Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [Zn(C6H6N2O)2(C7H5O3)2], crystallizes as mononuclear mol­ecules with distorted trigonal–bipyram­idal zinc coordination. One of the 4-hydroxy­benzoate ions is coordinated to zinc as a bidentate ligand, while the other is monodentate. Intermolecular hydrogen bonds between nicotin­amide N and carboxyl O atoms, as well as between the nicotin­amide O and hydroxy­benzoate O atoms, support the molecular packing. Hydro­gen bonding of the carboxyl­ate O atoms has an effect on the delocalization in the carboxyl­ate groups.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802021712/cf6226sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802021712/cf6226Isup2.hkl
Contains datablock I

CCDC reference: 202304

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.033
  • wR factor = 0.095
  • Data-to-parameter ratio = 11.6

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Nicotinamide (NA) is one form of niacin. A deficiency of this vitamin leads to loss of copper from the body, known as pellagra disease. Victims of pellagra show unusually high serum and urinary copper levels (Krishnamachari, 1974). The nicotinic acid derivative N,N-diethylnicotinamide (DENA) is an important respiratory stimulant (Bigoli et al., 1972).

The structures of some complexes obtained from the reactions of transition metal(II) ions with different benzoic and/or nicotinic acid derivatives as ligands have been the subject of much interest in our laboratory; examples are [Zn(C7H5O3)(OH2)3(NA)]·C7O3H5 [(II); Hökelek & Necefoğlu, 2001], [Co(C7H6NO2)2(H2O)2(NA)2] [(III); Hökelek & Necefoğlu, 1999a], [Co(C7H5O2)2(NA)2(H2O)2] [(IV); Hökelek & Necefoğlu, 1999b], [Co(C7H5O3)2(NA)2(H2O)2] [(V); Hökelek & Necefoğlu, 1999c], [Cu(C7H5O3)2(NA)2(H2O)2] [(VI); Hökelek, Budak et al., 1998], [Cu3{(NO2)2C6H3COO}6(CH3OH)2]n [(VII); Hökelek, Mert & Ünaleroğlu, 1998], [Co(C7H4NO4)2(NA)2(H2O)2] [(VIII); Hökelek & Necefoğlu, 1998], [Cu(C7H4NO4)2(DENA)2(H2O)2] [(IX); Hökelek et al., 1997], [Co(C7H5O3)2(DENA)2(H2O)2] [(X); Hökelek & Necefoğlu, 1997], [Zn2(C7H5O3)4(DENA)2(H2O)2] [(XI); Hökelek & Necefoğlu, 1996], [Cu(C7H5O2)2(DENA)2] [(XII); Hökelek et al., 1996] and [Cu2(C6H5COO)4(DENA)2] [(XIII); Hökelek et al., 1995]. In (XIII), the benzoate ion acts as a bidentate ligand, but in (XI) two of the benzoate ions acts as monodentate ligands, while the other two are bidentate, bridging the two Zn atoms.

The solid-state structures of anhydrous zinc(II) carboxylates include one-dimensional (Guseinov et al., 1984; Clegg et al., 1986a), two-dimensional (Clegg et al., 1986b, 1987) and three-dimensional (Capilla & Aranda, 1979) polymeric motifs of different types, while discrete monomeric complexes with octahedral and tetrahedral coordination geometry are found if water or other donor molecules are coordinated to Zn (van Niekerk et al., 1953; Usubaliev et al., 1992). In hexaaquazinc(II) bis(4-hydroxybenzoate) dihydrate, [Zn(H2O)6](4-HOC6H4COO)2·2H2O, which is isostructural with the corresponding MgII, CoII, NiII and MnII compounds, the carboxylate ion lies outside the coordination sphere of the Zn atom (Musaev et al., 1983), while [Zn(4-HOC6H4COO)2]·4C5H5N forms a clathrate, consisting of [Zn(4-HOC6H4COO)2(C5H5N)2] units with tetrahedral coordination geometry and free pyridine molecules (Nadzhafov et al., 1981).

The structure determination of the title compound, (I), a zinc complex with two NA and two 4-hydroxybenzoate ligands, was undertaken in order to determine the ligand properties of (NA) and 4-hydroxybenzoate ligands and also to compare the results obtained with those reported previously. In the monomeric title complex, [Zn(C7O3H5)2(NA)2], the Zn atom is surrounded by two NA and two 4-hydroxybenzoate ligands. One of the 4-hydroxybenzoate ions acts as a bidentate ligand, while the other and two NA are monodentate ligands. A view of the molecule with the atomic numbering scheme is shown in Fig. 1.

Although the Zn atom has four-coordination, close contact of the O4 atom [Zn1···O4 = 2.404 (2) Å] may be considered to give five-coordination; this distance is much greater than the sum of the corresponding ionic radii (2.14 Å; Day & Selbin, 1969). Similar reported Zn···O contacts are 2.50 (1) Å in [Zn(n-HOC6H4COO)2(C5H5N)2]·2C5H5N (Nadzhafov et al., 1981) and 2.494 (8) Å in [Zn(p—H2NC6H4COO)2]n.1.5nH2O (Amiraslanov et al., 1980). The five-coordination around ZnII can be described as a distorted trigonal bipyramid or a distorted square pyramid. Further information can be obtained by estimating the structural index τ (Uhlenbrock et al., 1996), which represents the relative amount of trigonality [square pyramid, τ = 0; trigonal bipyramid, τ = 1; τ = (β-α)/60°, α and β being the two largest angles around the central atom]. The value of τ is 0.36 for (I) [α = 138.00 (7) and β = 159.61 (6) °]. The coordination of the ZnII atom is therefore best described as a distorted trigonal bipyramid.

In the binuclear complex (XI), the average Zn—O bond length [1.953 (2) Å] is shorter than the corresponding value in (I) [2.107 (2) Å], but Zn is four-coordinate. The average Zn—N bond length [2.075 (2) Å] in (I) is in good agreement with the values reported for tetrahedrally coordinated Zn complexes [2.006 (5) Å in Zn2(DENA)2(NCS)4 (Bigoli et al., 1973a), 2.054 (6) and 2.055 (6) Å in ZnCl2(DENA)2 (Khodashova et al., 1978), and 2.068 (7) Å in ZnI2(DENA)2 (Sergienko et al., 1978)], while it is shorter than the corresponding value in the octahedrally coordinated zinc complex [Zn(DENA)2(NCS)2]·2H2O [2.171 (4) Å; Bigoli et al., 1973b]. The aromatic bonds C5—O5 [1.365 (3) Å] and C12—O6 [1.359 (3) Å] are in agreement with the corresponding values for 4-hydroxybenzoic acid monohydrate (Colapietro et al., 1979).

The N1—Zn1···O4 and O3—Zn1···O4 angles are 88.86 (7) and 58.79 (6)°, respectively. The corresponding N—M···O and O—M···O (where M is metal atom) angles are 90.4 (4) and 58.3 (3)° in (XI) (Hökelek et al., 1996), and 89.6 (1), 89.0 (1) and 55.2 (1)° in [Cu(Asp)2(py)2] (where Asp is acetylsalicylate and py is pyridine) (Greenaway et al., 1984). The Zn1 atom lies −0.1931 (2) and 0.2208 (2) Å out of the O1/C1/O2 and O3/C8/O4 carboxyl planes, respectively.

In the carboxylate group, the C1—O1 and C8—O3 bond lengths [1.281 (3) and 1.274 (3) Å] are a little larger than the C1—O2 and C8—O4 [1.240 (3) and 1.245 (3) Å] bond lengths and may be compared with the corresponding distances in the monomeric and dimeric carboxylate pyridine complexes: 1.266 (5) and 1.248 (6) Å in (III), 1.255 (1) and 1.253 (2) Å in (IV), 1.263 (5) and 1.258 (6) Å in (V), 1.278 (3) and 1.246 (3) Å in (VI), 1.254 (2) and 1.251 (2) Å in (VIII), 1.267 (6) and 1.237 (4) Å in (IX), 1.251 (6) and 1.254 (7) Å in (X), 1.279 (4) and 1.246 (4) Å in (XI), and 1.277 (4) and 1.239 (4) Å in (XII).

One of the carboxylates is bidentate, while the other is monodentate, but the near equality of the two C—O bond lengths in each carboxylate groups (Table 1) indicates a delocalized bonding arrangement, rather than localized single and double bonds. This may be due to the intermolecular hydrogen bonds of the carboxyl O atoms (Table 2).

The dihedral angles between the mean planes of the carboxyl groups (O1/C1/O2 and O3/C8/O4) and the phenyl rings [A (C2—C7) and B (C9—C14)] in the hydroxybenzoate anions are 12.2 (2) and 10.0 (2)°, respectively; these may be compared with the corresponding values of 24.1 (4)° in (III), 13.0 (2)° in (IV), 14.2 (3)° in (V), 23.7 (3)° in (VIII), 10.2 (7)° in (IX), 2.2 (6)° in (X), 17.9 (7) and 136.1 (2)° in (XI), and 6.7 (9)° in (XII). The configuration around the Zn1 atom is given by the torsion angles listed in Table 1.

There are intermolecular hydrogen bonds between nicotinamide N atoms and carboxyl O atoms, as well as between the nicotinamide O atoms and hydroxybenzoate O atoms of neighbouring molecules (Table 2). These intermolecular hydrogen bonds, together with dipole-dipole and van der Waals interactions, support the molecular packing.

All rings are essentially planar, with maximum deviations of 0.011 (2) Å for C7 and 0.011 (2) Å for C21. The rings are twisted with respect to each other; dihedral angles between least-squares planes are A/B = 79.36 (7), A/C = 84.50 (8), A/D = 12.62 (8), B/C = 20.39 (7), B/D = 77.28 (6) and C/D = 89.57 (7)°.

Experimental top

The title compound, (I), was prepared by the reaction of 0.02 mol of NA, in H2O (50 ml), 0.01 mol of ZnSO4 in H2O (100 ml), and 0.02 mol of sodium p-hydroxybenzoate in H2O (100 ml). The mixture was filtered and set aside to crystallize at ambient temperature for several days, giving colourless single crystals.

Refinement top

H atoms were located in a difference map and refined isotropically.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 1997) drawing of the title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level.
(I) top
Crystal data top
[Zn(C6H6N2O)2(C7H5O3)2]F(000) = 1200
Mr = 583.85Dx = 1.533 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 10.3159 (10) Åθ = 10–18°
b = 22.606 (3) ŵ = 1.03 mm1
c = 10.8926 (10) ÅT = 293 K
β = 95.375 (6)°Rod-shaped, colourless
V = 2529.0 (5) Å30.30 × 0.20 × 0.15 mm
Z = 4
Data collection top
Enraf Nonius TurboCAD4
diffractometer
4089 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 26.3°, θmin = 2.1°
non–profiled ω scansh = 120
Absorption correction: ψ scan
(North et al., 1968)
k = 280
Tmin = 0.748, Tmax = 0.861l = 1313
5409 measured reflections3 standard reflections every 120 min
5124 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0551P)2 + 0.716P]
where P = (Fo2 + 2Fc2)/3
5124 reflections(Δ/σ)max = 0.003
440 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Zn(C6H6N2O)2(C7H5O3)2]V = 2529.0 (5) Å3
Mr = 583.85Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.3159 (10) ŵ = 1.03 mm1
b = 22.606 (3) ÅT = 293 K
c = 10.8926 (10) Å0.30 × 0.20 × 0.15 mm
β = 95.375 (6)°
Data collection top
Enraf Nonius TurboCAD4
diffractometer
4089 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.031
Tmin = 0.748, Tmax = 0.8613 standard reflections every 120 min
5409 measured reflections intensity decay: 1%
5124 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.095All H-atom parameters refined
S = 1.05Δρmax = 0.29 e Å3
5124 reflectionsΔρmin = 0.49 e Å3
440 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.75623 (2)0.883728 (11)0.86158 (2)0.03518 (10)
O10.76143 (17)0.84265 (8)1.01724 (15)0.0508 (4)
O20.88676 (19)0.91508 (7)1.09916 (17)0.0558 (5)
O30.87220 (15)0.93536 (7)0.77245 (16)0.0459 (4)
O40.96989 (17)0.85151 (7)0.82001 (16)0.0490 (4)
O50.91427 (18)0.72931 (9)1.54104 (15)0.0508 (4)
O61.3646 (2)0.96147 (12)0.4693 (2)0.0731 (7)
O70.27913 (17)0.87490 (7)1.03315 (18)0.0515 (4)
O80.5124 (2)0.86786 (8)0.39748 (16)0.0564 (5)
N10.67746 (17)0.82025 (8)0.73917 (17)0.0373 (4)
N20.59081 (16)0.93635 (8)0.85935 (15)0.0335 (4)
N30.5000 (2)0.77479 (12)0.3258 (2)0.0517 (5)
N40.1655 (2)0.95877 (10)1.0012 (2)0.0449 (5)
C10.8329 (2)0.86633 (10)1.1065 (2)0.0397 (5)
C20.8500 (2)0.83090 (10)1.22303 (19)0.0361 (5)
C30.9082 (3)0.85423 (11)1.3320 (2)0.0519 (6)
C40.9281 (3)0.82086 (12)1.4371 (2)0.0546 (7)
C50.8922 (2)0.76198 (10)1.4358 (2)0.0394 (5)
C60.8348 (2)0.73762 (11)1.3280 (2)0.0452 (5)
C70.8124 (2)0.77220 (11)1.2237 (2)0.0436 (5)
C80.9676 (2)0.90006 (10)0.7659 (2)0.0372 (5)
C91.07416 (19)0.91741 (9)0.69028 (19)0.0341 (4)
C101.0820 (2)0.97336 (11)0.6404 (2)0.0466 (6)
C111.1794 (3)0.98740 (13)0.5666 (3)0.0572 (7)
C121.2707 (2)0.94520 (12)0.5421 (2)0.0476 (6)
C131.2636 (2)0.88913 (12)0.5909 (2)0.0482 (6)
C141.1659 (2)0.87582 (11)0.6644 (2)0.0419 (5)
C150.5763 (2)0.98543 (10)0.7896 (2)0.0399 (5)
C160.4627 (2)1.01752 (11)0.7803 (2)0.0458 (6)
C170.3605 (2)0.99941 (10)0.8439 (2)0.0404 (5)
C180.37350 (19)0.94894 (9)0.91583 (18)0.0315 (4)
C190.4912 (2)0.91906 (9)0.92089 (19)0.0339 (4)
C200.2681 (2)0.92475 (9)0.9878 (2)0.0357 (5)
C210.6834 (2)0.76251 (10)0.7703 (2)0.0389 (5)
C220.6438 (2)0.71868 (10)0.6889 (2)0.0413 (5)
C230.5934 (2)0.73319 (10)0.5712 (2)0.0384 (5)
C240.58346 (19)0.79243 (9)0.53787 (19)0.0341 (4)
C250.6282 (2)0.83412 (10)0.6248 (2)0.0374 (5)
C260.5294 (2)0.81442 (10)0.4142 (2)0.0395 (5)
H3A0.467 (3)0.7854 (14)0.255 (3)0.066 (9)*
H3B0.512 (3)0.7365 (14)0.340 (3)0.061 (9)*
H4A0.160 (3)0.9934 (15)0.975 (3)0.064 (9)*
H4B0.106 (3)0.9433 (12)1.037 (2)0.051 (8)*
H5A0.873 (4)0.6979 (17)1.534 (3)0.094 (13)*
H6A1.407 (5)0.937 (2)0.454 (5)0.13 (2)*
H310.932 (3)0.8927 (14)1.332 (3)0.070 (10)*
H410.962 (3)0.8356 (12)1.510 (3)0.055 (7)*
H610.814 (3)0.6949 (14)1.323 (3)0.066 (8)*
H710.778 (3)0.7547 (13)1.150 (2)0.059 (8)*
H1011.024 (3)1.0018 (13)0.661 (3)0.063 (8)*
H1111.183 (3)1.0263 (15)0.533 (3)0.075 (9)*
H1311.324 (3)0.8588 (13)0.572 (3)0.060 (8)*
H1411.154 (2)0.8388 (12)0.700 (2)0.052 (7)*
H1510.648 (2)1.0001 (10)0.749 (2)0.037 (6)*
H1610.459 (3)1.0502 (13)0.732 (3)0.061 (8)*
H1710.281 (2)1.0187 (12)0.838 (2)0.046 (7)*
H1910.503 (2)0.8867 (11)0.972 (2)0.044 (7)*
H2110.715 (2)0.7538 (11)0.852 (2)0.042 (6)*
H2210.649 (2)0.6810 (12)0.715 (2)0.046 (7)*
H2310.568 (2)0.7063 (10)0.520 (2)0.032 (6)*
H2510.625 (2)0.8752 (10)0.603 (2)0.030 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03253 (14)0.03641 (15)0.03653 (15)0.00278 (10)0.00285 (10)0.00115 (10)
O10.0511 (10)0.0595 (11)0.0409 (9)0.0047 (8)0.0003 (7)0.0140 (8)
O20.0715 (12)0.0347 (9)0.0632 (11)0.0019 (8)0.0164 (9)0.0081 (8)
O30.0371 (8)0.0428 (9)0.0601 (10)0.0010 (7)0.0157 (7)0.0033 (8)
O40.0479 (9)0.0448 (9)0.0551 (10)0.0018 (7)0.0100 (8)0.0127 (8)
O50.0558 (11)0.0586 (11)0.0360 (9)0.0091 (9)0.0057 (7)0.0053 (8)
O60.0657 (13)0.0806 (16)0.0790 (15)0.0114 (12)0.0382 (11)0.0275 (12)
O70.0523 (10)0.0359 (9)0.0695 (11)0.0007 (7)0.0224 (9)0.0111 (8)
O80.0768 (13)0.0454 (10)0.0475 (10)0.0066 (9)0.0079 (9)0.0084 (8)
N10.0346 (9)0.0355 (9)0.0416 (10)0.0017 (7)0.0023 (8)0.0032 (8)
N20.0326 (9)0.0336 (9)0.0345 (9)0.0014 (7)0.0038 (7)0.0021 (7)
N30.0571 (13)0.0534 (14)0.0424 (12)0.0031 (11)0.0079 (10)0.0042 (10)
N40.0380 (11)0.0397 (12)0.0590 (13)0.0012 (9)0.0160 (9)0.0024 (10)
C10.0381 (12)0.0390 (12)0.0433 (12)0.0089 (9)0.0113 (10)0.0033 (10)
C20.0329 (11)0.0378 (11)0.0382 (11)0.0010 (9)0.0062 (8)0.0011 (9)
C30.0699 (17)0.0354 (13)0.0505 (14)0.0094 (12)0.0062 (12)0.0092 (11)
C40.0749 (18)0.0527 (15)0.0344 (12)0.0132 (13)0.0041 (12)0.0126 (11)
C50.0361 (11)0.0479 (13)0.0340 (11)0.0034 (10)0.0018 (9)0.0017 (9)
C60.0541 (14)0.0408 (13)0.0390 (12)0.0152 (11)0.0052 (10)0.0010 (10)
C70.0476 (13)0.0456 (13)0.0360 (12)0.0129 (11)0.0052 (10)0.0001 (10)
C80.0347 (11)0.0387 (11)0.0373 (11)0.0050 (9)0.0008 (9)0.0039 (9)
C90.0312 (11)0.0372 (11)0.0331 (10)0.0001 (8)0.0018 (8)0.0005 (8)
C100.0421 (13)0.0377 (12)0.0617 (15)0.0043 (10)0.0140 (11)0.0030 (11)
C110.0568 (16)0.0448 (14)0.0728 (18)0.0010 (12)0.0204 (14)0.0160 (13)
C120.0412 (13)0.0597 (15)0.0434 (13)0.0003 (11)0.0110 (10)0.0077 (11)
C130.403 (13)0.0538 (15)0.0513 (14)0.0106 (11)0.0092 (11)0.0062 (11)
C140.0368 (12)0.0425 (13)0.0459 (13)0.0048 (10)0.0018 (10)0.0087 (10)
C150.0418 (12)0.0420 (12)0.0366 (11)0.0039 (10)0.0082 (9)0.0051 (9)
C160.0538 (14)0.0405 (13)0.0439 (13)0.0043 (11)0.0085 (11)0.0137 (10)
C170.0399 (13)0.0389 (12)0.0422 (12)0.0062 (10)0.0031 (10)0.0020 (10)
C180.0325 (10)0.0302 (10)0.0314 (10)0.0032 (8)0.0019 (8)0.0050 (8)
C190.0353 (11)0.0313 (11)0.0352 (11)0.0024 (8)0.0034 (8)0.0026 (9)
C200.0346 (11)0.0326 (11)0.0403 (11)0.0039 (9)0.0059 (9)0.0046 (9)
C210.0344 (11)0.0405 (12)0.0421 (12)0.0046 (9)0.0040 (9)0.0022 (10)
C220.0407 (12)0.0327 (11)0.0514 (13)0.0042 (9)0.0088 (10)0.0023 (10)
C230.0371 (11)0.0342 (12)0.0444 (12)0.0027 (9)0.0064 (9)0.0068 (10)
C240.0302 (10)0.0361 (11)0.0371 (11)0.0011 (8)0.0084 (8)0.0024 (9)
C250.0379 (12)0.0315 (11)0.0432 (12)0.0015 (9)0.0057 (9)0.0002 (9)
C260.0331 (11)0.0439 (13)0.0422 (12)0.0015 (9)0.0080 (9)0.0016 (10)
Geometric parameters (Å, º) top
Zn1—O11.9295 (16)C18—C201.501 (3)
Zn1—O31.9883 (16)C5—O51.365 (3)
Zn1—N12.0723 (18)C5—C61.379 (3)
Zn1—N22.0784 (17)C5—C41.381 (4)
Zn1—O42.4042 (18)N3—C261.329 (3)
Zn1—C82.530 (2)N3—H3B0.89 (3)
O3—C81.274 (3)N3—H3A0.85 (3)
O2—C11.240 (3)C9—C101.382 (3)
N2—C191.337 (3)C6—C71.381 (3)
N2—C151.345 (3)C6—H610.99 (3)
O1—C11.281 (3)C21—C221.367 (3)
C1—C21.498 (3)C21—H2110.94 (2)
N1—C251.338 (3)C7—H710.93 (3)
N1—C211.349 (3)C22—H2210.90 (3)
C24—C251.384 (3)C17—C161.376 (3)
C24—C231.389 (3)C17—H1710.92 (3)
C24—C261.494 (3)O7—C201.232 (3)
C25—H2510.96 (2)O5—H5A0.83 (4)
C19—C181.386 (3)N4—C201.328 (3)
C19—H1910.92 (3)N4—H4A0.83 (3)
C2—C31.383 (3)N4—H4B0.83 (3)
C2—C71.383 (3)C10—C111.381 (4)
C15—C161.374 (3)C10—H1010.92 (3)
C15—H1510.96 (2)C12—O61.359 (3)
O8—C261.232 (3)C12—C131.379 (4)
C8—O41.245 (3)C12—C111.384 (4)
C8—C91.487 (3)C13—H1310.97 (3)
C14—C131.377 (4)C11—H1110.95 (3)
C14—C91.382 (3)C16—H1610.91 (3)
C14—H1410.94 (3)C4—C31.371 (4)
C23—C221.377 (3)C4—H410.90 (3)
C23—H2310.85 (2)C3—H310.90 (3)
C18—C171.384 (3)O6—H6A0.74 (5)
O1—Zn1—O3138.00 (7)O5—C5—C4119.3 (2)
O1—Zn1—N1102.07 (8)C6—C5—C4119.1 (2)
O3—Zn1—N1108.05 (7)C26—N3—H3B120.9 (19)
O1—Zn1—N2103.94 (7)C26—N3—H3A121 (2)
O3—Zn1—N2100.91 (7)H3B—N3—H3A118 (3)
N1—Zn1—N296.70 (7)C14—C9—C10118.4 (2)
O1—Zn1—O493.97 (7)C14—C9—C8119.3 (2)
O3—Zn1—O458.79 (6)C10—C9—C8122.2 (2)
N1—Zn1—O488.86 (7)C5—C6—C7120.0 (2)
N2—Zn1—O4159.61 (6)C5—C6—H61120.5 (17)
O1—Zn1—C8118.55 (7)C7—C6—H61119.5 (17)
O3—Zn1—C829.79 (7)O8—C26—N3122.3 (2)
N1—Zn1—C897.89 (7)O8—C26—C24119.7 (2)
N2—Zn1—C8130.54 (7)N3—C26—C24118.0 (2)
O4—Zn1—C829.08 (6)N1—C21—C22122.3 (2)
C8—O3—Zn199.37 (14)N1—C21—H211116.4 (15)
C19—N2—C15118.32 (19)C22—C21—H211121.2 (15)
C19—N2—Zn1119.71 (14)C6—C7—C2121.5 (2)
C15—N2—Zn1121.76 (14)C6—C7—H71119.0 (18)
C1—O1—Zn1115.62 (15)C2—C7—H71119.2 (18)
O2—C1—O1123.5 (2)C21—C22—C23119.7 (2)
O2—C1—C2120.8 (2)C21—C22—H221118.2 (16)
O1—C1—C2115.7 (2)C23—C22—H221122.1 (16)
C25—N1—C21117.75 (19)C16—C17—C18119.5 (2)
C25—N1—Zn1121.91 (15)C16—C17—H171122.6 (16)
C21—N1—Zn1120.16 (15)C18—C17—H171117.9 (16)
C25—C24—C23117.8 (2)C5—O5—H5A110 (3)
C25—C24—C26117.56 (19)C8—O4—Zn181.08 (13)
C23—C24—C26124.7 (2)C20—N4—H4A122 (2)
N1—C25—C24123.4 (2)C20—N4—H4B116.0 (19)
N1—C25—H251117.2 (13)H4A—N4—H4B122 (3)
C24—C25—H251119.4 (13)O7—C20—N4122.0 (2)
N2—C19—C18123.32 (19)O7—C20—C18119.93 (19)
N2—C19—H191118.3 (17)N4—C20—C18118.1 (2)
C18—C19—H191118.3 (17)C11—C10—C9120.8 (2)
C3—C2—C7117.4 (2)C11—C10—H101120.4 (18)
C3—C2—C1122.1 (2)C9—C10—H101118.7 (18)
C7—C2—C1120.5 (2)O6—C12—C13122.7 (2)
N2—C15—C16121.7 (2)O6—C12—C11117.5 (2)
N2—C15—H151119.8 (14)C13—C12—C11119.8 (2)
C16—C15—H151118.4 (14)C14—C13—C12119.5 (2)
O4—C8—O3120.4 (2)C14—C13—H131119.8 (17)
O4—C8—C9120.8 (2)C12—C13—H131120.6 (17)
O3—C8—C9118.7 (2)C10—C11—C12119.9 (2)
O4—C8—Zn169.84 (12)C10—C11—H111119.3 (19)
O3—C8—Zn150.84 (11)C12—C11—H111120.7 (19)
C9—C8—Zn1167.70 (16)C15—C16—C17119.6 (2)
C13—C14—C9121.5 (2)C15—C16—H161117.2 (18)
C13—C14—H141124.8 (16)C17—C16—H161123.2 (18)
C9—C14—H141113.7 (16)C3—C4—C5120.2 (2)
C22—C23—C24119.0 (2)C3—C4—H41123.3 (18)
C22—C23—H231120.4 (15)C5—C4—H41116.5 (17)
C24—C23—H231120.6 (15)C4—C3—C2121.7 (2)
C17—C18—C19117.56 (19)C4—C3—H31120 (2)
C17—C18—C20124.01 (19)C2—C3—H31118 (2)
C19—C18—C20118.44 (19)C12—O6—H6A113 (4)
O5—C5—C6121.6 (2)
O1—Zn1—O3—C859.86 (18)N1—Zn1—C8—C978.4 (7)
N1—Zn1—O3—C873.82 (15)N2—Zn1—C8—C927.5 (8)
N2—Zn1—O3—C8174.65 (13)O4—Zn1—C8—C9151.5 (8)
O4—Zn1—O3—C83.36 (12)C25—C24—C23—C221.6 (3)
O1—Zn1—N2—C1928.41 (17)C26—C24—C23—C22179.2 (2)
O3—Zn1—N2—C19174.26 (15)N2—C19—C18—C170.6 (3)
N1—Zn1—N2—C1975.84 (16)N2—C19—C18—C20179.18 (18)
O4—Zn1—N2—C19179.15 (16)C13—C14—C9—C100.1 (4)
C8—Zn1—N2—C19177.76 (14)C13—C14—C9—C8177.5 (2)
O1—Zn1—N2—C15156.90 (16)O4—C8—C9—C149.9 (3)
O3—Zn1—N2—C1511.05 (18)O3—C8—C9—C14168.6 (2)
N1—Zn1—N2—C1598.85 (17)Zn1—C8—C9—C14138.6 (7)
O4—Zn1—N2—C156.2 (3)O4—C8—C9—C10172.7 (2)
C8—Zn1—N2—C157.6 (2)O3—C8—C9—C108.8 (3)
O3—Zn1—O1—C129.4 (2)Zn1—C8—C9—C1038.7 (8)
N1—Zn1—O1—C1164.68 (16)O5—C5—C6—C7179.2 (2)
N2—Zn1—O1—C195.18 (16)C4—C5—C6—C70.9 (4)
O4—Zn1—O1—C174.99 (17)C25—C24—C26—O88.2 (3)
C8—Zn1—O1—C158.65 (18)C23—C24—C26—O8172.6 (2)
Zn1—O1—C1—O26.4 (3)C25—C24—C26—N3172.4 (2)
Zn1—O1—C1—C2172.88 (14)C23—C24—C26—N36.7 (3)
O1—Zn1—N1—C25163.89 (16)C25—N1—C21—C221.4 (3)
O3—Zn1—N1—C2545.78 (18)Zn1—N1—C21—C22173.84 (17)
N2—Zn1—N1—C2558.03 (17)C5—C6—C7—C22.1 (4)
O4—Zn1—N1—C25102.30 (17)C3—C2—C7—C61.6 (4)
C8—Zn1—N1—C2574.58 (17)C1—C2—C7—C6175.8 (2)
O1—Zn1—N1—C2121.09 (18)N1—C21—C22—C231.3 (3)
O3—Zn1—N1—C21129.25 (16)C24—C23—C22—C210.3 (3)
N2—Zn1—N1—C21126.94 (16)C19—C18—C17—C160.5 (3)
O4—Zn1—N1—C2172.73 (16)C20—C18—C17—C16179.3 (2)
C8—Zn1—N1—C21100.45 (17)O3—C8—O4—Zn15.3 (2)
C21—N1—C25—C240.1 (3)C9—C8—O4—Zn1173.20 (19)
Zn1—N1—C25—C24175.21 (16)O1—Zn1—O4—C8149.43 (14)
C23—C24—C25—N11.6 (3)O3—Zn1—O4—C83.44 (13)
C26—C24—C25—N1179.22 (19)N1—Zn1—O4—C8108.55 (14)
C15—N2—C19—C180.4 (3)N2—Zn1—O4—C82.2 (3)
Zn1—N2—C19—C18174.45 (15)C17—C18—C20—O7168.2 (2)
O2—C1—C2—C310.4 (3)C19—C18—C20—O711.5 (3)
O1—C1—C2—C3170.3 (2)C17—C18—C20—N412.4 (3)
O2—C1—C2—C7166.9 (2)C19—C18—C20—N4167.8 (2)
O1—C1—C2—C712.4 (3)C14—C9—C10—C110.1 (4)
C19—N2—C15—C160.2 (3)C8—C9—C10—C11177.5 (2)
Zn1—N2—C15—C16174.61 (18)C9—C14—C13—C120.2 (4)
Zn1—O3—C8—O46.5 (2)O6—C12—C13—C14179.8 (3)
Zn1—O3—C8—C9172.11 (16)C11—C12—C13—C140.5 (4)
O1—Zn1—C8—O435.29 (15)C9—C10—C11—C120.2 (4)
O3—Zn1—C8—O4174.1 (2)O6—C12—C11—C10179.8 (3)
N1—Zn1—C8—O473.12 (14)C13—C12—C11—C100.5 (4)
N2—Zn1—C8—O4179.00 (12)N2—C15—C16—C170.1 (4)
O1—Zn1—C8—O3138.79 (14)C18—C17—C16—C150.3 (4)
N1—Zn1—C8—O3112.81 (14)O5—C5—C4—C3179.2 (2)
N2—Zn1—C8—O36.93 (17)C6—C5—C4—C30.8 (4)
O4—Zn1—C8—O3174.1 (2)C5—C4—C3—C21.3 (4)
O1—Zn1—C8—C9173.2 (7)C7—C2—C3—C40.1 (4)
O3—Zn1—C8—C934.4 (7)C1—C2—C3—C4177.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O8i0.74 (5)2.03 (5)2.764 (3)175 (6)
O5—H5A···O7ii0.83 (4)1.91 (4)2.735 (3)175 (4)
N3—H3B···O4iii0.89 (3)2.04 (3)2.872 (3)155 (3)
N4—H4A···O2iv0.83 (3)2.26 (3)3.084 (3)171 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+3/2, z+1/2; (iii) x1/2, y+3/2, z1/2; (iv) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formula[Zn(C6H6N2O)2(C7H5O3)2]
Mr583.85
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.3159 (10), 22.606 (3), 10.8926 (10)
β (°) 95.375 (6)
V3)2529.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.03
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerEnraf Nonius TurboCAD4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.748, 0.861
No. of measured, independent and
observed [I > 2σ(I)] reflections
5409, 5124, 4089
Rint0.031
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.095, 1.05
No. of reflections5124
No. of parameters440
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.29, 0.49

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Zn1—O11.9295 (16)O8—C261.232 (3)
Zn1—O31.9883 (16)C8—O41.245 (3)
Zn1—N12.0723 (18)C5—O51.365 (3)
Zn1—N22.0784 (17)N3—C261.329 (3)
Zn1—O42.4042 (18)O7—C201.232 (3)
O3—C81.274 (3)N4—C201.328 (3)
O2—C11.240 (3)C12—O61.359 (3)
O1—C11.281 (3)
O1—Zn1—O3138.00 (7)O3—Zn1—O458.79 (6)
O1—Zn1—N1102.07 (8)N1—Zn1—O488.86 (7)
O3—Zn1—N1108.05 (7)N2—Zn1—O4159.61 (6)
O1—Zn1—N2103.94 (7)O2—C1—O1123.5 (2)
O3—Zn1—N2100.91 (7)O4—C8—O3120.4 (2)
N1—Zn1—N296.70 (7)O8—C26—N3122.3 (2)
O1—Zn1—O493.97 (7)O7—C20—N4122.0 (2)
O1—Zn1—O3—C859.86 (18)O3—Zn1—N2—C1511.05 (18)
N1—Zn1—O3—C873.82 (15)N1—Zn1—N2—C1598.85 (17)
N2—Zn1—O3—C8174.65 (13)O4—Zn1—N2—C156.2 (3)
O1—Zn1—N2—C1928.41 (17)O3—Zn1—O1—C129.4 (2)
N1—Zn1—N2—C1975.84 (16)N1—Zn1—O1—C1164.68 (16)
O4—Zn1—N2—C19179.15 (16)N2—Zn1—O1—C195.18 (16)
O1—Zn1—N2—C15156.90 (16)O4—Zn1—O1—C174.99 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O8i0.74 (5)2.03 (5)2.764 (3)175 (6)
O5—H5A···O7ii0.83 (4)1.91 (4)2.735 (3)175 (4)
N3—H3B···O4iii0.89 (3)2.04 (3)2.872 (3)155 (3)
N4—H4A···O2iv0.83 (3)2.26 (3)3.084 (3)171 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+3/2, z+1/2; (iii) x1/2, y+3/2, z1/2; (iv) x+1, y+2, z+2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds