Download citation
Download citation
link to html
In the title compound, [Ni(C5H3N6)2]n, the NiII atom is located on an inversion centre and exhibits a distorted octa­hedral geometry. The crystal structure features a two-dimensional square-grid-like network. The compound is isostructural with the iron(II) and cobalt(II) analogues, whose structures and magnetic properties have been reported [Rodríguez, Kivekäsb & Colacio (2005). Chem. Commun. pp. 5228–5230].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807021976/ci2385sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807021976/ci2385Isup2.hkl
Contains datablock I

CCDC reference: 650612

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.053
  • wR factor = 0.105
  • Data-to-parameter ratio = 15.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.79 PLAT601_ALERT_2_C Structure Contains Solvent Accessible VOIDS of . 34.00 A   3
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.791 Tmax scaled 0.791 Tmin scaled 0.771 PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Ni1 (2) 2.15
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Poly[5-(pyrimidin-2-yl)tetrazolato]nickel(II)], (I) (Fig. 1), is isostructural with the iron(II) and cobalt(II) analogs (Rodríguez et al., 2005). The three structures feature a two-dimensional square-grid-like network, in which each metal atom is located on an inversion centre and exhibits a distorted octahedral geometry. Each metal atom bonds to four ligands, and each ligand is coordinated to two metal atoms through one of the pyrimidyl nitrogen atoms and the 1-positon tetrazole nitrogen atom in cis position for one, and one 3-position tetrazole nitrogen atom for the other.

Related literature top

For compound preparation, see: Demko & Sharpless (2001). For related literature, see: Rodríguez et al. (2005).

Experimental top

The ligand, 2-(1H-tetrazol-5-yl)pyrimidine (L), was synthesized according to the literature method (Demko & Sharpless, 2001). A mixture of NiCl2.6H2O (48 mg, 0.2 mmol) and ligand L (60 mg, 0.4 mmol) in water (10 ml) was placed in a Teflon-lined stainless-steel Parr bomb that was heated at 413 K for 72 h. The bomb was then cooled to room temperature. Pink crystals were isolated in about 20% yield.

Refinement top

H atoms bound to C atoms were placed in calculated positions (C—H = 0.93 Å) and refined in the riding-model approximation, with Uiso(H) = 1.2Ueq(C).

Structure description top

Poly[5-(pyrimidin-2-yl)tetrazolato]nickel(II)], (I) (Fig. 1), is isostructural with the iron(II) and cobalt(II) analogs (Rodríguez et al., 2005). The three structures feature a two-dimensional square-grid-like network, in which each metal atom is located on an inversion centre and exhibits a distorted octahedral geometry. Each metal atom bonds to four ligands, and each ligand is coordinated to two metal atoms through one of the pyrimidyl nitrogen atoms and the 1-positon tetrazole nitrogen atom in cis position for one, and one 3-position tetrazole nitrogen atom for the other.

For compound preparation, see: Demko & Sharpless (2001). For related literature, see: Rodríguez et al. (2005).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. Part of the two-dimensional network structure of (I). Displacement ellipsoids are drawn at the 40% probability level. [symmetry codes: (A) -x, 1 - y, 1 - z; (B) 1/2 + x, 1/2 - y, 1 - z.]
Poly[bis[µ2-5-(pyrimidin-2-yl)tetrazolato]nickel(II)] top
Crystal data top
[Ni(C5H3N6)2]F(000) = 712
Mr = 352.98Dx = 1.745 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3035 reflections
a = 8.2054 (16) Åθ = 2.5–26.4°
b = 9.1736 (18) ŵ = 1.47 mm1
c = 17.846 (4) ÅT = 293 K
V = 1343.3 (5) Å3Block, pink
Z = 40.18 × 0.16 × 0.16 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1598 independent reflections
Radiation source: fine-focus sealed tube1396 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
φ and ω scansθmax = 27.9°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 109
Tmin = 0.974, Tmax = 1.000k = 1210
9528 measured reflectionsl = 2322
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.032P)2 + 2.6446P]
where P = (Fo2 + 2Fc2)/3
1598 reflections(Δ/σ)max = 0.001
106 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Ni(C5H3N6)2]V = 1343.3 (5) Å3
Mr = 352.98Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 8.2054 (16) ŵ = 1.47 mm1
b = 9.1736 (18) ÅT = 293 K
c = 17.846 (4) Å0.18 × 0.16 × 0.16 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1598 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1396 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 1.000Rint = 0.058
9528 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.20Δρmax = 0.56 e Å3
1598 reflectionsΔρmin = 0.40 e Å3
106 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.50000.50000.00927 (16)
N10.1491 (3)0.3232 (3)0.48286 (15)0.0130 (6)
C20.0291 (4)0.3372 (3)0.35937 (19)0.0142 (6)
N60.0456 (3)0.4562 (3)0.38656 (15)0.0116 (5)
N50.0129 (3)0.2818 (3)0.29133 (16)0.0196 (6)
C50.1446 (4)0.5280 (3)0.3397 (2)0.0175 (7)
H50.19930.61050.35650.021*
C10.1385 (4)0.2677 (3)0.41376 (17)0.0121 (6)
C40.1666 (4)0.4812 (4)0.2669 (2)0.0213 (7)
H40.23340.53200.23380.026*
N20.2581 (3)0.2430 (3)0.51904 (14)0.0128 (5)
N40.2388 (3)0.1549 (3)0.40478 (15)0.0148 (6)
C30.0857 (4)0.3563 (4)0.2450 (2)0.0236 (8)
H30.10000.32250.19630.028*
N30.3114 (3)0.1428 (3)0.47178 (16)0.0126 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0094 (3)0.0073 (3)0.0111 (3)0.0006 (2)0.0003 (2)0.0005 (2)
N10.0116 (12)0.0106 (11)0.0169 (15)0.0001 (10)0.0008 (10)0.0004 (10)
C20.0143 (14)0.0136 (14)0.0148 (16)0.0025 (12)0.0006 (12)0.0005 (12)
N60.0129 (12)0.0080 (11)0.0139 (14)0.0016 (9)0.0010 (10)0.0007 (9)
N50.0216 (15)0.0220 (14)0.0153 (15)0.0032 (12)0.0039 (12)0.0051 (11)
C50.0191 (16)0.0108 (14)0.0227 (18)0.0004 (12)0.0033 (13)0.0008 (12)
C10.0129 (14)0.0127 (14)0.0106 (16)0.0006 (12)0.0002 (12)0.0003 (11)
C40.0224 (17)0.0219 (16)0.0195 (18)0.0017 (14)0.0079 (14)0.0040 (14)
N20.0118 (12)0.0114 (12)0.0152 (14)0.0031 (10)0.0012 (11)0.0004 (10)
N40.0157 (13)0.0153 (12)0.0134 (14)0.0015 (11)0.0024 (11)0.0015 (10)
C30.0272 (18)0.0290 (18)0.0146 (18)0.0029 (16)0.0060 (14)0.0019 (15)
N30.0138 (12)0.0095 (11)0.0144 (14)0.0033 (10)0.0018 (10)0.0013 (10)
Geometric parameters (Å, º) top
Ni1—N1i2.054 (3)N6—C51.338 (4)
Ni1—N12.054 (3)N5—C31.344 (4)
Ni1—N3ii2.089 (2)C5—C41.382 (5)
Ni1—N3iii2.089 (2)C5—H50.93
Ni1—N6i2.098 (3)C1—N41.332 (4)
Ni1—N62.098 (3)C4—C31.381 (5)
N1—N21.326 (3)C4—H40.93
N1—C11.337 (4)N2—N31.322 (4)
C2—N51.323 (4)N4—N31.340 (4)
C2—N61.343 (4)C3—H30.93
C2—C11.468 (4)N3—Ni1iv2.089 (2)
N1i—Ni1—N1180C5—N6—C2116.8 (3)
N1i—Ni1—N3ii88.98 (10)C5—N6—Ni1128.1 (2)
N1—Ni1—N3ii91.02 (10)C2—N6—Ni1115.0 (2)
N1i—Ni1—N3iii91.02 (10)C2—N5—C3115.5 (3)
N1—Ni1—N3iii88.98 (10)N6—C5—C4121.0 (3)
N3ii—Ni1—N3iii180N6—C5—H5119.5
N1i—Ni1—N6i79.12 (10)C4—C5—H5119.5
N1—Ni1—N6i100.88 (10)N4—C1—N1111.5 (3)
N3ii—Ni1—N6i88.87 (10)N4—C1—C2129.5 (3)
N3iii—Ni1—N6i91.13 (10)N1—C1—C2119.0 (3)
N1i—Ni1—N6100.88 (10)C3—C4—C5117.4 (3)
N1—Ni1—N679.12 (10)C3—C4—H4121.3
N3ii—Ni1—N691.13 (10)C5—C4—H4121.3
N3iii—Ni1—N688.87 (10)N3—N2—N1107.4 (2)
N6i—Ni1—N6180C1—N4—N3103.4 (2)
N2—N1—C1106.4 (2)N5—C3—C4122.5 (3)
N2—N1—Ni1140.1 (2)N5—C3—H3118.7
C1—N1—Ni1113.5 (2)C4—C3—H3118.7
N5—C2—N6126.7 (3)N2—N3—N4111.4 (2)
N5—C2—C1120.1 (3)N2—N3—Ni1iv121.8 (2)
N6—C2—C1113.2 (3)N4—N3—Ni1iv126.6 (2)
N3ii—Ni1—N1—N285.7 (3)C2—N6—C5—C40.5 (5)
N3iii—Ni1—N1—N294.3 (3)Ni1—N6—C5—C4177.2 (2)
N6i—Ni1—N1—N23.4 (3)N2—N1—C1—N40.5 (3)
N6—Ni1—N1—N2176.6 (3)Ni1—N1—C1—N4179.06 (19)
N3ii—Ni1—N1—C193.6 (2)N2—N1—C1—C2178.4 (3)
N3iii—Ni1—N1—C186.4 (2)Ni1—N1—C1—C21.2 (3)
N6i—Ni1—N1—C1177.3 (2)N5—C2—C1—N44.5 (5)
N6—Ni1—N1—C12.7 (2)N6—C2—C1—N4175.3 (3)
N5—C2—N6—C51.3 (5)N5—C2—C1—N1178.0 (3)
C1—C2—N6—C5178.4 (3)N6—C2—C1—N12.2 (4)
N5—C2—N6—Ni1175.8 (3)N6—C5—C4—C31.4 (5)
C1—C2—N6—Ni14.4 (3)C1—N1—N2—N30.4 (3)
N1i—Ni1—N6—C50.8 (3)Ni1—N1—N2—N3178.9 (2)
N1—Ni1—N6—C5179.2 (3)N1—C1—N4—N30.3 (3)
N3ii—Ni1—N6—C588.4 (3)C2—C1—N4—N3177.9 (3)
N3iii—Ni1—N6—C591.6 (3)C2—N5—C3—C40.8 (5)
N1i—Ni1—N6—C2176.0 (2)C5—C4—C3—N50.7 (5)
N1—Ni1—N6—C24.0 (2)N1—N2—N3—N40.2 (3)
N3ii—Ni1—N6—C294.8 (2)N1—N2—N3—Ni1iv174.80 (18)
N3iii—Ni1—N6—C285.2 (2)C1—N4—N3—N20.0 (3)
N6—C2—N5—C32.0 (5)C1—N4—N3—Ni1iv174.8 (2)
C1—C2—N5—C3177.8 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x1/2, y+1/2, z; (iii) x+1/2, y+1/2, z+1; (iv) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C5H3N6)2]
Mr352.98
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)8.2054 (16), 9.1736 (18), 17.846 (4)
V3)1343.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.47
Crystal size (mm)0.18 × 0.16 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.974, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9528, 1598, 1396
Rint0.058
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.105, 1.20
No. of reflections1598
No. of parameters106
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.40

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998), SHELXTL.

Selected geometric parameters (Å, º) top
Ni1—N12.054 (3)Ni1—N62.098 (3)
Ni1—N3i2.089 (2)
N1—Ni1—N3ii91.02 (10)N1—Ni1—N679.12 (10)
N1—Ni1—N3i88.98 (10)N3ii—Ni1—N691.13 (10)
N1—Ni1—N6iii100.88 (10)N3i—Ni1—N688.87 (10)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1/2, y+1/2, z; (iii) x, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds