Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, [CeCl2(C10H8N2O2)2(H2O)3]Cl·H2O, each CeIII atom is coordinated by six O atoms [Ce—O = 2.454 (3)–2.454 (3) Å] and two chloride ions [Ce—Cl = 2.8277 (9) and 2.8721 (9) Å] in a distorted tetra­gonal-anti­prismatic geometry. One of the 4,4′-bipyridine N,N′-dioxide ligands acts as a bridging ligand while the other acts a terminal ligand, leading to the formation of a linear polymeric structure. In the crystal structure, adjacent polymeric chains are cross-linked by O—H...O and O—H...Cl hydrogen bonds, forming a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807019010/ci2363sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807019010/ci2363Isup2.hkl
Contains datablock I

CCDC reference: 646638

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.033
  • wR factor = 0.083
  • Data-to-parameter ratio = 17.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Ce1
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Recently, inorganic-organic coordination compounds attracted considerable attention due to their fascinating structure and potential applications as functional materials (Kitagawa & Kitaura, 2004; Yaghi et al., 2003). Multidentate O-donor ligands have been employed extensively as organic spacers in the construction of extended networks. 4,4'-Bipyridine N,N'-dioxide (L), a typical bridge ligand, can coordinate to lanthanide metal ions in five possible modes, and generate some predicted, controlled structural frameworks, including one-dimensional chains, two-dimensional layer, and three-dimensional network (Hill et al., 2004; Long et al., 2000, 2001, 2002, 2004; Ma et al., 2005). We report here the synthesis and crystal structure of the title compound, (I).

As illustrated in Fig. 1, in compound (I), each CeIII atom is coordinated by six O atoms [Ce—O = 2.454 (3)–2.545 (3) Å] from three L ligands and three water molecules, and two chloride ions [Ce—Cl = 2.8277 (9) and 2.8721 (9) Å] in a distorted tetragonal antiprism geometry. The interesting feature of (I) is that the asymmetric unit contains two L ligands, which exhibit two different coordination modes. One of the L acts as a bridging ligand, linking two CeIII ions, with a Ce···Cei distance of 13.1324 (8) Å [symmetry code: (i) x + 1, y - 1, z], and the other acts a terminal ligand. As a result of this coordination a linear polymeric chain is formed (Fig. 2), similar to that in catena-[bis(µ2-4,4'-bipyridine N,N'-dioxide)-tris (nitrato)-terbium(III)] (Long et al., 2002) but different from the wave-like chain in catena-[(µ2-4,4'-bipyridine N,N'-dioxide)-(methanol)-\ tris(nitrato)-terbium(III)] (Long et al., 2002). The pyridine rings in the L ligand are not coplanar; the dihedral angle between the N1- and N2-pyridine rings is 14.2 (2)° and that between the N3- and N4-pyridine rings is 10.5 (2)°.

In the polymeric chain, weak face-to face π-π interactions are observed between the adjacent bridging and terminal L ligands, with Cg3···Cg2i and Cg4···Cg1i distances of 3.596 (2) and 3.888 (2) Å, respectively (Cg1, Cg2, Cg3 and Cg4 denote the centroids of the N1/C1—C5, N2/C6—C10, N3/C11—C15 and N4/C16—C20 rings, respectively). The neighboring chains are cross-linked by O—H···O and O—H···Cl hydrogen bonds, involving three coordinated water molecules, one lattice water molecule, one uncoordinated chloride ion and the uncoordinated O atom of the L ligand (Table 1), forming a three-dimensional hydrogen-bonded network, as shown in Fig.3.

Related literature top

For related literature, see: Hill et al. (2004); Kitagawa & Kitaura (2004); Long et al. (2000, 2001, 2002, 2004); Ma et al. (2005); Yaghi et al. (2003).

Experimental top

A mixture of CeCl3.6H2O (0.20 mmol), 4,4'-bipyridine N,N'-dioxide (0.40 mmol) and water (10 ml) was stirred at ca 323 K for 3 h and then filtered. The filtrate was kept at room temperature and yellow crystals of the title compound (yield 53%, based on Ce) were obtained after several days.

Refinement top

The water H atoms were located in difference Fourier maps, and refined with O—H distances restrained at 0.85 Å and Uiso = 1.2Ueq(O). The remaining H atoms were positioned geometrically, with C—H = 0.93 Å, and were constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C)

Structure description top

Recently, inorganic-organic coordination compounds attracted considerable attention due to their fascinating structure and potential applications as functional materials (Kitagawa & Kitaura, 2004; Yaghi et al., 2003). Multidentate O-donor ligands have been employed extensively as organic spacers in the construction of extended networks. 4,4'-Bipyridine N,N'-dioxide (L), a typical bridge ligand, can coordinate to lanthanide metal ions in five possible modes, and generate some predicted, controlled structural frameworks, including one-dimensional chains, two-dimensional layer, and three-dimensional network (Hill et al., 2004; Long et al., 2000, 2001, 2002, 2004; Ma et al., 2005). We report here the synthesis and crystal structure of the title compound, (I).

As illustrated in Fig. 1, in compound (I), each CeIII atom is coordinated by six O atoms [Ce—O = 2.454 (3)–2.545 (3) Å] from three L ligands and three water molecules, and two chloride ions [Ce—Cl = 2.8277 (9) and 2.8721 (9) Å] in a distorted tetragonal antiprism geometry. The interesting feature of (I) is that the asymmetric unit contains two L ligands, which exhibit two different coordination modes. One of the L acts as a bridging ligand, linking two CeIII ions, with a Ce···Cei distance of 13.1324 (8) Å [symmetry code: (i) x + 1, y - 1, z], and the other acts a terminal ligand. As a result of this coordination a linear polymeric chain is formed (Fig. 2), similar to that in catena-[bis(µ2-4,4'-bipyridine N,N'-dioxide)-tris (nitrato)-terbium(III)] (Long et al., 2002) but different from the wave-like chain in catena-[(µ2-4,4'-bipyridine N,N'-dioxide)-(methanol)-\ tris(nitrato)-terbium(III)] (Long et al., 2002). The pyridine rings in the L ligand are not coplanar; the dihedral angle between the N1- and N2-pyridine rings is 14.2 (2)° and that between the N3- and N4-pyridine rings is 10.5 (2)°.

In the polymeric chain, weak face-to face π-π interactions are observed between the adjacent bridging and terminal L ligands, with Cg3···Cg2i and Cg4···Cg1i distances of 3.596 (2) and 3.888 (2) Å, respectively (Cg1, Cg2, Cg3 and Cg4 denote the centroids of the N1/C1—C5, N2/C6—C10, N3/C11—C15 and N4/C16—C20 rings, respectively). The neighboring chains are cross-linked by O—H···O and O—H···Cl hydrogen bonds, involving three coordinated water molecules, one lattice water molecule, one uncoordinated chloride ion and the uncoordinated O atom of the L ligand (Table 1), forming a three-dimensional hydrogen-bonded network, as shown in Fig.3.

For related literature, see: Hill et al. (2004); Kitagawa & Kitaura (2004); Long et al. (2000, 2001, 2002, 2004); Ma et al. (2005); Yaghi et al. (2003).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2004); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. Coordination environment of the Cerium atom in (I). Displacement ellipsoids are drawn at the 35% probability level. [Symmetry code: (i) x + 1, y - 1, z.]
[Figure 2] Fig. 2. Part of the polymeric chain of (I). H atoms have been omitted for clarity. [Symmetry code: (i) x + 1, y - 1, z.]
[Figure 3] Fig. 3. Part of the hydrogen-bonded (dashed lines) network in (I). [Symmetry codes: (i) x + 1, y - 1, z; (ii) x - 1, y + 1, z; (iii) -x - 1, -y + 2, -z + 2; (iv) -x, -y + 1, -z + 2; (v) -x + 1, -y, -z + 1; (vi) -x, -y + 1, -z + 1.]
catena-Poly[[[triaqua(4,4'-bipyridine N,N'-dioxide-κO)dichloridocerium(III)]-µ2-4,4'-bipyridine N,N'-dioxide-κ2O:O'] chloride monohydrate] top
Crystal data top
[CeCl2(C10H8N2O2)2(H2O)3]Cl·H2O)Z = 2
Mr = 694.90F(000) = 690
Triclinic, P1Dx = 1.813 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6677 (1) ÅCell parameters from 3563 reflections
b = 10.4584 (3) Åθ = 2.3–27.5°
c = 14.7861 (3) ŵ = 2.16 mm1
α = 83.362 (5)°T = 293 K
β = 73.027 (4)°Prism, orange
γ = 86.190 (6)°0.45 × 0.22 × 0.10 mm
V = 1272.63 (6) Å3
Data collection top
Rigaku Mercury CCD
diffractometer
5698 independent reflections
Radiation source: fine-focus sealed tube5315 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 14.6306 pixels mm-1θmax = 27.5°, θmin = 2.3°
ω scansh = 1110
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2004)
k = 139
Tmin = 0.444, Tmax = 0.813l = 1919
9756 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0423P)2 + 2.1096P]
where P = (Fo2 + 2Fc2)/3
5698 reflections(Δ/σ)max = 0.001
325 parametersΔρmax = 1.31 e Å3
0 restraintsΔρmin = 1.13 e Å3
Crystal data top
[CeCl2(C10H8N2O2)2(H2O)3]Cl·H2O)γ = 86.190 (6)°
Mr = 694.90V = 1272.63 (6) Å3
Triclinic, P1Z = 2
a = 8.6677 (1) ÅMo Kα radiation
b = 10.4584 (3) ŵ = 2.16 mm1
c = 14.7861 (3) ÅT = 293 K
α = 83.362 (5)°0.45 × 0.22 × 0.10 mm
β = 73.027 (4)°
Data collection top
Rigaku Mercury CCD
diffractometer
5698 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2004)
5315 reflections with I > 2σ(I)
Tmin = 0.444, Tmax = 0.813Rint = 0.019
9756 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.06Δρmax = 1.31 e Å3
5698 reflectionsΔρmin = 1.13 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ce10.00594 (2)0.441087 (16)0.796133 (12)0.01936 (7)
Cl10.11177 (11)0.19676 (8)0.88064 (7)0.03122 (19)
Cl20.09043 (12)0.67876 (8)0.84625 (6)0.03285 (19)
Cl30.10399 (16)0.85283 (13)0.58040 (9)0.0563 (3)
O10.2380 (4)0.5682 (3)0.7862 (2)0.0387 (7)
O20.8044 (3)1.3811 (2)0.8983 (2)0.0350 (6)
O30.7408 (4)0.5185 (3)0.5485 (2)0.0378 (6)
O40.2428 (3)0.3201 (3)0.6970 (2)0.0373 (6)
O50.1189 (4)0.3598 (3)0.6824 (2)0.0464 (8)
H5A0.09350.28450.66530.056*
H5B0.14660.39720.63510.056*
O60.1698 (3)0.4586 (3)0.96565 (18)0.0332 (6)
H6A0.18120.52200.99840.040*
H6B0.14650.39170.99830.040*
O70.1258 (4)0.5682 (2)0.63959 (18)0.0385 (7)
H7B0.11480.64820.62360.046*
H7A0.17310.53930.58670.046*
O80.0742 (3)0.10277 (19)0.62206 (14)0.0154 (4)
H8A0.00280.07250.64850.018*
H8B0.05260.08700.56450.018*
N10.3048 (4)0.6797 (3)0.8165 (2)0.0291 (7)
N20.7157 (4)1.2713 (3)0.8993 (2)0.0271 (6)
N30.3114 (4)0.2040 (3)0.6792 (2)0.0259 (6)
N40.6763 (4)0.4033 (3)0.5714 (2)0.0284 (6)
C10.2279 (5)0.7893 (4)0.7815 (3)0.0357 (9)
H10.12420.78670.73990.043*
C20.4516 (5)0.6817 (4)0.8794 (3)0.0416 (10)
H20.50200.60480.90590.050*
C30.3012 (5)0.9058 (4)0.8068 (3)0.0335 (8)
H30.24550.98100.78250.040*
C40.5281 (5)0.7971 (4)0.9050 (3)0.0394 (10)
H40.63040.79720.94830.047*
C50.4557 (4)0.9133 (3)0.8673 (2)0.0236 (7)
C60.5413 (4)1.0395 (3)0.8856 (2)0.0232 (7)
C70.4733 (4)1.1541 (3)0.8356 (3)0.0299 (8)
H70.36751.15300.79660.036*
C80.6954 (4)1.0496 (4)0.9479 (3)0.0297 (8)
H80.74160.97690.98590.036*
C90.5622 (5)1.2680 (4)0.8442 (3)0.0320 (8)
H90.51571.34370.81140.038*
C100.7813 (5)1.1658 (4)0.9543 (3)0.0313 (8)
H100.88411.17120.99660.038*
C110.4609 (5)0.1976 (4)0.6179 (3)0.0304 (8)
H110.51400.27280.58950.037*
C120.2344 (4)0.0960 (3)0.7219 (3)0.0282 (7)
H120.13120.10220.76370.034*
C130.5353 (4)0.0786 (3)0.5975 (3)0.0290 (7)
H130.63720.07480.55400.035*
C140.3065 (4)0.0234 (4)0.7045 (3)0.0276 (7)
H140.25230.09710.73550.033*
C150.4602 (4)0.0351 (3)0.6406 (2)0.0231 (7)
C160.5370 (4)0.1637 (3)0.6185 (2)0.0246 (7)
C170.6976 (5)0.1775 (4)0.5648 (3)0.0343 (8)
H170.76030.10530.54370.041*
C180.4512 (5)0.2754 (4)0.6482 (3)0.0338 (8)
H180.34430.27050.68510.041*
C190.7645 (5)0.2979 (4)0.5423 (3)0.0361 (9)
H190.87190.30570.50670.043*
C200.5208 (5)0.3933 (4)0.6241 (3)0.0368 (9)
H200.46020.46680.64430.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce10.02181 (11)0.01415 (10)0.02068 (10)0.00357 (7)0.00417 (7)0.00329 (6)
Cl10.0306 (4)0.0229 (4)0.0348 (4)0.0044 (3)0.0010 (4)0.0006 (3)
Cl20.0440 (5)0.0219 (4)0.0313 (4)0.0052 (4)0.0082 (4)0.0018 (3)
Cl30.0570 (7)0.0563 (7)0.0524 (7)0.0063 (6)0.0124 (6)0.0020 (6)
O10.0418 (16)0.0312 (14)0.0461 (16)0.0220 (12)0.0178 (13)0.0154 (12)
O20.0448 (16)0.0252 (13)0.0402 (15)0.0187 (12)0.0205 (13)0.0144 (11)
O30.0529 (17)0.0228 (13)0.0358 (14)0.0162 (12)0.0107 (13)0.0102 (11)
O40.0410 (16)0.0239 (13)0.0414 (15)0.0138 (12)0.0041 (12)0.0098 (11)
O50.078 (2)0.0238 (13)0.0532 (18)0.0115 (14)0.0437 (18)0.0115 (13)
O60.0428 (15)0.0281 (13)0.0260 (13)0.0021 (11)0.0042 (11)0.0084 (10)
O70.0617 (19)0.0198 (12)0.0246 (13)0.0018 (12)0.0009 (12)0.0012 (10)
O80.0277 (11)0.0113 (9)0.0100 (9)0.0060 (8)0.0094 (8)0.0005 (7)
N10.0283 (15)0.0276 (15)0.0313 (15)0.0147 (12)0.0096 (13)0.0084 (12)
N20.0329 (16)0.0223 (14)0.0302 (15)0.0113 (12)0.0149 (13)0.0112 (12)
N30.0283 (15)0.0237 (14)0.0255 (14)0.0099 (12)0.0070 (12)0.0096 (11)
N40.0368 (17)0.0217 (14)0.0265 (14)0.0096 (12)0.0098 (13)0.0063 (12)
C10.0287 (19)0.033 (2)0.035 (2)0.0093 (16)0.0029 (16)0.0026 (16)
C20.033 (2)0.0256 (19)0.057 (3)0.0006 (16)0.0026 (19)0.0050 (18)
C30.0281 (19)0.0261 (18)0.038 (2)0.0042 (15)0.0001 (16)0.0053 (15)
C40.0263 (19)0.0262 (19)0.055 (3)0.0031 (15)0.0064 (17)0.0089 (17)
C50.0246 (16)0.0227 (16)0.0233 (16)0.0061 (13)0.0077 (13)0.0023 (13)
C60.0228 (16)0.0239 (16)0.0229 (15)0.0047 (13)0.0074 (13)0.0036 (13)
C70.0231 (17)0.0258 (18)0.040 (2)0.0023 (14)0.0086 (15)0.0034 (15)
C80.0294 (18)0.0284 (18)0.0264 (17)0.0065 (15)0.0031 (14)0.0006 (14)
C90.033 (2)0.0234 (17)0.041 (2)0.0006 (15)0.0128 (17)0.0020 (15)
C100.0299 (19)0.035 (2)0.0257 (17)0.0105 (16)0.0047 (14)0.0058 (15)
C110.0308 (19)0.0241 (17)0.0305 (18)0.0030 (14)0.0012 (15)0.0013 (14)
C120.0239 (17)0.0266 (17)0.0324 (18)0.0036 (14)0.0037 (14)0.0104 (14)
C130.0246 (17)0.0265 (17)0.0313 (18)0.0064 (14)0.0009 (14)0.0069 (14)
C140.0261 (17)0.0249 (17)0.0308 (18)0.0006 (14)0.0053 (14)0.0067 (14)
C150.0228 (16)0.0217 (16)0.0255 (16)0.0037 (13)0.0075 (13)0.0069 (13)
C160.0260 (17)0.0212 (16)0.0267 (16)0.0038 (13)0.0072 (14)0.0065 (13)
C170.0250 (18)0.0266 (18)0.049 (2)0.0024 (15)0.0045 (16)0.0122 (17)
C180.0271 (19)0.0249 (18)0.042 (2)0.0018 (15)0.0017 (16)0.0047 (16)
C190.0257 (18)0.031 (2)0.048 (2)0.0072 (15)0.0038 (17)0.0124 (17)
C200.038 (2)0.0220 (18)0.044 (2)0.0005 (16)0.0013 (17)0.0039 (16)
Geometric parameters (Å, º) top
Ce1—O12.454 (3)C2—H20.93
Ce1—O52.498 (3)C3—C51.380 (5)
Ce1—O72.504 (3)C3—H30.93
Ce1—O42.508 (3)C4—C51.386 (5)
Ce1—O2i2.544 (3)C4—H40.93
Ce1—O62.545 (3)C5—C61.484 (4)
Ce1—Cl12.8277 (9)C6—C81.389 (5)
Ce1—Cl22.8721 (9)C6—C71.402 (5)
O1—N11.332 (4)C7—C91.373 (5)
O2—N21.340 (4)C7—H70.93
O3—N41.332 (4)C8—C101.380 (5)
O4—N31.336 (4)C8—H80.93
O5—H5A0.85C9—H90.93
O5—H5B0.85C10—H100.93
O6—H6A0.85C11—C131.387 (5)
O6—H6B0.85C11—H110.93
O7—H7B0.85C12—C141.377 (5)
O7—H7A0.85C12—H120.93
O8—H8A0.85C13—C151.389 (5)
O8—H8B0.85C13—H130.93
N1—C11.337 (5)C14—C151.397 (5)
N1—C21.340 (5)C14—H140.93
N2—C91.343 (5)C15—C161.488 (4)
N2—C101.344 (5)C16—C181.384 (5)
N3—C121.345 (5)C16—C171.395 (5)
N3—C111.350 (5)C17—C191.385 (5)
N4—C191.339 (5)C17—H170.93
N4—C201.350 (5)C18—C201.374 (5)
C1—C31.375 (5)C18—H180.93
C1—H10.93C19—H190.93
C2—C41.375 (5)C20—H200.93
O1—Ce1—O568.28 (9)N1—C2—H2119.9
O1—Ce1—O782.33 (10)C4—C2—H2119.9
O5—Ce1—O774.47 (10)C1—C3—C5121.3 (4)
O1—Ce1—O4141.78 (10)C1—C3—H3119.3
O5—Ce1—O479.52 (10)C5—C3—H3119.3
O7—Ce1—O469.30 (9)C2—C4—C5121.3 (4)
O1—Ce1—O2i144.12 (9)C2—C4—H4119.4
O5—Ce1—O2i144.07 (8)C5—C4—H4119.4
O7—Ce1—O2i115.80 (10)C3—C5—C4116.3 (3)
O4—Ce1—O2i73.45 (9)C3—C5—C6121.1 (3)
O1—Ce1—O672.90 (9)C4—C5—C6122.5 (3)
O5—Ce1—O6117.92 (10)C8—C6—C7116.8 (3)
O7—Ce1—O6143.72 (8)C8—C6—C5122.1 (3)
O4—Ce1—O6143.38 (9)C7—C6—C5120.9 (3)
O2i—Ce1—O675.39 (9)C9—C7—C6120.2 (3)
O1—Ce1—Cl1103.72 (8)C9—C7—H7119.9
O5—Ce1—Cl174.42 (8)C6—C7—H7119.9
O7—Ce1—Cl1143.21 (6)C10—C8—C6121.1 (4)
O4—Ce1—Cl186.13 (7)C10—C8—H8119.5
O2i—Ce1—Cl180.49 (7)C6—C8—H8119.5
O6—Ce1—Cl170.10 (6)N2—C9—C7120.8 (4)
O1—Ce1—Cl282.29 (7)N2—C9—H9119.6
O5—Ce1—Cl2140.34 (7)C7—C9—H9119.6
O7—Ce1—Cl275.80 (7)N2—C10—C8119.8 (3)
O4—Ce1—Cl2113.29 (7)N2—C10—H10120.1
O2i—Ce1—Cl273.59 (6)C8—C10—H10120.1
O6—Ce1—Cl274.96 (6)N3—C11—C13119.8 (3)
Cl1—Ce1—Cl2140.64 (3)N3—C11—H11120.1
N1—O1—Ce1134.5 (2)C13—C11—H11120.1
N2—O2—Ce1ii125.79 (19)N3—C12—C14120.7 (3)
N3—O4—Ce1145.4 (2)N3—C12—H12119.6
Ce1—O5—H5A119.7C14—C12—H12119.6
Ce1—O5—H5B132.0C11—C13—C15121.2 (3)
H5A—O5—H5B101.3C11—C13—H13119.4
Ce1—O6—H6A128.0C15—C13—H13119.4
Ce1—O6—H6B105.8C12—C14—C15120.7 (3)
H6A—O6—H6B108.1C12—C14—H14119.7
Ce1—O7—H7B129.1C15—C14—H14119.7
Ce1—O7—H7A127.5C13—C15—C14116.8 (3)
H7B—O7—H7A102.5C13—C15—C16122.0 (3)
H8A—O8—H8B113.1C14—C15—C16121.2 (3)
O1—N1—C1120.0 (3)C18—C16—C17116.6 (3)
O1—N1—C2119.6 (3)C18—C16—C15121.6 (3)
C1—N1—C2120.4 (3)C17—C16—C15121.8 (3)
O2—N2—C9119.2 (3)C19—C17—C16120.6 (4)
O2—N2—C10120.0 (3)C19—C17—H17119.7
C9—N2—C10120.8 (3)C16—C17—H17119.7
O4—N3—C12120.9 (3)C20—C18—C16121.4 (4)
O4—N3—C11118.3 (3)C20—C18—H18119.3
C12—N3—C11120.8 (3)C16—C18—H18119.3
O3—N4—C19120.5 (3)N4—C19—C17120.8 (4)
O3—N4—C20119.4 (3)N4—C19—H19119.6
C19—N4—C20120.1 (3)C17—C19—H19119.6
N1—C1—C3120.4 (3)N4—C20—C18120.5 (4)
N1—C1—H1119.8N4—C20—H20119.7
C3—C1—H1119.8C18—C20—H20119.7
N1—C2—C4120.2 (4)
O5—Ce1—O1—N1168.3 (4)C8—C6—C7—C94.6 (5)
O7—Ce1—O1—N192.1 (3)C5—C6—C7—C9171.5 (3)
O4—Ce1—O1—N1133.7 (3)C7—C6—C8—C104.8 (5)
O2i—Ce1—O1—N132.2 (4)C5—C6—C8—C10171.2 (3)
O6—Ce1—O1—N161.1 (3)O2—N2—C9—C7173.0 (3)
Cl1—Ce1—O1—N1124.9 (3)C10—N2—C9—C76.3 (5)
Cl2—Ce1—O1—N115.5 (3)C6—C7—C9—N20.8 (6)
O1—Ce1—O4—N3108.8 (4)O2—N2—C10—C8173.3 (3)
O5—Ce1—O4—N376.3 (4)C9—N2—C10—C86.0 (5)
O7—Ce1—O4—N3153.5 (4)C6—C8—C10—N20.3 (6)
O2i—Ce1—O4—N379.8 (4)O4—N3—C11—C13179.7 (3)
O6—Ce1—O4—N347.0 (5)C12—N3—C11—C131.1 (5)
Cl1—Ce1—O4—N31.5 (4)O4—N3—C12—C14179.0 (3)
Cl2—Ce1—O4—N3143.1 (4)C11—N3—C12—C140.2 (5)
Ce1—O1—N1—C164.5 (5)N3—C11—C13—C151.6 (6)
Ce1—O1—N1—C2117.8 (4)N3—C12—C14—C151.1 (5)
Ce1ii—O2—N2—C994.6 (4)C11—C13—C15—C140.7 (5)
Ce1ii—O2—N2—C1084.7 (4)C11—C13—C15—C16179.1 (3)
Ce1—O4—N3—C125.9 (6)C12—C14—C15—C130.6 (5)
Ce1—O4—N3—C11173.3 (3)C12—C14—C15—C16177.8 (3)
O1—N1—C1—C3175.0 (4)C13—C15—C16—C18168.2 (4)
C2—N1—C1—C32.7 (6)C14—C15—C16—C1810.2 (5)
O1—N1—C2—C4174.3 (4)C13—C15—C16—C1710.0 (5)
C1—N1—C2—C43.4 (7)C14—C15—C16—C17171.7 (3)
N1—C1—C3—C50.9 (6)C18—C16—C17—C190.6 (6)
N1—C2—C4—C50.6 (7)C15—C16—C17—C19177.7 (4)
C1—C3—C5—C43.5 (6)C17—C16—C18—C201.1 (6)
C1—C3—C5—C6172.9 (4)C15—C16—C18—C20177.2 (4)
C2—C4—C5—C32.8 (6)O3—N4—C19—C17179.0 (4)
C2—C4—C5—C6173.5 (4)C20—N4—C19—C170.7 (6)
C3—C5—C6—C8178.5 (3)C16—C17—C19—N40.3 (6)
C4—C5—C6—C85.3 (5)O3—N4—C20—C18179.5 (4)
C3—C5—C6—C75.6 (5)C19—N4—C20—C180.2 (6)
C4—C5—C6—C7170.5 (4)C16—C18—C20—N40.7 (7)
Symmetry codes: (i) x+1, y1, z; (ii) x1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O80.852.062.896 (3)170
O5—H5B···O3ii0.851.932.763 (4)167
O6—H6A···O2iii0.851.902.716 (4)161
O6—H6B···Cl2iv0.852.503.214 (3)142
O7—H7A···O3v0.851.952.778 (4)164
O7—H7B···Cl30.852.173.014 (3)176
O8—H8B···Cl3vi0.852.323.059 (2)145
Symmetry codes: (ii) x1, y+1, z; (iii) x1, y+2, z+2; (iv) x, y+1, z+2; (v) x+1, y, z+1; (vi) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[CeCl2(C10H8N2O2)2(H2O)3]Cl·H2O)
Mr694.90
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.6677 (1), 10.4584 (3), 14.7861 (3)
α, β, γ (°)83.362 (5), 73.027 (4), 86.190 (6)
V3)1272.63 (6)
Z2
Radiation typeMo Kα
µ (mm1)2.16
Crystal size (mm)0.45 × 0.22 × 0.10
Data collection
DiffractometerRigaku Mercury CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2004)
Tmin, Tmax0.444, 0.813
No. of measured, independent and
observed [I > 2σ(I)] reflections
9756, 5698, 5315
Rint0.019
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.084, 1.06
No. of reflections5698
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.31, 1.13

Computer programs: CrystalClear (Rigaku/MSC, 2004), CrystalClear, SHELXTL (Sheldrick, 1997), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O80.852.062.896 (3)170
O5—H5B···O3i0.851.932.763 (4)167
O6—H6A···O2ii0.851.902.716 (4)161
O6—H6B···Cl2iii0.852.503.214 (3)142
O7—H7A···O3iv0.851.952.778 (4)164
O7—H7B···Cl30.852.173.014 (3)176
O8—H8B···Cl3v0.852.323.059 (2)145
Symmetry codes: (i) x1, y+1, z; (ii) x1, y+2, z+2; (iii) x, y+1, z+2; (iv) x+1, y, z+1; (v) x, y+1, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds