Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C14H24N+·I-, was formed by a Schiff base condensation of 2,6-diiso­propyl­aniline and acetone, using GaI as a Lewis acid. A strong interaction from the iminium hydrogen N-H to the iodide counter-ion is observed. The 1H and 13C NMR data are also reported.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803003751/cf6239sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803003751/cf6239Isup2.hkl
Contains datablock I

CCDC reference: 209978

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.047
  • wR factor = 0.099
  • Data-to-parameter ratio = 18.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

ABSTM_02 When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 1.384 Tmax scaled 0.827 Tmin scaled 0.822

Comment top

We have been investigating the reactivity of GaI (Green et al., 1990) in C—C coupling reactions (Baker & Jones, 2003) and in the preparation of GaI N-heterocyclic carbene analogues (Baker et al., 2002).

In the course of our investigations, we have found that GaI can be used as a Lewis acid catalyst for the Schiff base condensation of a primary amine and a ketone. The Schiff base condensation reaction of an aldehyde or ketone with an amine is well known to be catalyzed by Lewis acids (Armesto et al., 1986). The addition of 2,6-diisopropylaniline to a suspension of GaI in toluene, followed by half an equivalent of acetone gives rise to the expected condensation product, (I). This presumably reacts further with HI to give the title product in good isolated yields.

The crystal structure of this salt displays a C1—N1 bond length in the expected range for compounds of this type (Scholz et al., 1993). There is a close contact which may be regarded as an N—H···Ibond [N1—H1 = 0.870 (19), H1···I1 2.57 (2), N1···I1 3.423 (4) Å and N1—H1···I1 167 (4)°].

Experimental top

To a solution of GaI (2.07 mmol) in toluene (10 ml) was added a solution of 2,6-diisopropylaniline (0.37 ml, 1.96 mmol) in toluene (10 ml), followed by a solution of acetone (0.07 ml, 1.02 mmol) in toluene (10 ml). After stirring for 4 h under argon, the solvent was removed under vacuum and the residue extracted with CH2Cl2 (20 ml). Concentration and cooling to 243 K afforded colourless blocks of the title compound (0.08 g, 23%, m.p. 414–417 K). IR (Nujol): νmax 2965, 2664, 1935, 1835, 1724, 1654, 1589, 1558, 1460, 1373, 1252, 1167, 1076, 1046, 971, 931, 825, 793, 722 cm−1. 1H NMR [400 MHz, CD2Cl2]: δ 1.13 (d, 6H, J = 6.89 Hz, CH3), 1.20 (d, 6H, J = 6.82 Hz, CH3), 2.14 (s, 3H, NCCH3), 2.71 (sept, 2H, J = 6.79 Hz, CH), 3.04 (s, 3H, NCCH3), 7.26 (d, 2H, J = 7.78, m-Ar), 7.42 (t, 1H, J = 11.18 Hz, p-Ar). 13C NMR [100 MHz, CD2Cl2]: δ 22.6 (CH3), 23.7 ((CH3)2CN), 24.7 (CH3), 24.9 [(CH3)2CN], 29.1 [CH(Me)2], 124.8 (m-Ar), 129.8 (o-Ar), 131.1 (p-Ar), 143.1 (i-Ar), 193.9 (C—N). MS (APCI): m/z 218.0 (M+, 100%), 201.9 (M+—NH2), 175.8 (M+—HC(Me)2).

Refinement top

Atom H1, attached to N1, was refined isotropically, with a restrained N—H bond length. All other H atoms were positioned geometrically and refined with riding-model constraints.

Computing details top

Data collection: COLLECT (Hooft, 2000); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 25% probability level.
(2,6-Diisopropylphenyl)isopropylideneammonium iodide top
Crystal data top
C15H24N+·IDx = 1.368 Mg m3
Mr = 345.25Melting point: 414 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.426 (3) ÅCell parameters from 13 reflections
b = 11.128 (2) Åθ = 2.9–25.0°
c = 12.211 (2) ŵ = 1.89 mm1
β = 113.28 (3)°T = 293 K
V = 1675.8 (6) Å3Block, colourless
Z = 40.10 × 0.10 × 0.10 mm
F(000) = 696
Data collection top
Nonius KappaCCD
diffractometer
2944 independent reflections
Radiation source: fine-focus sealed tube2159 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ϕ and ω scansθmax = 25.1°, θmin = 3.3°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 1515
Tmin = 0.594, Tmax = 0.598k = 1313
8952 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0144P)2 + 2.3024P]
where P = (Fo2 + 2Fc2)/3
2944 reflections(Δ/σ)max = 0.001
164 parametersΔρmax = 0.69 e Å3
1 restraintΔρmin = 0.86 e Å3
Crystal data top
C15H24N+·IV = 1675.8 (6) Å3
Mr = 345.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.426 (3) ŵ = 1.89 mm1
b = 11.128 (2) ÅT = 293 K
c = 12.211 (2) Å0.10 × 0.10 × 0.10 mm
β = 113.28 (3)°
Data collection top
Nonius KappaCCD
diffractometer
2944 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
2159 reflections with I > 2σ(I)
Tmin = 0.594, Tmax = 0.598Rint = 0.047
8952 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0471 restraint
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.69 e Å3
2944 reflectionsΔρmin = 0.86 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.55094 (3)1.23878 (3)0.00119 (3)0.07754 (18)
N10.6692 (3)1.0746 (3)0.2550 (3)0.0470 (9)
C10.7855 (3)1.0650 (4)0.2924 (4)0.0443 (10)
C20.8507 (4)1.1594 (4)0.3563 (4)0.0514 (11)
C30.9608 (4)1.1489 (5)0.3854 (4)0.0620 (13)
H31.00661.21060.42750.074*
C41.0044 (4)1.0500 (5)0.3539 (5)0.0654 (13)
H41.07901.04460.37620.078*
C50.9375 (4)0.9582 (4)0.2889 (4)0.0598 (12)
H50.96750.89190.26680.072*
C60.8263 (4)0.9638 (4)0.2564 (4)0.0497 (11)
C70.8049 (4)1.2707 (4)0.3931 (5)0.0614 (12)
H70.72831.25510.37570.074*
C80.8617 (6)1.2955 (6)0.5263 (5)0.098 (2)
H8A0.85651.22590.57010.147*
H8B0.82781.36260.54710.147*
H8C0.93671.31350.54550.147*
C90.8103 (6)1.3794 (5)0.3198 (6)0.100 (2)
H9A0.88481.40010.33910.150*
H9B0.77391.44610.33770.150*
H9C0.77581.36050.23650.150*
C100.7547 (4)0.8635 (4)0.1819 (4)0.0598 (12)
H100.68020.88010.17310.072*
C110.7561 (5)0.8635 (6)0.0577 (5)0.0890 (18)
H11A0.73070.93970.02020.133*
H11B0.70970.80070.01090.133*
H11C0.82880.85000.06390.133*
C120.7870 (6)0.7405 (5)0.2418 (6)0.0951 (19)
H12A0.85900.72080.24910.143*
H12B0.73710.68060.19430.143*
H12C0.78510.74300.31960.143*
C130.6107 (4)1.0251 (4)0.3035 (4)0.0528 (11)
C140.6601 (5)0.9573 (5)0.4152 (5)0.0839 (17)
H14A0.73550.94420.43250.126*
H14B0.62410.88140.40720.126*
H14C0.65311.00220.47890.126*
C150.4912 (4)1.0351 (5)0.2462 (5)0.0731 (15)
H15A0.47141.09030.18060.110*
H15B0.46401.06380.30330.110*
H15C0.46050.95760.21750.110*
H10.633 (3)1.105 (3)0.185 (2)0.047 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0681 (3)0.0936 (3)0.0689 (3)0.0096 (2)0.02507 (19)0.0192 (2)
N10.040 (2)0.049 (2)0.049 (2)0.0042 (17)0.0151 (19)0.0050 (18)
C10.035 (2)0.049 (2)0.048 (2)0.0044 (19)0.0151 (19)0.009 (2)
C20.051 (3)0.054 (3)0.050 (3)0.001 (2)0.021 (2)0.001 (2)
C30.050 (3)0.067 (3)0.067 (3)0.014 (2)0.021 (3)0.010 (3)
C40.039 (3)0.085 (4)0.072 (3)0.002 (3)0.022 (3)0.004 (3)
C50.053 (3)0.064 (3)0.067 (3)0.011 (2)0.029 (3)0.006 (3)
C60.046 (3)0.054 (3)0.053 (3)0.005 (2)0.023 (2)0.009 (2)
C70.059 (3)0.057 (3)0.070 (3)0.006 (2)0.027 (3)0.008 (2)
C80.109 (5)0.099 (4)0.077 (4)0.020 (4)0.028 (4)0.016 (3)
C90.138 (6)0.067 (4)0.106 (5)0.019 (4)0.061 (5)0.013 (3)
C100.058 (3)0.052 (3)0.073 (3)0.001 (2)0.029 (3)0.007 (2)
C110.094 (5)0.094 (4)0.077 (4)0.022 (3)0.032 (3)0.024 (3)
C120.109 (5)0.063 (4)0.107 (5)0.006 (3)0.036 (4)0.003 (3)
C130.044 (3)0.046 (2)0.070 (3)0.000 (2)0.023 (2)0.007 (2)
C140.074 (4)0.090 (4)0.099 (4)0.013 (3)0.046 (3)0.036 (4)
C150.048 (3)0.085 (4)0.086 (4)0.010 (3)0.025 (3)0.021 (3)
Geometric parameters (Å, º) top
N1—C131.281 (5)C9—H9A0.960
N1—C11.447 (5)C9—H9B0.960
N1—H10.870 (19)C9—H9C0.960
C1—C21.392 (6)C10—C111.524 (7)
C1—C61.398 (6)C10—C121.532 (7)
C2—C31.383 (6)C10—H100.980
C2—C71.527 (6)C11—H11A0.960
C3—C41.370 (7)C11—H11B0.960
C3—H30.930C11—H11C0.960
C4—C51.385 (7)C12—H12A0.960
C4—H40.930C12—H12B0.960
C5—C61.385 (6)C12—H12C0.960
C5—H50.930C13—C141.467 (7)
C6—C101.518 (6)C13—C151.480 (6)
C7—C91.523 (7)C14—H14A0.960
C7—C81.524 (7)C14—H14B0.960
C7—H70.980C14—H14C0.960
C8—H8A0.960C15—H15A0.960
C8—H8B0.960C15—H15B0.960
C8—H8C0.960C15—H15C0.960
C13—N1—C1127.2 (4)C7—C9—H9C109.5
C13—N1—H1115 (3)H9A—C9—H9C109.5
C1—N1—H1117 (3)H9B—C9—H9C109.5
C2—C1—C6123.1 (4)C6—C10—C11110.0 (4)
C2—C1—N1118.8 (4)C6—C10—C12112.2 (4)
C6—C1—N1118.0 (4)C11—C10—C12111.2 (5)
C3—C2—C1116.8 (4)C6—C10—H10107.7
C3—C2—C7120.5 (4)C11—C10—H10107.7
C1—C2—C7122.7 (4)C12—C10—H10107.7
C4—C3—C2121.9 (4)C10—C11—H11A109.5
C4—C3—H3119.1C10—C11—H11B109.5
C2—C3—H3119.1H11A—C11—H11B109.5
C3—C4—C5120.1 (5)C10—C11—H11C109.5
C3—C4—H4120.0H11A—C11—H11C109.5
C5—C4—H4120.0H11B—C11—H11C109.5
C4—C5—C6120.8 (5)C10—C12—H12A109.5
C4—C5—H5119.6C10—C12—H12B109.5
C6—C5—H5119.6H12A—C12—H12B109.5
C5—C6—C1117.3 (4)C10—C12—H12C109.5
C5—C6—C10119.6 (4)H12A—C12—H12C109.5
C1—C6—C10123.1 (4)H12B—C12—H12C109.5
C9—C7—C8111.3 (5)N1—C13—C14121.1 (4)
C9—C7—C2110.7 (4)N1—C13—C15119.8 (4)
C8—C7—C2111.8 (4)C14—C13—C15119.1 (5)
C9—C7—H7107.6C13—C14—H14A109.5
C8—C7—H7107.6C13—C14—H14B109.5
C2—C7—H7107.6H14A—C14—H14B109.5
C7—C8—H8A109.5C13—C14—H14C109.5
C7—C8—H8B109.5H14A—C14—H14C109.5
H8A—C8—H8B109.5H14B—C14—H14C109.5
C7—C8—H8C109.5C13—C15—H15A109.5
H8A—C8—H8C109.5C13—C15—H15B109.5
H8B—C8—H8C109.5H15A—C15—H15B109.5
C7—C9—H9A109.5C13—C15—H15C109.5
C7—C9—H9B109.5H15A—C15—H15C109.5
H9A—C9—H9B109.5H15B—C15—H15C109.5
C13—N1—C1—C2101.5 (5)N1—C1—C6—C5177.5 (4)
C13—N1—C1—C682.2 (6)C2—C1—C6—C10177.1 (4)
C6—C1—C2—C30.9 (6)N1—C1—C6—C101.0 (6)
N1—C1—C2—C3177.0 (4)C3—C2—C7—C971.5 (6)
C6—C1—C2—C7178.7 (4)C1—C2—C7—C9108.1 (5)
N1—C1—C2—C72.6 (6)C3—C2—C7—C853.1 (6)
C1—C2—C3—C40.5 (7)C1—C2—C7—C8127.2 (5)
C7—C2—C3—C4179.9 (5)C5—C6—C10—C1167.0 (6)
C2—C3—C4—C51.4 (8)C1—C6—C10—C11111.4 (5)
C3—C4—C5—C61.0 (7)C5—C6—C10—C1257.4 (6)
C4—C5—C6—C10.4 (7)C1—C6—C10—C12124.2 (5)
C4—C5—C6—C10178.2 (4)C1—N1—C13—C145.5 (7)
C2—C1—C6—C51.3 (6)C1—N1—C13—C15174.0 (4)

Experimental details

Crystal data
Chemical formulaC15H24N+·I
Mr345.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.426 (3), 11.128 (2), 12.211 (2)
β (°) 113.28 (3)
V3)1675.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.89
Crystal size (mm)0.10 × 0.10 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.594, 0.598
No. of measured, independent and
observed [I > 2σ(I)] reflections
8952, 2944, 2159
Rint0.047
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.099, 1.07
No. of reflections2944
No. of parameters164
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.69, 0.86

Computer programs: COLLECT (Hooft, 2000), DENZO–SMN (Otwinowski & Minor, 1997), DENZO–SMN, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
N1—C131.281 (5)C6—C101.518 (6)
N1—C11.447 (5)C13—C141.467 (7)
N1—H10.870 (19)C13—C151.480 (6)
C2—C71.527 (6)
C13—N1—C1127.2 (4)C6—C1—N1118.0 (4)
C13—N1—H1115 (3)N1—C13—C14121.1 (4)
C1—N1—H1117 (3)N1—C13—C15119.8 (4)
C2—C1—N1118.8 (4)
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds