Download citation
Download citation
link to html
The structure of the title compound, μ32-tri­methyl­silyl­ethynyl-μ-tri­methyl­silyl­ethyne­thiol­ato-pentadeca­carbonyl­dicobalttriruthenium, [Ru3Co232-C[triple bond]CSiMe3)(μ-SC[triple bond]CSiMe3)(CO)15], consists of an open triangular Ru3 framework with the acetyl­ide ligand σ-bonded to one Ru atom and π-bonded to the other two Ru atoms. Additionally, the SC[triple bond]CSiMe3 ligand, which has a Co2(CO)6 fragment coordin­ated to the C[triple bond]C bond, bridges the two terminal Ru atoms of the triangle to give a dimetallatetrahedrane structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803006597/cf6246sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803006597/cf6246Isup2.hkl
Contains datablock I

CCDC reference: 209903

Key indicators

  • Single-crystal X-ray study
  • T = 180 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.032
  • wR factor = 0.094
  • Data-to-parameter ratio = 15.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Red Alert Alert Level A:
DIFF_020 Alert A _diffrn_standards_interval_count and _diffrn_standards_interval_time are missing. Number of measurements between standards or time (min) between standards. DIFF_022 Alert A _diffrn_standards_decay_% is missing Percentage decrease in standards intensity.
Amber Alert Alert Level B:
PLAT_601 Alert B Structure Contains Solvent Accessible VOIDS of 142.00 A   3
Yellow Alert Alert Level C:
REFLT_03 From the CIF: _diffrn_reflns_theta_max 26.23 From the CIF: _reflns_number_total 6954 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 7687 Completeness (_total/calc) 90.46% Alert C: < 95% complete PLAT_320 Alert C Check Hybridisation of C(2) in Main Residue ?
2 Alert Level A = Potentially serious problem
1 Alert Level B = Potential problem
2 Alert Level C = Please check

Comment top

Octacarbonyldicobalt has been used as protecting group for CC bonds. Adams et al. (1993) have prepared clusters [{M3(CO)11}{µ-PPh2[C2Co2(CO)6]C2PPh2}] (M = Ru, Os), in which the Co2(CO)6 moiety is linked to the CC bond present in the bridging ligand PPh2(CC)2. On the other hand, the compound S(CCPh)2 reacts with one or two equivalents of Co2(CO)8 to afford the mono- or dicoordinated compounds (PhCC)S[η2-(C CPh)Co2(CO)6] and S[(η2-CCPh)2Co2(CO)6]2, respectively (Herres et al., 1994). We have studied the addition of the Co2(CO)6 fragment to the cluster [Ru3(CO)93,η2-CCSiMe3)(µ-SC CSiMe3)], in order to increase its nuclearity. We report herein the synthesis and crystal structure of the new compound [Ru3(CO)93,η2-CCSiMe3)(µ-SCCSiMe3)Co2(CO)6], (I). The 1H NMR data are similar to those reported for the compound [Ru3(CO)93,η2-CCSiMe3)(µ-SCCSiMe3)] (Alcalde et al., 2001). The presence of the coordinated Co2(CO)6 group, as well as the ν(CO) pattern of the Ru3(CO)9 framework, are observed in the IR spectrum. The positive FAB mass spectrum exhibits the M+–2CO, M+–Co2(CO)6 and several other peaks corresponding to the sequential loss of CO ligands. Suitable crystals for X-ray diffraction studies of compound (I) were obtained from CH2Cl2/MeOH at 253 K.

The structure of (I) consists of an open triangular Ru3 framework with the alkynethiolate ligand bridging the two Ru atoms of the open edge, and the acetylide ligand σ-bonded to one Ru atom and π-bonded to the other two Ru atoms (Fig. 1). The Ru—Ru bond distances [2.8231 (5) and 2.8344 (4) Å] are similar to those found in {[Ru3(CO)9(µ-SC2H5)(µ-η2-CCR)], with R = CH3 [2.843 (1) and (2.847 (1) Å], R = Ph [2.8391 (8) and 2.8524 (8) Å] (Jeannin et al., 1994), and to those found in [Ru3(CO)93,η2-CCSiMe3)(µ-SCCSiMe3)] [2.8397 (5) and 2.8204 (5) Å; Alcalde et al., 2001]. In addition, the Ru—S distances [2.4331 (7) and 2.4276 (8) Å] are comparable to those found in the starting compound [Ru3(CO)93,η2-CCSiMe3)(µ-SCCSiMe3)] [2.4353 (7) and 2.4373 (7) Å; Alcalde et al., 2001]. As a consequence of the addition of the Co2(CO)6 fragment to the SCCSiMe3 ligand giving a dimetallatetrahedrane structure, it may be noted that the C3—C4 distance [1.356 (4) Å] is greater than in [Ru3(CO)9(µ-SC CSiMe3)(µ3,η2-CCSiMe3)] [1.201 (4) Å; Alcalde et al., 2001]. Additionally, the Co1—Co2 bond length of 2.4751 (6) Å, as well as the distances from the Co atoms to the C3—C4 bond [1.958 (2), 1.917 (2), 1.970 (2) and 1.973 (2) Å], are in the ranges expected for this type of coordination (Low et al., 1999; Wadepohl et al., 1996; Herres et al., 1994). Finally, a strong deviation from linearity is observed in the angles S—C3—C4 [125.16 (18)°] and C3—C4—Si [140.26 (18)°], compared with those found in the starting compound [175.7 (2) and 178.3 (2)°, respectively].

Experimental top

A mixture of [Ru3(CO)93,η2-CCSiMe3)(µ-SCCSiMe3)] (0.1 g, 0.13 mmol) and Co2(CO)8 (0.088 g, 0.26 mmol) in THF (15 ml) was stirred for 8 h at room temperature. The volatiles were removed under vacuum and n-hexane (2 × 15 ml) was added. When the solvent was partially removed, Co4(CO)12 precipitated. The resulting solution was dried under vacuum to afforded the title compound as a deep-red solid (0.12 g, 0.11 mmol, 86%). Crystals suitable for X-ray study were obtained from CH2Cl2/MeOH (1:1) at 253 K. Analysis calculated for C25H18Co2O15Ru3SSi2 (found): C 28.14 (27.77), H 1.76 (1.90)%. IR (hexane, cm-1): ν(CO): 2097 (w), 2082 (m), 2070 (s), 2058 (s), 2050 (m), 2033 (m), 2015 (s), 1994 (w), 1986 (w). 1H NMR (CDCl3): δ 0.56 (s, 9H, SiMe3), 0.30 (s, 9H, SiMe3). FAB+ (m/z): 1011 (M+–2CO), 929, 901, 875, 845, 817 (M+-nCO, n = 5–9), 785 [M+-5CO-Co(CO)3], 757 [M+-6CO-Co(CO)3], 696 [M+-5CO-Co2(CO)6].

Refinement top

H atoms were located by difference Fourier maps, but were then introduced in idealized positions, with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C); riding-model constraints included the torsion angle as a free variable. A final difference synthesis indicated some residual electron densities which might be due to disordered solvent molecules. Attempts to model these densities using CH2Cl2 molecules failed. Owing to the diffuse features of the electron density, we used the BYPASS/SQUEEZE procedure (van der Sluis & Spek, 1990) to mask the disordered solvent region.

Structure description top

Octacarbonyldicobalt has been used as protecting group for CC bonds. Adams et al. (1993) have prepared clusters [{M3(CO)11}{µ-PPh2[C2Co2(CO)6]C2PPh2}] (M = Ru, Os), in which the Co2(CO)6 moiety is linked to the CC bond present in the bridging ligand PPh2(CC)2. On the other hand, the compound S(CCPh)2 reacts with one or two equivalents of Co2(CO)8 to afford the mono- or dicoordinated compounds (PhCC)S[η2-(C CPh)Co2(CO)6] and S[(η2-CCPh)2Co2(CO)6]2, respectively (Herres et al., 1994). We have studied the addition of the Co2(CO)6 fragment to the cluster [Ru3(CO)93,η2-CCSiMe3)(µ-SC CSiMe3)], in order to increase its nuclearity. We report herein the synthesis and crystal structure of the new compound [Ru3(CO)93,η2-CCSiMe3)(µ-SCCSiMe3)Co2(CO)6], (I). The 1H NMR data are similar to those reported for the compound [Ru3(CO)93,η2-CCSiMe3)(µ-SCCSiMe3)] (Alcalde et al., 2001). The presence of the coordinated Co2(CO)6 group, as well as the ν(CO) pattern of the Ru3(CO)9 framework, are observed in the IR spectrum. The positive FAB mass spectrum exhibits the M+–2CO, M+–Co2(CO)6 and several other peaks corresponding to the sequential loss of CO ligands. Suitable crystals for X-ray diffraction studies of compound (I) were obtained from CH2Cl2/MeOH at 253 K.

The structure of (I) consists of an open triangular Ru3 framework with the alkynethiolate ligand bridging the two Ru atoms of the open edge, and the acetylide ligand σ-bonded to one Ru atom and π-bonded to the other two Ru atoms (Fig. 1). The Ru—Ru bond distances [2.8231 (5) and 2.8344 (4) Å] are similar to those found in {[Ru3(CO)9(µ-SC2H5)(µ-η2-CCR)], with R = CH3 [2.843 (1) and (2.847 (1) Å], R = Ph [2.8391 (8) and 2.8524 (8) Å] (Jeannin et al., 1994), and to those found in [Ru3(CO)93,η2-CCSiMe3)(µ-SCCSiMe3)] [2.8397 (5) and 2.8204 (5) Å; Alcalde et al., 2001]. In addition, the Ru—S distances [2.4331 (7) and 2.4276 (8) Å] are comparable to those found in the starting compound [Ru3(CO)93,η2-CCSiMe3)(µ-SCCSiMe3)] [2.4353 (7) and 2.4373 (7) Å; Alcalde et al., 2001]. As a consequence of the addition of the Co2(CO)6 fragment to the SCCSiMe3 ligand giving a dimetallatetrahedrane structure, it may be noted that the C3—C4 distance [1.356 (4) Å] is greater than in [Ru3(CO)9(µ-SC CSiMe3)(µ3,η2-CCSiMe3)] [1.201 (4) Å; Alcalde et al., 2001]. Additionally, the Co1—Co2 bond length of 2.4751 (6) Å, as well as the distances from the Co atoms to the C3—C4 bond [1.958 (2), 1.917 (2), 1.970 (2) and 1.973 (2) Å], are in the ranges expected for this type of coordination (Low et al., 1999; Wadepohl et al., 1996; Herres et al., 1994). Finally, a strong deviation from linearity is observed in the angles S—C3—C4 [125.16 (18)°] and C3—C4—Si [140.26 (18)°], compared with those found in the starting compound [175.7 (2) and 178.3 (2)°, respectively].

Computing details top

Data collection: IPDS Software (Stoe & Cie, 1996); cell refinement: IPDS Software; data reduction: X-RED (Stoe & Cie, 1996); program(s) used to solve structure: SIR92 (Altomare et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with ellipsoids at the 50% probability level.
µ-trimethylsilylethynyl-µ-trimethylsilylethynethiolato- pentadecacarbonyldicobalttriruthenium top
Crystal data top
[Ru3Co2(C5H9Si)(C5H9SSi)(CO)15]Z = 2
Mr = 1067.7F(000) = 1036
Triclinic, P1Dx = 1.863 Mg m3
a = 9.2407 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.0579 (13) ÅCell parameters from 8000 reflections
c = 18.841 (2) Åθ = 2.3–26.1°
α = 75.882 (13)°µ = 2.19 mm1
β = 87.813 (14)°T = 180 K
γ = 69.403 (12)°Parallelepiped, red
V = 1903.2 (4) Å30.25 × 0.25 × 0.13 mm
Data collection top
Stoe IPDS
diffractometer
6294 reflections with I > 2σ(I)
φ scansRint = 0.031
Absorption correction: multi-scan
(Blessing, 1995)
θmax = 26.2°, θmin = 2.8°
Tmin = 0.624, Tmax = 0.752h = 1010
18747 measured reflectionsk = 1414
6954 independent reflectionsl = 2323
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0562P)2 + 2.2163P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.094(Δ/σ)max = 0.001
S = 1.11Δρmax = 0.76 e Å3
6954 reflectionsΔρmin = 0.77 e Å3
439 parameters
Crystal data top
[Ru3Co2(C5H9Si)(C5H9SSi)(CO)15]γ = 69.403 (12)°
Mr = 1067.7V = 1903.2 (4) Å3
Triclinic, P1Z = 2
a = 9.2407 (10) ÅMo Kα radiation
b = 12.0579 (13) ŵ = 2.19 mm1
c = 18.841 (2) ÅT = 180 K
α = 75.882 (13)°0.25 × 0.25 × 0.13 mm
β = 87.813 (14)°
Data collection top
Stoe IPDS
diffractometer
6954 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
6294 reflections with I > 2σ(I)
Tmin = 0.624, Tmax = 0.752Rint = 0.031
18747 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.11Δρmax = 0.76 e Å3
6954 reflectionsΔρmin = 0.77 e Å3
439 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.86154 (3)0.20466 (2)0.168254 (15)0.02310 (9)
Ru20.66182 (3)0.39186 (2)0.228804 (15)0.02382 (9)
Ru30.49638 (3)0.23916 (2)0.215147 (15)0.02284 (9)
Co10.94896 (6)0.20957 (4)0.25695 (3)0.02632 (12)
Co20.68082 (6)0.18316 (4)0.29303 (3)0.02461 (12)
S10.74823 (10)0.09391 (7)0.26617 (5)0.02240 (18)
Si10.57662 (14)0.24099 (10)0.01678 (6)0.0302 (2)
Si20.90015 (14)0.16718 (9)0.43707 (6)0.0321 (2)
O1A0.9724 (5)0.3833 (3)0.0582 (2)0.0559 (9)
O2A0.3829 (4)0.6005 (3)0.2557 (2)0.0610 (10)
O3A0.3951 (5)0.2268 (3)0.37128 (18)0.0563 (9)
O4A0.9094 (4)0.2085 (3)0.10244 (18)0.0487 (8)
O5A0.5440 (4)0.1812 (3)0.15394 (18)0.0488 (8)
O1B1.0409 (4)0.0070 (3)0.08915 (18)0.0480 (8)
O2B0.8612 (4)0.5486 (3)0.1877 (2)0.0503 (8)
O3B0.2041 (4)0.4574 (3)0.1607 (2)0.0519 (9)
O4B1.2139 (4)0.1289 (3)0.2536 (2)0.0493 (8)
O5B0.7400 (5)0.4368 (3)0.37530 (19)0.0528 (9)
O1C1.1055 (4)0.1695 (3)0.28368 (19)0.0514 (8)
O2C0.7829 (5)0.2794 (3)0.38844 (19)0.0650 (11)
O3C0.3457 (4)0.0767 (3)0.16899 (19)0.0444 (7)
O4C1.0997 (5)0.4733 (3)0.3247 (2)0.0578 (10)
O5C0.4071 (4)0.0519 (3)0.3624 (2)0.0509 (8)
C1A0.9307 (5)0.3176 (4)0.0988 (2)0.0360 (9)
C2A0.4861 (5)0.5219 (4)0.2465 (2)0.0352 (9)
C3A0.4326 (5)0.2307 (4)0.3136 (2)0.0353 (9)
C4A0.9252 (5)0.2069 (3)0.1609 (2)0.0332 (9)
C5A0.5951 (5)0.1777 (3)0.2065 (2)0.0331 (9)
C1B0.9709 (5)0.0757 (3)0.1200 (2)0.0337 (9)
C2B0.7886 (5)0.4898 (4)0.2038 (2)0.0349 (9)
C3B0.3124 (5)0.3767 (4)0.1799 (2)0.0347 (9)
C4B1.1125 (5)0.1615 (3)0.2546 (2)0.0346 (9)
C5B0.7154 (5)0.3394 (4)0.3442 (2)0.0349 (9)
C1C1.0153 (5)0.1825 (3)0.2402 (2)0.0336 (9)
C2C0.7365 (6)0.3244 (3)0.3305 (2)0.0384 (10)
C3C0.4076 (5)0.1308 (3)0.1876 (2)0.0317 (8)
C4C1.0428 (5)0.3727 (4)0.2981 (3)0.0380 (9)
C5C0.5110 (5)0.1028 (4)0.3354 (2)0.0327 (8)
C10.6207 (4)0.2692 (3)0.10534 (18)0.0239 (7)
C20.6235 (4)0.3453 (3)0.14135 (19)0.0233 (7)
C30.7888 (4)0.0652 (3)0.27801 (19)0.0230 (7)
C40.8432 (4)0.1520 (3)0.34072 (19)0.0244 (7)
C110.6355 (6)0.0747 (4)0.0265 (3)0.0454 (11)
H11A0.74650.03560.04020.068*
H11B0.61450.05960.02020.068*
H11C0.57690.04070.06460.068*
C120.3668 (6)0.3209 (5)0.0047 (3)0.0547 (13)
H12A0.340.4080.00710.082*
H12B0.30940.28590.03360.082*
H12C0.33950.31130.0520.082*
C130.6889 (7)0.3063 (5)0.0532 (3)0.0562 (13)
H13A0.65980.39380.05640.084*
H13B0.66690.29480.10080.084*
H13C0.79970.2650.03960.084*
C210.9501 (7)0.3272 (4)0.4911 (3)0.0581 (14)
H21A1.03410.38090.46840.087*
H21B0.85910.35130.49220.087*
H21C0.98360.33410.54120.087*
C220.7329 (7)0.0629 (5)0.4752 (3)0.0528 (12)
H22A0.7610.0650.52530.079*
H22B0.6440.08950.47580.079*
H22C0.70570.02070.44460.079*
C231.0701 (7)0.1174 (5)0.4342 (3)0.0520 (13)
H23A1.15890.17590.4170.078*
H23B1.09560.11390.48340.078*
H23C1.04520.03630.40060.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01881 (18)0.02175 (14)0.02967 (16)0.00807 (11)0.00286 (11)0.00690 (11)
Ru20.02326 (18)0.01965 (14)0.02881 (16)0.00691 (11)0.00023 (11)0.00725 (11)
Ru30.01911 (18)0.02303 (15)0.02677 (16)0.00797 (11)0.00294 (11)0.00632 (11)
Co10.0231 (3)0.0209 (2)0.0359 (3)0.00783 (19)0.0035 (2)0.00884 (19)
Co20.0246 (3)0.0238 (2)0.0292 (2)0.01180 (19)0.00237 (19)0.00859 (18)
S10.0223 (5)0.0195 (4)0.0257 (4)0.0074 (3)0.0005 (3)0.0061 (3)
Si10.0313 (6)0.0339 (5)0.0251 (5)0.0105 (4)0.0006 (4)0.0078 (4)
Si20.0408 (7)0.0287 (5)0.0288 (5)0.0167 (5)0.0057 (4)0.0027 (4)
O1A0.059 (3)0.0448 (17)0.066 (2)0.0329 (17)0.0210 (18)0.0018 (16)
O2A0.040 (2)0.0411 (18)0.091 (3)0.0030 (15)0.0157 (19)0.0256 (18)
O3A0.072 (3)0.066 (2)0.0351 (17)0.0287 (19)0.0238 (17)0.0179 (15)
O4A0.061 (2)0.0526 (18)0.0402 (18)0.0257 (17)0.0090 (15)0.0181 (14)
O5A0.055 (2)0.0582 (19)0.0403 (17)0.0201 (16)0.0076 (15)0.0222 (15)
O1B0.054 (2)0.0391 (16)0.0540 (19)0.0132 (14)0.0245 (16)0.0243 (15)
O2B0.045 (2)0.0424 (16)0.079 (2)0.0294 (16)0.0133 (17)0.0236 (16)
O3B0.0197 (19)0.0450 (18)0.072 (2)0.0053 (14)0.0071 (15)0.0045 (16)
O4B0.027 (2)0.0452 (17)0.079 (2)0.0173 (14)0.0012 (15)0.0153 (16)
O5B0.073 (3)0.0315 (16)0.056 (2)0.0262 (16)0.0034 (17)0.0028 (14)
O1C0.032 (2)0.069 (2)0.055 (2)0.0151 (15)0.0122 (15)0.0197 (17)
O2C0.098 (3)0.0508 (19)0.0385 (19)0.020 (2)0.0217 (19)0.0035 (15)
O3C0.036 (2)0.0463 (17)0.063 (2)0.0240 (14)0.0008 (14)0.0209 (15)
O4C0.057 (3)0.0251 (15)0.077 (3)0.0045 (14)0.0018 (19)0.0019 (15)
O5C0.036 (2)0.061 (2)0.059 (2)0.0143 (15)0.0149 (16)0.0280 (17)
C1A0.029 (2)0.0306 (19)0.049 (2)0.0093 (16)0.0036 (18)0.0117 (17)
C2A0.028 (2)0.0331 (19)0.043 (2)0.0098 (17)0.0037 (17)0.0086 (16)
C3A0.033 (3)0.0321 (19)0.041 (2)0.0110 (16)0.0061 (17)0.0092 (16)
C4A0.032 (2)0.0276 (18)0.045 (2)0.0131 (16)0.0097 (17)0.0140 (16)
C5A0.030 (2)0.0287 (18)0.045 (2)0.0125 (16)0.0069 (17)0.0140 (16)
C1B0.032 (2)0.0321 (19)0.039 (2)0.0155 (17)0.0067 (17)0.0070 (16)
C2B0.032 (2)0.0320 (19)0.042 (2)0.0088 (17)0.0020 (17)0.0144 (16)
C3B0.029 (3)0.038 (2)0.039 (2)0.0156 (18)0.0069 (17)0.0081 (17)
C4B0.027 (2)0.0249 (17)0.047 (2)0.0034 (16)0.0029 (17)0.0092 (16)
C5B0.038 (3)0.036 (2)0.038 (2)0.0212 (18)0.0052 (17)0.0111 (17)
C1C0.028 (2)0.0311 (18)0.043 (2)0.0124 (16)0.0039 (17)0.0102 (16)
C2C0.050 (3)0.0271 (18)0.041 (2)0.0129 (17)0.0006 (19)0.0135 (17)
C3C0.029 (2)0.0300 (18)0.034 (2)0.0101 (16)0.0048 (15)0.0045 (15)
C4C0.028 (3)0.032 (2)0.055 (3)0.0109 (17)0.0059 (18)0.0122 (18)
C5C0.027 (2)0.037 (2)0.037 (2)0.0156 (17)0.0003 (16)0.0092 (16)
C10.022 (2)0.0280 (16)0.0205 (16)0.0101 (14)0.0017 (13)0.0029 (13)
C20.018 (2)0.0212 (15)0.0264 (17)0.0064 (13)0.0010 (13)0.0011 (13)
C30.018 (2)0.0250 (16)0.0294 (17)0.0094 (13)0.0024 (13)0.0095 (13)
C40.024 (2)0.0239 (16)0.0291 (18)0.0120 (14)0.0014 (14)0.0074 (13)
C110.055 (3)0.040 (2)0.045 (2)0.018 (2)0.006 (2)0.0138 (19)
C120.043 (3)0.076 (3)0.042 (3)0.010 (2)0.011 (2)0.023 (2)
C130.068 (4)0.069 (3)0.038 (2)0.035 (3)0.013 (2)0.010 (2)
C210.078 (4)0.046 (3)0.047 (3)0.027 (3)0.020 (3)0.005 (2)
C220.060 (4)0.062 (3)0.040 (2)0.020 (3)0.005 (2)0.020 (2)
C230.054 (4)0.064 (3)0.046 (3)0.035 (3)0.016 (2)0.004 (2)
Geometric parameters (Å, º) top
Ru1—C1C1.906 (4)Co2—C31.970 (3)
Ru1—C1A1.912 (4)S1—C31.778 (3)
Ru1—C1B1.944 (4)Si1—C131.844 (5)
Ru1—C22.239 (4)Si1—C121.846 (5)
Ru1—C12.344 (4)Si1—C111.846 (4)
Ru1—S12.4327 (9)Si1—C11.869 (4)
Ru1—Ru22.8227 (6)Si2—C211.850 (5)
Ru2—C2A1.905 (4)Si2—C41.857 (4)
Ru2—C2B1.910 (4)Si2—C231.862 (5)
Ru2—C2C1.937 (4)Si2—C221.864 (5)
Ru2—C21.947 (4)O1A—C1A1.121 (5)
Ru2—Ru32.8346 (5)O2A—C2A1.127 (5)
Ru3—C3B1.909 (4)O3A—C3A1.122 (5)
Ru3—C3A1.915 (4)O4A—C4A1.123 (5)
Ru3—C3C1.941 (4)O5A—C5A1.130 (5)
Ru3—C22.240 (3)O1B—C1B1.128 (5)
Ru3—C12.341 (3)O2B—C2B1.122 (5)
Ru3—S12.4268 (10)O3B—C3B1.119 (5)
Co1—C4B1.795 (4)O4B—C4B1.134 (5)
Co1—C4A1.822 (4)O5B—C5B1.123 (5)
Co1—C4C1.825 (4)O1C—C1C1.135 (5)
Co1—C31.964 (3)O2C—C2C1.120 (5)
Co1—C41.967 (4)O3C—C3C1.125 (5)
Co1—Co22.4748 (8)O4C—C4C1.128 (5)
Co2—C5C1.803 (4)O5C—C5C1.121 (5)
Co2—C5B1.815 (4)C1—C21.275 (5)
Co2—C5A1.816 (4)C3—C41.348 (5)
Co2—C41.966 (4)
C1C—Ru1—C1A91.75 (18)C4—Co1—Co250.99 (11)
C1C—Ru1—C1B100.98 (18)C5C—Co2—C5B100.49 (19)
C1A—Ru1—C1B90.37 (16)C5C—Co2—C5A100.59 (18)
C1C—Ru1—C2130.28 (15)C5B—Co2—C5A102.26 (17)
C1A—Ru1—C286.21 (16)C5C—Co2—C4101.21 (16)
C1B—Ru1—C2128.68 (16)C5B—Co2—C499.26 (17)
C1C—Ru1—C1160.99 (15)C5A—Co2—C4145.83 (17)
C1A—Ru1—C193.35 (16)C5C—Co2—C399.72 (16)
C1B—Ru1—C197.29 (15)C5B—Co2—C3137.55 (17)
C2—Ru1—C132.20 (13)C5A—Co2—C3110.15 (16)
C1C—Ru1—S186.48 (13)C4—Co2—C340.04 (15)
C1A—Ru1—S1169.17 (12)C5C—Co2—Co1148.99 (12)
C1B—Ru1—S1100.45 (11)C5B—Co2—Co197.95 (14)
C2—Ru1—S186.79 (9)C5A—Co2—Co199.57 (14)
C1—Ru1—S185.08 (9)C4—Co2—Co151.02 (11)
C1C—Ru1—Ru287.22 (12)C3—Co2—Co150.92 (10)
C1A—Ru1—Ru292.10 (12)C3—S1—Ru3119.63 (12)
C1B—Ru1—Ru2171.36 (13)C3—S1—Ru1120.46 (12)
C2—Ru1—Ru243.36 (9)Ru3—S1—Ru187.56 (3)
C1—Ru1—Ru274.31 (8)C13—Si1—C12110.8 (3)
S1—Ru1—Ru277.15 (2)C13—Si1—C11110.2 (3)
C2A—Ru2—C2B94.32 (18)C12—Si1—C11112.3 (3)
C2A—Ru2—C2C95.52 (18)C13—Si1—C1107.1 (2)
C2B—Ru2—C2C95.92 (19)C12—Si1—C1106.9 (2)
C2A—Ru2—C2110.64 (17)C11—Si1—C1109.31 (18)
C2B—Ru2—C2108.14 (16)C21—Si2—C4110.6 (2)
C2C—Ru2—C2142.31 (14)C21—Si2—C23110.8 (3)
C2A—Ru2—Ru1162.75 (13)C4—Si2—C23106.9 (2)
C2B—Ru2—Ru193.03 (12)C21—Si2—C22110.9 (3)
C2C—Ru2—Ru199.22 (12)C4—Si2—C22107.2 (2)
C2—Ru2—Ru152.14 (10)C23—Si2—C22110.4 (3)
C2A—Ru2—Ru395.69 (13)O1A—C1A—Ru1179.5 (5)
C2B—Ru2—Ru3159.92 (12)O2A—C2A—Ru2178.5 (4)
C2C—Ru2—Ru3100.38 (13)O3A—C3A—Ru3179.4 (4)
C2—Ru2—Ru351.92 (10)O4A—C4A—Co1177.8 (4)
Ru1—Ru2—Ru372.925 (13)O5A—C5A—Co2176.1 (3)
C3B—Ru3—C3A90.32 (18)O1B—C1B—Ru1174.2 (4)
C3B—Ru3—C3C91.05 (17)O2B—C2B—Ru2178.4 (4)
C3A—Ru3—C3C100.39 (17)O3B—C3B—Ru3178.6 (4)
C3B—Ru3—C286.53 (15)O4B—C4B—Co1178.5 (4)
C3A—Ru3—C2134.03 (15)O5B—C5B—Co2178.5 (4)
C3C—Ru3—C2125.49 (15)O1C—C1C—Ru1179.1 (4)
C3B—Ru3—C194.05 (15)O2C—C2C—Ru2176.2 (4)
C3A—Ru3—C1164.83 (16)O3C—C3C—Ru3174.1 (4)
C3C—Ru3—C194.05 (14)O4C—C4C—Co1178.7 (4)
C2—Ru3—C132.23 (13)O5C—C5C—Co2178.7 (4)
C3B—Ru3—S1168.62 (12)C2—C1—Si1148.5 (3)
C3A—Ru3—S187.58 (13)C2—C1—Ru369.5 (2)
C3C—Ru3—S1100.33 (12)Si1—C1—Ru3127.36 (18)
C2—Ru3—S186.91 (9)C2—C1—Ru169.4 (2)
C1—Ru3—S185.29 (9)Si1—C1—Ru1128.32 (18)
C3B—Ru3—Ru291.87 (12)Ru3—C1—Ru191.73 (12)
C3A—Ru3—Ru291.24 (13)C1—C2—Ru2154.2 (3)
C3C—Ru3—Ru2167.99 (12)C1—C2—Ru178.4 (2)
C2—Ru3—Ru243.16 (9)Ru2—C2—Ru184.50 (13)
C1—Ru3—Ru274.12 (9)C1—C2—Ru378.2 (2)
S1—Ru3—Ru277.01 (2)Ru2—C2—Ru384.92 (13)
C4B—Co1—C4A100.96 (19)Ru1—C2—Ru397.29 (12)
C4B—Co1—C4C99.82 (19)C4—C3—S1125.6 (3)
C4A—Co1—C4C101.90 (19)C4—C3—Co170.1 (2)
C4B—Co1—C399.11 (15)S1—C3—Co1140.0 (2)
C4A—Co1—C3108.82 (16)C4—C3—Co269.8 (2)
C4C—Co1—C3139.81 (18)S1—C3—Co2140.2 (2)
C4B—Co1—C4100.87 (17)Co1—C3—Co277.96 (12)
C4A—Co1—C4144.66 (17)C3—C4—Si2140.0 (3)
C4C—Co1—C4101.35 (17)C3—C4—Co270.1 (2)
C3—Co1—C440.09 (15)Si2—C4—Co2134.8 (2)
C4B—Co1—Co2148.57 (12)C3—C4—Co169.9 (2)
C4A—Co1—Co298.90 (14)Si2—C4—Co1135.7 (2)
C4C—Co1—Co299.62 (14)Co2—C4—Co177.99 (13)
C3—Co1—Co251.12 (10)

Experimental details

Crystal data
Chemical formula[Ru3Co2(C5H9Si)(C5H9SSi)(CO)15]
Mr1067.7
Crystal system, space groupTriclinic, P1
Temperature (K)180
a, b, c (Å)9.2407 (10), 12.0579 (13), 18.841 (2)
α, β, γ (°)75.882 (13), 87.813 (14), 69.403 (12)
V3)1903.2 (4)
Z2
Radiation typeMo Kα
µ (mm1)2.19
Crystal size (mm)0.25 × 0.25 × 0.13
Data collection
DiffractometerStoe IPDS
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.624, 0.752
No. of measured, independent and
observed [I > 2σ(I)] reflections
18747, 6954, 6294
Rint0.031
(sin θ/λ)max1)0.622
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.094, 1.11
No. of reflections6954
No. of parameters439
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.76, 0.77

Computer programs: IPDS Software (Stoe & Cie, 1996), IPDS Software, X-RED (Stoe & Cie, 1996), SIR92 (Altomare et al., 1992), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 and WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Ru1—C22.239 (4)Ru3—C12.341 (3)
Ru1—C12.344 (4)Ru3—S12.4268 (10)
Ru1—S12.4327 (9)Co1—Co22.4748 (8)
Ru1—Ru22.8227 (6)S1—C31.778 (3)
Ru2—Ru32.8346 (5)C1—C21.275 (5)
Ru3—C22.240 (3)C3—C41.348 (5)
Ru1—Ru2—Ru372.925 (13)C4—C3—S1125.6 (3)
Ru3—S1—Ru187.56 (3)C3—C4—Si2140.0 (3)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds