Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title complex, [Gd((C24H28N4O4)(NO3)2(H2O)](NO3)·0.5CH3OH·1.75H2O, contains a gadolinium ion with a distorted monocapped square antiprismatic coordination.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803013114/cf6259sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803013114/cf6259Isup2.hkl
Contains datablock I

CCDC reference: 217381

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.007 Å
  • Disorder in solvent or counterion
  • R factor = 0.043
  • wR factor = 0.118
  • Data-to-parameter ratio = 15.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_302 Alert C Anion/Solvent Disorder ......................... 14.00 Perc.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

The design and synthesis of macrocyclic ligands and their lanthanide complexes are an interesting area of research, due to their importance in basic and applied chemistry (Alexander, 1995). The ability of macrocyclic ligands to recognize lanthanide(III) ions makes them valuable for the development of applications such as selective separation of metals (Zhu & Izatt, 1990), luminescence probes in biological systems (Faulkner et al., 2001) and supramolecular devices (Chen et al., 2002). Gadolinium macrocyclic complexes have been extensively investigated, owing to their potential application in magnetic resonance imaging (Caravan et al., 1999). 18- and 20-membered macrocycles, derived from [2 + 2]-condensation of 2,6-diformylphenol and diamines, have good complexing properties for lanthanide ions (Alexander, 1995), but only a few gadolinium complexes have been reported (Drew et al., 1995).

We report here the crystal structure of a new gadolinium complex, [Gd(H4L)(NO3)2(H2O)](NO3)·0.5MeOH·1.75H2O, (I), with the neutral Schiff base ligand H4L derived from 4-methyl-2,6-diformylphenol and 1,3-diaminopropanol. The same complex as a dihydrate, [Gd(H4L)(NO3)2(H2O)](NO3)·2H2O, has been reported previously (Spodine et al., 2000), but (I) is a different solvate, belonging to a different crystal system (monoclinic, space group C2/c, compared with orthorhombic, Pbca).

In (I), atom Gd1 is coordinated by a monodentate nitrate ion, a bidentate nitrate ion, a water molecule, and the neutral Schiff base macrocycle H4L, namely 5,17-dihydroxy-11,23-dimethylbicyclo[18.3.1.19,13]hexacosa- 1(25),2,7,9,11,13 (26),21,23-octaene-25,26-diol, which provides an N2O3 donor set to encapsulate only one gadolinium ion. The coordination polyhedron can be described as a distorted monocapped square antiprism, in which atoms N1, N2, O1 and O3 of H4L form the basal plane [mean deviation = 0.0595 (2) Å], the upper plane consists of O2, O11 (water molecule), O8 (from monodentate nitrate) and O5 (from bidentate nitrate) [mean deviation = 0.2160 (2) Å], and another oxygen atom (O6) from the bidentate nitrate occupies the capping position.

The coordination distance is 2.418 (3) Å for the alcohol atom O2, slightly longer than those for the phenol atoms O1 [2.321 (3) Å] and O3 [2.296 (4) Å]. The Gd—O distances for the three-coordinate O atoms from the monodentate and the bidentate nitrate ions are in the range 2.509 (4)–2.545 (3) Å, and for O11 from the water molecule it is 2.403 (4) Å. Of the nine coordination distances, the longest are those for the two imino atoms N1 [2.549 (3) Å] and N2 ([2.556 (4) Å]. Among all the nine coordination distances, only two (for water atom O11 and the phenol atom O1) are shorter than those of the previously reported complex (Spondine et al., 2000), while the others show no significant differences. The two crystal structures belong to different crystal systems (monoclinic and orthorhomic, with space groups C2/c and Pbca, respectively), and have different solvent content. There is a larger dihedral angle between the two aromatic rings of 55.5 (2)° in the macrocyclic ligand of our complex, compared to 41.6° for the previous complex. The crystal structure of (I) is stabilized by intramolecular and intermolecular hydrogen bonds of the types O—H···O and C—H···O, where O atoms belong to water molecules, nitrate ions or the macrocyclic ligand (Table 1).

Experimental top

To a methanol solution of 4-methyl-2,6-diformylphenol (0.01 mmol) and Gd(NO3)3(H2O)6 (0.005 mmol) was added a methanol solution of 1,3-diaminopropanol (0.01 mmol). After the reaction mixture was refluxed for 10 h, the solvent was removed. The resulting yellow solid was recrystallized from acetonitrile, giving yellow block-shaped crystals of (I) suitable for X-ray analysis.

Refinement top

All H atoms were positioned geometrically and refined with a riding model, with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq of the parent atom.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the complex cation of (I), showing the labeling of the non-H atoms and 30% probability ellipsoids. H atoms have been omitted.
[Figure 2] Fig. 2. A view of the crystal packing, along the a axis. Hydrogen bonds are shown as dashed lines.
Aqua(5,17-dihydroxy-11,23-dimethylbicyclo[18.3.1.19,13]hexacosa- 1(25),2,7,9,11,13 (26),21,23-octaene-25,26-diolato)dinitrato-κ2O,O';κO- gadolinium nitrate–methanol–water (1/0.5/1.75) top
Crystal data top
[Gd(H2O)(NO3)2(C24H28N4O4)](NO3)·0.5CH4O·1.75H2OF(000) = 3404
Mr = 845.35Dx = 1.549 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 966 reflections
a = 24.281 (3) Åθ = 2.3–19.6°
b = 17.339 (2) ŵ = 1.91 mm1
c = 17.715 (2) ÅT = 293 K
β = 103.63 (1)°Prism, yellow
V = 7248.1 (15) Å30.2 × 0.15 × 0.1 mm
Z = 8
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
7082 independent reflections
Radiation source: fine-focus sealed tube5746 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2927
Tmin = 0.72, Tmax = 0.83k = 2021
19353 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.065P)2 + 1.99P]
where P = (Fo2 + 2Fc2)/3
7082 reflections(Δ/σ)max < 0.001
460 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 0.66 e Å3
Crystal data top
[Gd(H2O)(NO3)2(C24H28N4O4)](NO3)·0.5CH4O·1.75H2OV = 7248.1 (15) Å3
Mr = 845.35Z = 8
Monoclinic, C2/cMo Kα radiation
a = 24.281 (3) ŵ = 1.91 mm1
b = 17.339 (2) ÅT = 293 K
c = 17.715 (2) Å0.2 × 0.15 × 0.1 mm
β = 103.63 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
7082 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
5746 reflections with I > 2σ(I)
Tmin = 0.72, Tmax = 0.83Rint = 0.042
19353 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.08Δρmax = 0.77 e Å3
7082 reflectionsΔρmin = 0.66 e Å3
460 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Gd10.327292 (9)0.535467 (13)0.087375 (13)0.04056 (10)
C10.1909 (2)0.5932 (3)0.0150 (3)0.0421 (11)
C20.1334 (2)0.5807 (3)0.0195 (3)0.0466 (12)
C30.0894 (2)0.6146 (3)0.0352 (3)0.0519 (12)
H30.05260.60610.03040.062*
C40.0966 (2)0.6589 (3)0.0945 (3)0.0495 (12)
C50.1522 (2)0.6713 (3)0.0996 (3)0.0473 (11)
H50.15850.70170.13990.057*
C60.1988 (2)0.6403 (3)0.0472 (3)0.0422 (11)
C70.2545 (2)0.6624 (3)0.0572 (3)0.0432 (11)
H70.25520.69780.09630.052*
C80.3530 (2)0.6729 (3)0.0396 (3)0.0480 (12)
H8A0.35780.72580.02120.058*
H8B0.34690.67360.09570.058*
C90.4058 (2)0.6278 (3)0.0050 (3)0.0463 (11)
H90.43900.65850.00840.056*
C100.4089 (2)0.5497 (3)0.0437 (3)0.0507 (13)
H10A0.40840.55680.09810.061*
H10B0.44370.52340.01880.061*
C110.3359 (2)0.4635 (3)0.0944 (3)0.0445 (11)
H110.35140.46590.13760.053*
C120.2875 (2)0.4149 (3)0.1004 (3)0.0425 (11)
C130.2620 (2)0.3852 (3)0.1731 (3)0.0451 (11)
H130.27570.40080.21540.054*
C140.2162 (2)0.3325 (3)0.1862 (3)0.0500 (12)
C150.1968 (2)0.3104 (3)0.1239 (3)0.0490 (12)
H150.16790.27400.13070.059*
C160.2187 (2)0.3408 (3)0.0491 (3)0.0448 (11)
C170.2643 (2)0.3944 (3)0.0358 (3)0.0411 (10)
C180.1935 (2)0.3172 (3)0.0124 (3)0.0488 (12)
H180.16450.28080.00070.059*
C190.1796 (2)0.3147 (3)0.1428 (3)0.0523 (13)
H19A0.20640.31560.19300.063*
H19B0.16820.26150.13140.063*
C200.1279 (2)0.3614 (3)0.1480 (3)0.0541 (13)
H200.10850.33250.18160.065*
C210.1401 (2)0.4412 (3)0.1836 (3)0.0536 (13)
H21A0.10630.46070.19750.064*
H21B0.16980.43740.23090.064*
C220.1213 (2)0.5315 (3)0.0784 (3)0.0503 (13)
H220.08340.52490.07880.060*
C230.0477 (2)0.6953 (3)0.1535 (3)0.0608 (15)
H23A0.02710.65590.18660.091*
H23B0.06230.73210.18430.091*
H23C0.02280.72100.12670.091*
C240.1913 (2)0.3031 (3)0.2674 (3)0.0605 (14)
H24A0.18650.24830.26590.091*
H24B0.21640.31530.30020.091*
H24C0.15520.32720.28750.091*
N10.30270 (16)0.6384 (2)0.0179 (2)0.0422 (9)
N20.36000 (16)0.5038 (2)0.0361 (2)0.0422 (9)
N30.20788 (18)0.3427 (2)0.0836 (2)0.0478 (10)
N40.15769 (18)0.4960 (2)0.1304 (3)0.0480 (10)
N50.36152 (18)0.6432 (2)0.2197 (2)0.0481 (10)
N60.3043 (2)0.4243 (2)0.2431 (3)0.0533 (11)
N70.55886 (19)0.6875 (3)0.9824 (3)0.0621 (12)
O10.28529 (14)0.42178 (19)0.03323 (19)0.0495 (8)
H1A0.25780.41650.05500.059*
O20.40624 (13)0.61567 (18)0.07540 (18)0.0457 (8)
H2B0.44150.59090.10130.055*
O30.23233 (14)0.5631 (2)0.0647 (2)0.0495 (8)
H3B0.21880.51870.07000.059*
O40.08898 (16)0.3703 (2)0.0765 (2)0.0588 (9)
H40.07510.32830.06150.088*
O50.31832 (15)0.65457 (18)0.1651 (2)0.0515 (8)
O60.38519 (14)0.5785 (2)0.21972 (19)0.0523 (8)
O70.37861 (16)0.6914 (2)0.2699 (2)0.0631 (10)
O80.28519 (16)0.46850 (19)0.1861 (2)0.0534 (9)
O90.27416 (17)0.4058 (2)0.2864 (2)0.0657 (10)
O100.35300 (19)0.4002 (2)0.2552 (2)0.0740 (12)
O110.40437 (16)0.4476 (2)0.1337 (2)0.0582 (9)
H11A0.40160.40550.09790.070*
H11B0.40220.42830.18370.070*
O120.55077 (19)0.7215 (2)1.0387 (3)0.0779 (12)
O130.58443 (18)0.7178 (3)0.9383 (3)0.0822 (13)
O140.53881 (17)0.6243 (2)0.9670 (3)0.0732 (12)
O1W0.51608 (16)0.5975 (2)0.1362 (2)0.0747 (12)
H1WB0.53100.60680.09840.090*
H1WC0.52420.63360.16940.090*
O3W0.5361 (7)0.2322 (9)0.1821 (10)0.073 (5)0.25
H3WA0.52640.18990.15830.088*0.25
H3WB0.57130.24240.19110.088*0.25
O150.0737 (5)0.4257 (6)0.8670 (6)0.103 (3)0.50
H15A0.07560.41520.91270.123*0.50
C250.0274 (7)0.4707 (9)0.8394 (10)0.107 (6)0.50
H25A0.00620.44310.84290.129*0.50
H25B0.02540.48370.78610.129*0.50
H25C0.03030.51710.86960.129*0.50
O2W0.50000.4771 (5)0.25000.148 (4)
H2WA0.52440.49640.22800.178*0.50
H2WC0.50570.49430.29610.178*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Gd10.04522 (16)0.04282 (16)0.03391 (15)0.00028 (10)0.00984 (10)0.00061 (10)
C10.046 (3)0.038 (2)0.044 (3)0.002 (2)0.014 (2)0.000 (2)
C20.049 (3)0.043 (3)0.049 (3)0.003 (2)0.014 (2)0.001 (2)
C30.045 (3)0.053 (3)0.056 (3)0.004 (2)0.010 (2)0.005 (3)
C40.046 (3)0.052 (3)0.048 (3)0.002 (2)0.006 (2)0.001 (2)
C50.053 (3)0.046 (3)0.041 (3)0.001 (2)0.007 (2)0.003 (2)
C60.046 (3)0.037 (2)0.042 (3)0.001 (2)0.006 (2)0.001 (2)
C70.046 (3)0.044 (3)0.040 (3)0.001 (2)0.010 (2)0.004 (2)
C80.051 (3)0.052 (3)0.043 (3)0.007 (2)0.016 (2)0.001 (2)
C90.046 (3)0.047 (3)0.048 (3)0.006 (2)0.013 (2)0.005 (2)
C100.048 (3)0.056 (3)0.052 (3)0.003 (2)0.018 (2)0.002 (2)
C110.047 (3)0.048 (3)0.041 (3)0.002 (2)0.015 (2)0.000 (2)
C120.051 (3)0.042 (3)0.036 (3)0.003 (2)0.013 (2)0.003 (2)
C130.051 (3)0.046 (3)0.040 (3)0.002 (2)0.014 (2)0.006 (2)
C140.060 (3)0.049 (3)0.042 (3)0.000 (2)0.015 (2)0.007 (2)
C150.050 (3)0.047 (3)0.051 (3)0.006 (2)0.013 (2)0.006 (2)
C160.047 (3)0.046 (3)0.043 (3)0.001 (2)0.014 (2)0.002 (2)
C170.047 (3)0.040 (2)0.035 (3)0.002 (2)0.008 (2)0.002 (2)
C180.049 (3)0.046 (3)0.052 (3)0.004 (2)0.012 (2)0.002 (2)
C190.060 (3)0.049 (3)0.052 (3)0.001 (2)0.022 (3)0.007 (2)
C200.062 (3)0.051 (3)0.057 (3)0.002 (2)0.028 (3)0.008 (2)
C210.061 (3)0.056 (3)0.050 (3)0.001 (3)0.026 (3)0.003 (2)
C220.051 (3)0.048 (3)0.056 (3)0.002 (2)0.021 (3)0.004 (2)
C230.047 (3)0.068 (4)0.063 (4)0.003 (3)0.004 (3)0.007 (3)
C240.061 (3)0.070 (4)0.047 (3)0.013 (3)0.006 (3)0.015 (3)
N10.047 (2)0.046 (2)0.034 (2)0.0043 (18)0.0107 (18)0.0014 (17)
N20.044 (2)0.043 (2)0.040 (2)0.0039 (18)0.0125 (18)0.0015 (19)
N30.058 (3)0.045 (2)0.043 (2)0.0008 (19)0.017 (2)0.0021 (18)
N40.057 (3)0.043 (2)0.046 (2)0.002 (2)0.016 (2)0.0058 (19)
N50.054 (3)0.050 (3)0.044 (3)0.000 (2)0.019 (2)0.005 (2)
N60.067 (3)0.048 (3)0.043 (3)0.001 (2)0.010 (2)0.002 (2)
N70.051 (3)0.064 (3)0.074 (4)0.011 (2)0.019 (3)0.009 (3)
O10.056 (2)0.056 (2)0.041 (2)0.0088 (16)0.0202 (16)0.0048 (16)
O20.0486 (19)0.053 (2)0.0345 (18)0.0040 (15)0.0079 (14)0.0011 (14)
O30.0467 (19)0.0537 (19)0.049 (2)0.0017 (16)0.0118 (16)0.0116 (17)
O40.060 (2)0.055 (2)0.062 (3)0.0062 (17)0.0145 (19)0.0008 (18)
O50.053 (2)0.050 (2)0.053 (2)0.0062 (16)0.0157 (18)0.0032 (16)
O60.061 (2)0.050 (2)0.043 (2)0.0015 (17)0.0076 (17)0.0027 (16)
O70.074 (3)0.059 (2)0.056 (2)0.0049 (19)0.016 (2)0.0186 (19)
O80.063 (2)0.056 (2)0.042 (2)0.0001 (16)0.0136 (18)0.0078 (16)
O90.074 (3)0.075 (3)0.050 (2)0.006 (2)0.018 (2)0.0144 (19)
O100.074 (3)0.080 (3)0.067 (3)0.008 (2)0.015 (2)0.022 (2)
O110.067 (2)0.055 (2)0.053 (2)0.0114 (17)0.0137 (19)0.0015 (17)
O120.098 (3)0.071 (3)0.071 (3)0.019 (2)0.031 (3)0.014 (2)
O130.075 (3)0.090 (3)0.086 (3)0.028 (2)0.029 (3)0.016 (3)
O140.068 (3)0.059 (3)0.098 (3)0.007 (2)0.031 (2)0.013 (2)
O1W0.061 (2)0.087 (3)0.070 (3)0.003 (2)0.003 (2)0.010 (2)
O3W0.068 (10)0.059 (10)0.098 (14)0.007 (8)0.031 (9)0.013 (9)
O150.119 (9)0.085 (7)0.094 (8)0.026 (6)0.002 (7)0.009 (6)
C250.094 (12)0.128 (15)0.103 (13)0.035 (10)0.032 (10)0.073 (11)
O2W0.127 (8)0.113 (7)0.180 (11)0.0000.012 (7)0.000
Geometric parameters (Å, º) top
Gd1—O32.296 (3)C17—O11.299 (5)
Gd1—O12.321 (3)C18—N31.304 (6)
Gd1—O112.403 (3)C18—H180.930
Gd1—O22.418 (3)C19—N31.467 (6)
Gd1—O82.510 (3)C19—C201.514 (7)
Gd1—O52.520 (3)C19—H19A0.970
Gd1—O62.545 (3)C19—H19B0.970
Gd1—N12.548 (4)C20—O41.398 (6)
Gd1—N22.556 (4)C20—C211.521 (7)
Gd1—N52.959 (4)C20—H200.980
Gd1—H3B2.5943C21—N41.471 (6)
C1—O31.282 (6)C21—H21A0.970
C1—C61.420 (6)C21—H21B0.970
C1—C21.433 (7)C22—N41.275 (7)
C2—C31.391 (7)C22—H220.9300
C2—C221.431 (7)C23—H23A0.960
C3—C41.346 (7)C23—H23B0.960
C3—H30.930C23—H23C0.960
C4—C51.390 (7)C24—H24A0.960
C4—C231.521 (7)C24—H24B0.960
C5—C61.391 (7)C24—H24C0.960
C5—H50.930N5—O71.219 (5)
C6—C71.457 (7)N5—O61.260 (5)
C7—N11.281 (6)N5—O51.264 (5)
C7—H70.930N6—O91.221 (5)
C8—N11.491 (6)N6—O101.226 (6)
C8—C91.503 (7)N6—O81.265 (5)
C8—H8A0.970N7—O141.203 (6)
C8—H8B0.970N7—O121.214 (6)
C9—O21.438 (6)N7—O131.226 (6)
C9—C101.527 (7)O1—H1A0.850
C9—H90.980O2—H2B0.970
C10—N21.461 (6)O3—H3B0.850
C10—H10A0.970O4—H40.820
C10—H10B0.970O11—H11A0.960
C11—N21.269 (6)O11—H11B0.960
C11—C121.431 (7)O1W—H1WB0.850
C11—H110.9300O1W—H1WC0.850
C12—C131.390 (6)O3W—H3WA0.850
C12—C171.435 (6)O3W—H3WB0.850
C13—C141.414 (7)O15—C251.361 (18)
C13—H130.930O15—H15A0.820
C14—C151.355 (7)C25—H25A0.960
C14—C241.510 (7)C25—H25B0.960
C15—C161.409 (7)C25—H25C0.960
C15—H150.930O2W—H2WA0.850
C16—C171.420 (7)O2W—H2WC0.850
C16—C181.430 (7)
O3—Gd1—O177.25 (12)C11—C12—C17123.9 (4)
O3—Gd1—O11149.46 (12)C12—C13—C14123.6 (5)
O1—Gd1—O1180.43 (12)C12—C13—H13118.2
O3—Gd1—O2130.49 (11)C14—C13—H13118.2
O1—Gd1—O2137.11 (11)C15—C14—C13117.3 (5)
O11—Gd1—O279.90 (12)C15—C14—C24122.8 (5)
O3—Gd1—O870.18 (12)C13—C14—C24119.8 (5)
O1—Gd1—O871.55 (11)C14—C15—C16122.3 (5)
O11—Gd1—O883.16 (12)C14—C15—H15118.9
O2—Gd1—O8142.09 (11)C16—C15—H15118.9
O3—Gd1—O573.27 (12)C15—C16—C17120.5 (4)
O1—Gd1—O5146.71 (11)C15—C16—C18118.3 (4)
O11—Gd1—O5119.58 (12)C17—C16—C18121.2 (4)
O2—Gd1—O575.46 (11)O1—C17—C16120.9 (4)
O8—Gd1—O584.05 (11)O1—C17—C12121.3 (4)
O3—Gd1—O6114.46 (12)C16—C17—C12117.8 (4)
O1—Gd1—O6136.33 (11)N3—C18—C16125.0 (5)
O11—Gd1—O669.78 (12)N3—C18—H18117.5
O2—Gd1—O668.59 (11)C16—C18—H18117.5
O8—Gd1—O673.77 (11)N3—C19—C20113.6 (4)
O5—Gd1—O649.94 (11)N3—C19—H19A108.8
O3—Gd1—N170.95 (12)C20—C19—H19A108.8
O1—Gd1—N1106.73 (12)N3—C19—H19B108.8
O11—Gd1—N1136.33 (13)C20—C19—H19B108.8
O2—Gd1—N165.61 (11)H19A—C19—H19B107.7
O8—Gd1—N1140.40 (12)O4—C20—C19113.4 (4)
O5—Gd1—N177.90 (12)O4—C20—C21107.4 (4)
O6—Gd1—N1116.89 (12)C19—C20—C21115.4 (5)
O3—Gd1—N2113.39 (12)O4—C20—H20106.7
O1—Gd1—N270.06 (12)C19—C20—H20106.7
O11—Gd1—N277.42 (13)C21—C20—H20106.7
O2—Gd1—N268.63 (11)N4—C21—C20112.2 (4)
O8—Gd1—N2139.20 (12)N4—C21—H21A109.2
O5—Gd1—N2136.69 (12)C20—C21—H21A109.2
O6—Gd1—N2129.47 (12)N4—C21—H21B109.2
N1—Gd1—N265.83 (12)C20—C21—H21B109.2
O3—Gd1—N595.17 (12)H21A—C21—H21B107.9
O1—Gd1—N5151.35 (11)N4—C22—C2126.2 (5)
O11—Gd1—N594.51 (12)N4—C22—H22116.9
O2—Gd1—N568.04 (11)C2—C22—H22116.9
O8—Gd1—N579.87 (11)C4—C23—H23A109.5
O5—Gd1—N525.07 (11)C4—C23—H23B109.5
O6—Gd1—N525.04 (11)H23A—C23—H23B109.5
N1—Gd1—N596.41 (12)C4—C23—H23C109.5
N2—Gd1—N5136.67 (12)H23A—C23—H23C109.5
O3—Gd1—H3B18.8H23B—C23—H23C109.5
O1—Gd1—H3B61.4C14—C24—H24A109.5
O11—Gd1—H3B131.0C14—C24—H24B109.5
O2—Gd1—H3B149.1H24A—C24—H24B109.5
O8—Gd1—H3B57.5C14—C24—H24C109.5
O5—Gd1—H3B86.6H24A—C24—H24C109.5
O6—Gd1—H3B117.8H24B—C24—H24C109.5
N1—Gd1—H3B86.3C7—N1—C8115.4 (4)
N2—Gd1—H3B112.7C7—N1—Gd1130.7 (3)
N5—Gd1—H3B104.6C8—N1—Gd1113.9 (3)
O3—C1—C6122.7 (4)C11—N2—C10116.9 (4)
O3—C1—C2121.2 (4)C11—N2—Gd1129.6 (3)
C6—C1—C2116.2 (4)C10—N2—Gd1112.6 (3)
C3—C2—C22120.3 (5)C18—N3—C19121.1 (4)
C3—C2—C1119.7 (5)C22—N4—C21121.3 (4)
C22—C2—C1120.0 (5)O7—N5—O6122.2 (4)
C4—C3—C2124.4 (5)O7—N5—O5122.0 (4)
C4—C3—H3117.8O6—N5—O5115.8 (4)
C2—C3—H3117.8O7—N5—Gd1173.6 (3)
C3—C4—C5116.4 (5)O6—N5—Gd158.7 (2)
C3—C4—C23123.3 (5)O5—N5—Gd157.6 (2)
C5—C4—C23120.3 (5)O9—N6—O10119.8 (4)
C4—C5—C6123.2 (5)O9—N6—O8120.0 (5)
C4—C5—H5118.4O10—N6—O8120.2 (5)
C6—C5—H5118.4O14—N7—O12119.5 (5)
C5—C6—C1120.1 (4)O14—N7—O13119.0 (5)
C5—C6—C7116.8 (4)O12—N7—O13121.3 (5)
C1—C6—C7123.0 (4)C17—O1—Gd1137.5 (3)
N1—C7—C6127.2 (4)C17—O1—H1A102.2
N1—C7—H7116.4Gd1—O1—H1A102.6
C6—C7—H7116.4C9—O2—Gd1110.5 (2)
N1—C8—C9111.0 (4)C9—O2—H2B109.5
N1—C8—H8A109.4Gd1—O2—H2B109.4
C9—C8—H8A109.4C1—O3—Gd1143.0 (3)
N1—C8—H8B109.4C1—O3—H3B100.6
C9—C8—H8B109.4Gd1—O3—H3B100.9
H8A—C8—H8B108.0C20—O4—H4109.5
O2—C9—C8106.6 (4)N5—O5—Gd197.3 (3)
O2—C9—C10109.0 (4)N5—O6—Gd196.2 (3)
C8—C9—C10114.0 (4)N6—O8—Gd1134.8 (3)
O2—C9—H9109.1Gd1—O11—H11A109.3
C8—C9—H9109.1Gd1—O11—H11B109.2
C10—C9—H9109.1H11A—O11—H11B109.5
N2—C10—C9108.4 (4)H1WB—O1W—H1WC109.5
N2—C10—H10A110.0H3WA—O3W—H3WB114.9
C9—C10—H10A110.0C25—O15—H15A109.5
N2—C10—H10B110.0O15—C25—H25A109.5
C9—C10—H10B110.0O15—C25—H25B109.5
H10A—C10—H10B108.4H25A—C25—H25B109.5
N2—C11—C12126.7 (5)O15—C25—H25C109.5
N2—C11—H11116.6H25A—C25—H25C109.5
C12—C11—H11116.6H25B—C25—H25C109.5
C13—C12—C11117.8 (4)H2WA—O2W—H2WC109.4
C13—C12—C17118.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O12i0.852.353.000 (6)133
O1W—H1WB···O14i0.852.403.207 (6)159
O2W—H2WA···O6ii0.852.603.232 (6)132
O2W—H2WC···O1Wii0.852.282.990 (7)141
O2W—H2WC···O11ii0.852.392.765 (4)108
O1W—H1WC···O7ii0.852.563.154 (6)128
O11—H11A···O13iii0.962.283.177 (6)155
O11—H11A···O14iii0.962.112.794 (5)127
O4—H4···O12iv0.821.962.771 (5)171
C18—H18···O13iv0.932.283.172 (7)161
C20—H20···O7v0.982.593.309 (6)130
C19—H19A···O90.972.573.390 (7)142
C21—H21B···O90.972.553.391 (7)145
O11—H11B···O100.962.002.852 (6)147
O2W—H2WA···O1W0.852.372.990 (7)130
O2—H2B···O1W0.971.772.649 (5)148
O1—H1A···N30.851.912.646 (5)144
O3—H3B···N40.852.062.643 (5)125
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z+1/2; (iii) x+1, y+1, z+1; (iv) x1/2, y1/2, z1; (v) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Gd(H2O)(NO3)2(C24H28N4O4)](NO3)·0.5CH4O·1.75H2O
Mr845.35
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)24.281 (3), 17.339 (2), 17.715 (2)
β (°) 103.63 (1)
V3)7248.1 (15)
Z8
Radiation typeMo Kα
µ (mm1)1.91
Crystal size (mm)0.2 × 0.15 × 0.1
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.72, 0.83
No. of measured, independent and
observed [I > 2σ(I)] reflections
19353, 7082, 5746
Rint0.042
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.118, 1.08
No. of reflections7082
No. of parameters460
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.77, 0.66

Computer programs: SMART (Bruker, 2000), SMART, SAINT (Bruker, 2000), SHELXTL (Bruker, 2000), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O12i0.852.353.000 (6)133
O1W—H1WB···O14i0.852.403.207 (6)159
O2W—H2WA···O6ii0.852.603.232 (6)132
O2W—H2WC···O1Wii0.852.282.990 (7)141
O2W—H2WC···O11ii0.852.392.765 (4)108
O1W—H1WC···O7ii0.852.563.154 (6)128
O11—H11A···O13iii0.962.283.177 (6)155
O11—H11A···O14iii0.962.112.794 (5)127
O4—H4···O12iv0.821.962.771 (5)171
C18—H18···O13iv0.932.283.172 (7)161
C20—H20···O7v0.982.593.309 (6)130
C19—H19A···O90.972.573.390 (7)142
C21—H21B···O90.972.553.391 (7)145
O11—H11B···O100.962.002.852 (6)147
O2W—H2WA···O1W0.852.372.990 (7)130
O2—H2B···O1W0.971.772.649 (5)148
O1—H1A···N30.851.912.646 (5)144
O3—H3B···N40.852.062.643 (5)125
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z+1/2; (iii) x+1, y+1, z+1; (iv) x1/2, y1/2, z1; (v) x+1/2, y1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds