15)0.51318 (8)0.80696 (18)0.0165 (4)
N20.89009 (15)0.51947 (8)0.88074 (18)0.0173 (4)
C11.17831 (18)0.61734 (9)0.7472 (2)0.0178 (5)
C21.23835 (18)0.66228 (9)0.7098 (2)0.0169 (5)
C31.33454 (18)0.65251 (9)0.6715 (2)0.0190 (5)
H3A1.37110.68160.64410.023*
C41.38200 (18)0.60149 (10)0.6706 (2)0.0187 (5)
C51.32620 (18)0.55910 (10)0.7100 (2)0.0194 (5)
H5A1.35580.52510.71250.023*
C61.22513 (18)0.56528 (9)0.7471 (2)0.0173 (5)
C71.17450 (18)0.51729 (9)0.7821 (2)0.0181 (5)
H7A1.21370.48620.78750.022*
C81.03533 (18)0.46422 (9)0.8427 (2)0.0171 (5)
C91.08428 (19)0.41423 (9)0.8405 (2)0.0196 (5)
H9A1.14910.41140.81120.024*
C101.03601 (19)0.36891 (9)0.8821 (2)0.0203 (5)
H10A1.06860.33580.88010.024*
C110.9397 (2)0.37277 (10)0.9264 (2)0.0225 (5)
H11A0.90890.34240.95610.027*
C120.8891 (2)0.42147 (10)0.9268 (2)0.0218 (5)
H12A0.82400.42350.95570.026*
C130.93529 (18)0.46790 (9)0.8839 (2)0.0172 (5)
C140.80138 (18)0.52882 (9)0.9231 (2)0.0179 (5)
H14A0.76690.49920.95120.022*
C150.75093 (18)0.57960 (9)0.9315 (2)0.0170 (5)
C160.65790 (18)0.57868 (9)0.9900 (2)0.0186 (5)
H16A0.63230.54581.01340.022*
C170.60436 (18)0.62436 (10)1.0133 (2)0.0185 (5)
C180.64779 (18)0.67355 (10)0.9770 (2)0.0180 (5)
H18A0.61400.70520.99480.022*
C190.73647 (18)0.67789 (9)0.9171 (2)0.0172 (5)
C200.79118 (18)0.62952 (9)0.8911 (2)0.0169 (5)
C211.19322 (18)0.71917 (9)0.7153 (2)0.0191 (5)
C221.09384 (19)0.72357 (10)0.6404 (2)0.0245 (6)
H22A1.06540.75890.64830.037*
H22B1.04570.69730.66500.037*
H22C1.10850.71730.56130.037*
C231.2677 (2)0.76128 (10)0.6729 (3)0.0261 (6)
H23A1.33020.75970.71890.039*
H23B1.23790.79630.67920.039*
H23C1.28180.75420.59390.039*
C241.1715 (2)0.73315 (10)0.8407 (2)0.0260 (6)
H24A1.23390.73120.88680.039*
H24B1.12290.70810.86940.039*
H24C1.14430.76890.84420.039*
C251.48993 (19)0.59658 (10)0.6245 (2)0.0225 (5)
C261.5621 (2)0.63712 (12)0.6854 (3)0.0311 (6)
H26A1.56540.62990.76660.047*
H26B1.53690.67290.67200.047*
H26C1.62920.63390.65560.047*
C271.4859 (2)0.60832 (13)0.4953 (3)0.0354 (7)
H27A1.44290.58240.45610.053*
H27B1.55360.60630.46680.053*
H27C1.45870.64370.48180.053*
C281.5348 (2)0.54038 (11)0.6454 (3)0.0345 (7)
H28A1.49140.51410.60790.052*
H28B1.53950.53320.72660.052*
H28C1.60180.53860.61480.052*
C290.50307 (19)0.62484 (10)1.0739 (2)0.0213 (5)
C300.4188 (2)0.64933 (12)0.9945 (2)0.0290 (6)
H30A0.43690.68550.97540.043*
H30B0.35540.64941.03320.043*
H30C0.41140.62840.92540.043*
C310.5145 (2)0.65778 (12)1.1846 (2)0.0304 (6)
H31A0.53070.69431.16600.046*
H31B0.56840.64291.23310.046*
H31C0.45160.65681.22420.046*
C320.4692 (2)0.56795 (12)1.1064 (4)0.0420 (8)
H32A0.45870.54681.03790.063*
H32B0.40660.56991.14650.063*
H32C0.52120.55151.15530.063*
C330.77535 (18)0.73289 (9)0.8761 (2)0.0184 (5)
C340.88318 (19)0.74462 (10)0.9275 (2)0.0218 (5)
H34A0.92850.71600.90800.033*
H34B0.88070.74731.00970.033*
H34C0.90760.77780.89690.033*
C350.7060 (2)0.77923 (10)0.9124 (2)0.0231 (5)
H35A0.63770.77320.88210.035*
H35B0.73130.81250.88280.035*
H35C0.70590.78100.99480.035*
C360.7769 (2)0.73394 (10)0.7447 (2)0.0228 (5)
H36A0.82150.70620.71890.034*
H36B0.80120.76830.71990.034*
H36C0.70910.72800.71290.034*
C370.8406 (3)0.58757 (15)0.5761 (3)0.0432 (8)
H37A0.85940.62490.56560.052*
H37B0.78600.58650.63010.052*
C380.8021 (3)0.56542 (16)0.4642 (3)0.0540 (10)
H38A0.74470.58630.43590.081*
H38B0.78110.52880.47440.081*
H38C0.85530.56680.40990.081*
C390.8839 (4)0.40238 (17)0.5901 (4)0.0609 (11)
H39A0.92130.39110.65960.073*
H39B0.88320.37250.53650.073*
C400.7779 (4)0.4149 (3)0.6186 (6)0.121 (3)
H40A0.74630.38340.64870.181*
H40B0.74040.42660.55050.181*
H40C0.77800.44300.67520.181*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01590 (15)0.01228 (14)0.02151 (17)0.00033 (10)0.00465 (10)0.00128 (11)
O10.0173 (8)0.0144 (8)0.0365 (11)0.0007 (6)0.0084 (7)0.0024 (7)
O20.0183 (8)0.0145 (8)0.0283 (10)0.0009 (6)0.0084 (7)0.0015 (7)
O30.0229 (10)0.0326 (11)0.0231 (11)0.0059 (8)0.0041 (8)0.0004 (8)
O40.0597 (16)0.0464 (15)0.0491 (16)0.0047 (12)0.0191 (13)0.0107 (12)
N10.0181 (10)0.0125 (9)0.0191 (11)0.0015 (7)0.0027 (8)0.0003 (8)
N20.0185 (10)0.0120 (9)0.0214 (11)0.0007 (7)0.0028 (8)0.0002 (8)
C10.0168 (11)0.0162 (11)0.0206 (12)0.0015 (9)0.0018 (9)0.0009 (9)
C20.0180 (11)0.0158 (11)0.0167 (12)0.0019 (9)0.0001 (9)0.0008 (9)
C30.0205 (12)0.0173 (12)0.0195 (13)0.0049 (9)0.0023 (10)0.0004 (9)
C40.0175 (12)0.0204 (12)0.0182 (12)0.0001 (9)0.0017 (9)0.0020 (9)
C50.0191 (12)0.0159 (11)0.0231 (13)0.0013 (9)0.0017 (10)0.0028 (10)
C60.0182 (11)0.0157 (11)0.0183 (12)0.0019 (9)0.0031 (9)0.0008 (9)
C70.0191 (12)0.0139 (11)0.0215 (13)0.0014 (9)0.0014 (9)0.0010 (9)
C80.0196 (11)0.0125 (11)0.0191 (12)0.0007 (9)0.0012 (9)0.0003 (9)
C90.0197 (12)0.0157 (12)0.0236 (14)0.0014 (9)0.0034 (10)0.0001 (9)
C100.0254 (13)0.0115 (11)0.0240 (13)0.0017 (9)0.0025 (10)0.0012 (9)
C110.0316 (14)0.0132 (11)0.0232 (13)0.0036 (10)0.0058 (11)0.0023 (10)
C120.0228 (12)0.0183 (12)0.0248 (14)0.0006 (9)0.0087 (10)0.0007 (10)
C130.0206 (12)0.0133 (11)0.0178 (12)0.0001 (9)0.0024 (9)0.0002 (9)
C140.0175 (11)0.0134 (11)0.0232 (13)0.0014 (9)0.0041 (9)0.0016 (9)
C150.0172 (11)0.0148 (11)0.0190 (12)0.0010 (9)0.0021 (9)0.0005 (9)
C160.0163 (11)0.0152 (11)0.0245 (13)0.0018 (9)0.0046 (9)0.0028 (9)
C170.0163 (11)0.0205 (12)0.0188 (12)0.0006 (9)0.0021 (9)0.0017 (9)
C180.0187 (11)0.0174 (11)0.0180 (12)0.0037 (9)0.0021 (9)0.0015 (9)
C190.0175 (11)0.0153 (11)0.0185 (12)0.0009 (9)0.0010 (9)0.0019 (9)
C200.0162 (11)0.0170 (11)0.0174 (12)0.0005 (9)0.0016 (9)0.0001 (9)
C210.0198 (12)0.0140 (11)0.0233 (13)0.0014 (9)0.0011 (10)0.0024 (9)
C220.0225 (13)0.0194 (12)0.0316 (15)0.0008 (10)0.0014 (11)0.0049 (11)
C230.0258 (13)0.0163 (12)0.0366 (16)0.0029 (10)0.0049 (11)0.0034 (11)
C240.0298 (14)0.0182 (12)0.0303 (15)0.0010 (10)0.0067 (11)0.0022 (11)
C250.0184 (12)0.0205 (12)0.0292 (15)0.0011 (9)0.0078 (10)0.0016 (10)
C260.0190 (13)0.0313 (15)0.0433 (18)0.0038 (11)0.0070 (12)0.0066 (13)
C270.0338 (16)0.0441 (18)0.0292 (16)0.0015 (13)0.0128 (12)0.0008 (13)
C280.0241 (14)0.0263 (14)0.054 (2)0.0032 (11)0.0137 (13)0.0019 (14)
C290.0186 (12)0.0190 (12)0.0269 (14)0.0014 (9)0.0093 (10)0.0001 (10)
C300.0207 (13)0.0380 (16)0.0284 (15)0.0039 (11)0.0036 (11)0.0069 (12)
C310.0264 (14)0.0390 (16)0.0261 (15)0.0023 (11)0.0065 (11)0.0011 (12)
C320.0304 (16)0.0258 (15)0.072 (2)0.0002 (12)0.0278 (16)0.0049 (15)
C330.0220 (12)0.0132 (11)0.0200 (13)0.0002 (9)0.0034 (10)0.0002 (9)
C340.0218 (12)0.0175 (12)0.0260 (14)0.0023 (9)0.0003 (10)0.0006 (10)
C350.0278 (13)0.0151 (12)0.0268 (14)0.0026 (10)0.0044 (11)0.0023 (10)
C360.0300 (14)0.0169 (12)0.0217 (13)0.0025 (10)0.0043 (10)0.0026 (10)
C370.0395 (18)0.051 (2)0.0380 (19)0.0229 (15)0.0091 (15)0.0118 (15)
C380.057 (2)0.058 (2)0.047 (2)0.0122 (18)0.0054 (18)0.0036 (18)
C390.082 (3)0.059 (2)0.043 (2)0.029 (2)0.011 (2)0.0090 (19)
C400.060 (3)0.186 (7)0.112 (5)0.047 (4)0.039 (3)0.067 (5)
Geometric parameters (Å, º) top
Zn1—O11.9326 (17)C23—H23A0.96
Zn1—O21.9600 (17)C23—H23B0.96
Zn1—N22.049 (2)C23—H23C0.96
Zn1—N12.0850 (19)C24—H24A0.96
Zn1—O32.155 (2)C24—H24B0.96
O1—C11.293 (3)C24—H24C0.96
O2—C201.299 (3)C25—C271.530 (4)
O3—C371.442 (3)C25—C281.533 (4)
O3—H1O30.74 (4)C25—C261.536 (4)
O4—C391.411 (5)C26—H26A0.96
O4—H1O40.83 (3)C26—H26B0.96
N1—C71.299 (3)C26—H26C0.96
N1—C81.415 (3)C27—H27A0.96
N2—C141.301 (3)C27—H27B0.96
N2—C131.413 (3)C27—H27C0.96
C1—C61.434 (3)C28—H28A0.96
C1—C21.444 (3)C28—H28B0.96
C2—C31.374 (3)C28—H28C0.96
C2—C211.537 (3)C29—C311.529 (4)
C3—C41.414 (3)C29—C321.536 (4)
C3—H3A0.93C29—C301.536 (4)
C4—C51.373 (3)C30—H30A0.96
C4—C251.536 (3)C30—H30B0.96
C5—C61.416 (3)C30—H30C0.96
C5—H5A0.93C31—H31A0.96
C6—C71.433 (3)C31—H31B0.96
C7—H7A0.93C31—H31C0.96
C8—C91.400 (3)C32—H32A0.96
C8—C131.415 (3)C32—H32B0.96
C9—C101.389 (3)C32—H32C0.96
C9—H9A0.93C33—C361.529 (4)
C10—C111.384 (4)C33—C351.537 (3)
C10—H10A0.93C33—C341.539 (3)
C11—C121.381 (3)C34—H34A0.96
C11—H11A0.93C34—H34B0.96
C12—C131.405 (3)C34—H34C0.96
C12—H12A0.93C35—H35A0.96
C14—C151.431 (3)C35—H35B0.96
C14—H14A0.93C35—H35C0.96
C15—C161.419 (3)C36—H36A0.96
C15—C201.436 (3)C36—H36B0.96
C16—C171.369 (3)C36—H36C0.96
C16—H16A0.93C37—C381.483 (5)
C17—C181.422 (3)C37—H37A0.97
C17—C291.526 (3)C37—H37B0.97
C18—C191.382 (3)C38—H38A0.96
C18—H18A0.93C38—H38B0.96
C19—C201.439 (3)C38—H38C0.96
C19—C331.543 (3)C39—C401.473 (7)
C21—C231.527 (3)C39—H39A0.97
C21—C241.536 (4)C39—H39B0.97
C21—C221.540 (3)C40—H40A0.96
C22—H22A0.96C40—H40B0.96
C22—H22B0.96C40—H40C0.96
C22—H22C0.96
O1—Zn1—O295.22 (7)C21—C24—H24B109.5
O1—Zn1—N2156.93 (8)H24A—C24—H24B109.5
O2—Zn1—N291.17 (8)C21—C24—H24C109.5
O1—Zn1—N189.15 (7)H24A—C24—H24C109.5
O2—Zn1—N1165.86 (8)H24B—C24—H24C109.5
N2—Zn1—N179.86 (8)C27—C25—C28109.1 (2)
O1—Zn1—O3101.90 (8)C27—C25—C26108.9 (2)
O2—Zn1—O399.78 (8)C28—C25—C26107.6 (2)
N2—Zn1—O398.81 (8)C27—C25—C4109.4 (2)
N1—Zn1—O392.44 (8)C28—C25—C4111.7 (2)
C1—O1—Zn1130.57 (15)C26—C25—C4110.2 (2)
C20—O2—Zn1130.38 (15)C25—C26—H26A109.5
C37—O3—Zn1117.34 (18)C25—C26—H26B109.5
C37—O3—H1O3107 (3)H26A—C26—H26B109.5
Zn1—O3—H1O3110 (3)C25—C26—H26C109.5
C39—O4—H1O4109 (3)H26A—C26—H26C109.5
C7—N1—C8122.4 (2)H26B—C26—H26C109.5
C7—N1—Zn1124.55 (16)C25—C27—H27A109.5
C8—N1—Zn1113.00 (15)C25—C27—H27B109.5
C14—N2—C13122.1 (2)H27A—C27—H27B109.5
C14—N2—Zn1123.76 (16)C25—C27—H27C109.5
C13—N2—Zn1114.07 (15)H27A—C27—H27C109.5
O1—C1—C6123.3 (2)H27B—C27—H27C109.5
O1—C1—C2119.2 (2)C25—C28—H28A109.5
C6—C1—C2117.5 (2)C25—C28—H28B109.5
C3—C2—C1118.5 (2)H28A—C28—H28B109.5
C3—C2—C21122.4 (2)C25—C28—H28C109.5
C1—C2—C21119.1 (2)H28A—C28—H28C109.5
C2—C3—C4124.7 (2)H28B—C28—H28C109.5
C2—C3—H3A117.6C17—C29—C31109.6 (2)
C4—C3—H3A117.6C17—C29—C32111.8 (2)
C5—C4—C3116.6 (2)C31—C29—C32107.9 (3)
C5—C4—C25124.4 (2)C17—C29—C30110.0 (2)
C3—C4—C25119.0 (2)C31—C29—C30109.7 (2)
C4—C5—C6122.3 (2)C32—C29—C30107.9 (2)
C4—C5—H5A118.8C29—C30—H30A109.5
C6—C5—H5A118.8C29—C30—H30B109.5
C5—C6—C7116.4 (2)H30A—C30—H30B109.5
C5—C6—C1120.2 (2)C29—C30—H30C109.5
C7—C6—C1123.4 (2)H30A—C30—H30C109.5
N1—C7—C6126.1 (2)H30B—C30—H30C109.5
N1—C7—H7A116.9C29—C31—H31A109.5
C6—C7—H7A116.9C29—C31—H31B109.5
C9—C8—N1124.7 (2)H31A—C31—H31B109.5
C9—C8—C13119.6 (2)C29—C31—H31C109.5
N1—C8—C13115.7 (2)H31A—C31—H31C109.5
C10—C9—C8120.0 (2)H31B—C31—H31C109.5
C10—C9—H9A120.0C29—C32—H32A109.5
C8—C9—H9A120.0C29—C32—H32B109.5
C11—C10—C9120.5 (2)H32A—C32—H32B109.5
C11—C10—H10A119.8C29—C32—H32C109.5
C9—C10—H10A119.8H32A—C32—H32C109.5
C12—C11—C10120.4 (2)H32B—C32—H32C109.5
C12—C11—H11A119.8C36—C33—C35107.0 (2)
C10—C11—H11A119.8C36—C33—C34109.6 (2)
C11—C12—C13120.5 (2)C35—C33—C34107.1 (2)
C11—C12—H12A119.7C36—C33—C19110.0 (2)
C13—C12—H12A119.7C35—C33—C19112.1 (2)
C12—C13—N2124.8 (2)C34—C33—C19110.93 (19)
C12—C13—C8118.9 (2)C33—C34—H34A109.5
N2—C13—C8116.2 (2)C33—C34—H34B109.5
N2—C14—C15127.2 (2)H34A—C34—H34B109.5
N2—C14—H14A116.4C33—C34—H34C109.5
C15—C14—H14A116.4H34A—C34—H34C109.5
C16—C15—C14115.2 (2)H34B—C34—H34C109.5
C16—C15—C20120.3 (2)C33—C35—H35A109.5
C14—C15—C20124.5 (2)C33—C35—H35B109.5
C17—C16—C15122.5 (2)H35A—C35—H35B109.5
C17—C16—H16A118.7C33—C35—H35C109.5
C15—C16—H16A118.7H35A—C35—H35C109.5
C16—C17—C18116.3 (2)H35B—C35—H35C109.5
C16—C17—C29124.0 (2)C33—C36—H36A109.5
C18—C17—C29119.7 (2)C33—C36—H36B109.5
C19—C18—C17124.8 (2)H36A—C36—H36B109.5
C19—C18—H18A117.6C33—C36—H36C109.5
C17—C18—H18A117.6H36A—C36—H36C109.5
C18—C19—C20118.4 (2)H36B—C36—H36C109.5
C18—C19—C33121.3 (2)O3—C37—C38113.2 (3)
C20—C19—C33120.3 (2)O3—C37—H37A108.9
O2—C20—C15122.5 (2)C38—C37—H37A108.9
O2—C20—C19119.9 (2)O3—C37—H37B108.9
C15—C20—C19117.6 (2)C38—C37—H37B108.9
C23—C21—C24107.2 (2)H37A—C37—H37B107.8
C23—C21—C2111.6 (2)C37—C38—H38A109.5
C24—C21—C2109.5 (2)C37—C38—H38B109.5
C23—C21—C22107.7 (2)H38A—C38—H38B109.5
C24—C21—C22109.7 (2)C37—C38—H38C109.5
C2—C21—C22111.1 (2)H38A—C38—H38C109.5
C21—C22—H22A109.5H38B—C38—H38C109.5
C21—C22—H22B109.5O4—C39—C40113.6 (4)
H22A—C22—H22B109.5O4—C39—H39A108.8
C21—C22—H22C109.5C40—C39—H39A108.8
H22A—C22—H22C109.5O4—C39—H39B108.8
H22B—C22—H22C109.5C40—C39—H39B108.8
C21—C23—H23A109.5H39A—C39—H39B107.7
C21—C23—H23B109.5C39—C40—H40A109.5
H23A—C23—H23B109.5C39—C40—H40B109.5
C21—C23—H23C109.5H40A—C40—H40B109.5
H23A—C23—H23C109.5C39—C40—H40C109.5
H23B—C23—H23C109.5H40A—C40—H40C109.5
C21—C24—H24A109.5H40B—C40—H40C109.5
O2—Zn1—O1—C1174.0 (2)C10—C11—C12—C131.0 (4)
N2—Zn1—O1—C180.5 (3)C11—C12—C13—N2179.9 (2)
N1—Zn1—O1—C119.4 (2)C11—C12—C13—C81.4 (4)
O3—Zn1—O1—C172.9 (2)C14—N2—C13—C123.1 (4)
O1—Zn1—O2—C20155.7 (2)Zn1—N2—C13—C12175.2 (2)
N2—Zn1—O2—C202.2 (2)C14—N2—C13—C8175.3 (2)
N1—Zn1—O2—C2048.1 (4)Zn1—N2—C13—C86.3 (3)
O3—Zn1—O2—C20101.3 (2)C9—C8—C13—C123.0 (4)
O1—Zn1—O3—C3799.0 (2)N1—C8—C13—C12176.5 (2)
O2—Zn1—O3—C371.5 (2)C9—C8—C13—N2178.5 (2)
N2—Zn1—O3—C3791.3 (2)N1—C8—C13—N22.0 (3)
N1—Zn1—O3—C37171.4 (2)C13—N2—C14—C15175.8 (2)
O1—Zn1—N1—C710.4 (2)Zn1—N2—C14—C156.0 (4)
O2—Zn1—N1—C7118.7 (3)N2—C14—C15—C16175.2 (2)
N2—Zn1—N1—C7170.0 (2)N2—C14—C15—C201.2 (4)
O3—Zn1—N1—C791.5 (2)C14—C15—C16—C17174.7 (2)
O1—Zn1—N1—C8169.21 (16)C20—C15—C16—C171.8 (4)
O2—Zn1—N1—C860.9 (4)C15—C16—C17—C180.8 (4)
N2—Zn1—N1—C89.60 (16)C15—C16—C17—C29178.7 (2)
O3—Zn1—N1—C888.92 (17)C16—C17—C18—C192.6 (4)
O1—Zn1—N2—C14110.3 (2)C29—C17—C18—C19177.0 (2)
O2—Zn1—N2—C144.1 (2)C17—C18—C19—C201.5 (4)
N1—Zn1—N2—C14173.1 (2)C17—C18—C19—C33177.1 (2)
O3—Zn1—N2—C1496.0 (2)Zn1—O2—C20—C156.8 (3)
O1—Zn1—N2—C1371.3 (3)Zn1—O2—C20—C19172.24 (16)
O2—Zn1—N2—C13177.59 (16)C16—C15—C20—O2178.1 (2)
N1—Zn1—N2—C138.59 (16)C14—C15—C20—O25.7 (4)
O3—Zn1—N2—C1382.33 (17)C16—C15—C20—C192.9 (3)
Zn1—O1—C1—C617.9 (4)C14—C15—C20—C19173.4 (2)
Zn1—O1—C1—C2163.24 (17)C18—C19—C20—O2179.7 (2)
O1—C1—C2—C3178.1 (2)C33—C19—C20—O21.1 (3)
C6—C1—C2—C32.9 (3)C18—C19—C20—C151.3 (3)
O1—C1—C2—C212.5 (3)C33—C19—C20—C15179.9 (2)
C6—C1—C2—C21176.5 (2)C3—C2—C21—C230.4 (3)
C1—C2—C3—C43.1 (4)C1—C2—C21—C23179.8 (2)
C21—C2—C3—C4176.3 (2)C3—C2—C21—C24118.1 (3)
C2—C3—C4—C50.8 (4)C1—C2—C21—C2461.2 (3)
C2—C3—C4—C25179.7 (2)C3—C2—C21—C22120.6 (3)
C3—C4—C5—C61.6 (4)C1—C2—C21—C2260.0 (3)
C25—C4—C5—C6177.2 (2)C5—C4—C25—C27111.9 (3)
C4—C5—C6—C7177.7 (2)C3—C4—C25—C2767.0 (3)
C4—C5—C6—C11.6 (4)C5—C4—C25—C289.1 (4)
O1—C1—C6—C5179.6 (2)C3—C4—C25—C28172.1 (2)
C2—C1—C6—C50.7 (3)C5—C4—C25—C26128.5 (3)
O1—C1—C6—C71.1 (4)C3—C4—C25—C2652.7 (3)
C2—C1—C6—C7180.0 (2)C16—C17—C29—C31120.1 (3)
C8—N1—C7—C6179.0 (2)C18—C17—C29—C3160.4 (3)
Zn1—N1—C7—C60.6 (4)C16—C17—C29—C320.6 (4)
C5—C6—C7—N1172.1 (2)C18—C17—C29—C32179.9 (3)
C1—C6—C7—N17.2 (4)C16—C17—C29—C30119.2 (3)
C7—N1—C8—C99.0 (4)C18—C17—C29—C3060.3 (3)
Zn1—N1—C8—C9171.4 (2)C18—C19—C33—C36117.6 (3)
C7—N1—C8—C13170.4 (2)C20—C19—C33—C3660.9 (3)
Zn1—N1—C8—C139.2 (3)C18—C19—C33—C351.3 (3)
N1—C8—C9—C10177.3 (2)C20—C19—C33—C35179.8 (2)
C13—C8—C9—C102.1 (4)C18—C19—C33—C34120.9 (2)
C8—C9—C10—C110.3 (4)C20—C19—C33—C3460.6 (3)
C9—C10—C11—C121.9 (4)Zn1—O3—C37—C38168.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O4i0.75 (4)1.97 (4)2.684 (3)160 (4)
O4—H1O4···O30.83 (3)2.20 (3)2.975 (3)156 (4)
C22—H22B···O10.962.282.933 (3)124
C24—H24B···O10.962.342.968 (3)123
C34—H34A···O20.962.353.000 (3)124
C36—H36A···O20.962.373.004 (3)124
C39—H39A···Cg10.972.793.641 (5)146
C26—H26A···Cg2ii0.962.733.534 (3)142
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Zn(C36H46N2O2)(C2H6O)]·C2H6O
Mr696.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.0909 (3), 24.8935 (6), 11.6289 (3)
β (°) 92.303 (1)
V3)3786.55 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.69
Crystal size (mm)0.40 × 0.34 × 0.30
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.770, 0.822
No. of measured, independent and
observed [I > 2σ(I)] reflections
32064, 8595, 6701
Rint0.049
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.133, 1.08
No. of reflections8595
No. of parameters445
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.72, 0.56

Computer programs: APEX2 (Bruker, 2005), APEX2, SAINT (Bruker, 2005), SHELXTL (Sheldrick, 1998), SHELXTL and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O4i0.75 (4)1.97 (4)2.684 (3)160 (4)
O4—H1O4···O30.83 (3)2.20 (3)2.975 (3)156 (4)
C22—H22B···O10.962.282.933 (3)124
C24—H24B···O10.962.342.968 (3)123
C34—H34A···O20.962.353.000 (3)124
C36—H36A···O20.962.373.004 (3)124
C39—H39A···Cg10.972.793.641 (5)146
C26—H26A···Cg2ii0.962.733.534 (3)142
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds