Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
(+)-Escholinine perchlorate, C21H26NO4+·ClO4-, is a quaternary benzyl­tetra­hydro­iso­quinoline alkaloid isolated from Eschscholtzia californica. The partially saturated nitro­gen heterocycle has an almost regular half-chair conformation, with the N atom lying 0.666 (3) Å out of the plane of the other atoms. The two methoxy groups lie in the plane of their parent benzene ring. The dihedral angle between the two aromatic rings is 31.44 (7)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680201512X/cf6195sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680201512X/cf6195Isup2.hkl
Contains datablock I

CCDC reference: 197481

Key indicators

  • Single-crystal X-ray study
  • T = 120 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.028
  • wR factor = 0.067
  • Data-to-parameter ratio = 11.2

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 25.00 From the CIF: _reflns_number_total 3144 Count of symmetry unique reflns 1906 Completeness (_total/calc) 164.95% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1238 Fraction of Friedel pairs measured 0.650 Are heavy atom types Z>Si present yes Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.

Comment top

(+)-Escholinine, an N-methyl derivative of (+)-romneine, is a quaternary benzyltetrahydroisoquinoline alkaloid isolated (as the perchlorate of its protonated form) from Eschscholtzia californica Cham. (Papaveraceae) (Slavík & Dolejš, 1973). It is a minor component of the highly polar fraction of alkaloids from this source. Recently, it has been isolated from Romneya coulteri Harv. (Valpuesta et al., 1999). The corresponding tertiary base (+)-romneine also occurs in the same plant species (Stermitz et al., 1966).

(+)-Escholinine perchlorate, (I), possesses a tetrahydroisoquinoline skeleton with a substituted benzyl group attached to C1 (Fig. 1). All bond lengths and angles are within normal ranges. The bond lengths involving tetravalent nitrogen (N2—C1, N2—C3, N2—C16 and N2—C17) are 1.524 (2), 1.509 (3), 1.488 (3) and 1.496 (3) Å, respectively. These are somewhat longer than the corresponding N—C distances in the tertiary tetrahydroisoquinoline alkaloids egenine and armepavine (Dokurno et al., 1993; Marek et al., 1997). The mean of the bond angles around N2 is 109.47°, appropriate for sp3 hybridization. The two methoxy groups at C12 and C13 lie in the plane of their parent benzene ring. The partially saturated nitrogen heterocycle has an almost regular half-chair conformation, with atom N2 lying 0.666 (3) Å out of the least-squares plane C1/C8a/C4a/C4/C3. The dihedral angle between the aromatic rings of the isoquinoline moiety and the benzyl group is 31.44 (7)°.

The molecule of (I) contains one chiral centre, atom C1. From previous steric correlations, it is known that dextrorotatory benzyltetrahydroisoquinoline alkaloids have the S configuration (Šantavý, 1979; Bentley, 1998). In accordance with previous investigations, and with the refinement of the Flack (1983) parameter, the molecule of escholinine in Fig. 1 is depicted as the S enantiomer.

The perchlorate anion is a regular tetrahedron. The mean Cl—O bond length is 1.418 Å. There are no hydrogen bonds and the ions are held together by Coulombic and van der Waals interactions. The isoquinoline rings are stacked in columns parallel to the crystallographic a axis.

Experimental top

(+)-Escholinine was isolated as a perchlorate salt from the roots of Eschscholtzia californica Cham. (Slavík & Dolejš, 1973) and recrystallized from methanol; m.p. 482–483 K, [α]D25 = +74° (0.3 M in methanol).

Computing details top

Data collection: Xcalibur (Oxford Diffraction Ltd, 2001); cell refinement: Xcalibur; data reduction: Xcalibur; program(s) used to solve structure: SHELXTL (Bruker, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A perspective view of (+)-escholinine perchlorate with the atom numbering. Ellipsoids are drawn at the 50% probability level.
(I) top
Crystal data top
C21H26NO4+·ClO4F(000) = 480
Mr = 455.88Dx = 1.451 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 7.450 (1) ÅCell parameters from 500 reflections
b = 17.010 (3) Åθ = 4.5–27.8°
c = 9.038 (2) ŵ = 0.23 mm1
β = 114.32 (3)°T = 120 K
V = 1043.7 (3) Å3Prism, colourless
Z = 20.40 × 0.40 × 0.20 mm
Data collection top
Kuma KM-4 CCD
diffractometer
3001 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 25.0°, θmin = 3.4°
Detector resolution: 0.06 mm pixels mm-1h = 88
ω scansk = 2019
6727 measured reflectionsl = 109
3144 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0353P)2 + 0.1452P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.067(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.20 e Å3
3144 reflectionsΔρmin = 0.20 e Å3
281 parametersExtinction correction: SHELXTL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0106 (15)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1276 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.04 (5)
Crystal data top
C21H26NO4+·ClO4V = 1043.7 (3) Å3
Mr = 455.88Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.450 (1) ŵ = 0.23 mm1
b = 17.010 (3) ÅT = 120 K
c = 9.038 (2) Å0.40 × 0.40 × 0.20 mm
β = 114.32 (3)°
Data collection top
Kuma KM-4 CCD
diffractometer
3001 reflections with I > 2σ(I)
6727 measured reflectionsRint = 0.035
3144 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.067Δρmax = 0.20 e Å3
S = 1.04Δρmin = 0.20 e Å3
3144 reflectionsAbsolute structure: Flack (1983), 1276 Friedel pairs
281 parametersAbsolute structure parameter: 0.04 (5)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl290.04206 (8)0.06289 (3)0.08370 (6)0.02160 (14)
O280.0756 (3)0.08890 (10)0.1642 (2)0.0433 (5)
O270.0058 (3)0.11044 (11)0.05612 (19)0.0371 (4)
O260.2430 (2)0.07085 (15)0.19146 (19)0.0560 (6)
O250.0030 (4)0.01597 (11)0.0364 (2)0.0673 (7)
C10.4345 (3)0.03234 (12)0.5776 (2)0.0152 (4)
H1A0.34870.02260.46050.018*
O220.4412 (2)0.24707 (9)0.90425 (18)0.0277 (4)
O210.4109 (2)0.25527 (8)0.64040 (18)0.0250 (4)
O240.9781 (2)0.20592 (9)0.39460 (16)0.0217 (3)
C50.4450 (3)0.10299 (13)0.9166 (2)0.0209 (5)
H5A0.45410.10031.02440.025*
C70.4145 (3)0.17829 (11)0.6841 (2)0.0176 (5)
C190.9865 (3)0.20774 (14)0.8413 (2)0.0248 (5)
H19A1.05280.25570.89750.037*
H19B0.84940.20820.82850.037*
H19C1.05410.16170.90520.037*
C90.6428 (3)0.04954 (12)0.5914 (2)0.0176 (5)
H9A0.63840.09660.52560.021*
H9B0.72890.06180.70600.021*
C140.8057 (3)0.08073 (12)0.3299 (2)0.0197 (5)
H14A0.80150.08050.22350.024*
O230.9913 (2)0.20434 (9)0.68597 (16)0.0199 (3)
N20.3486 (3)0.10224 (10)0.63232 (19)0.0172 (4)
C120.9047 (3)0.14084 (12)0.5923 (2)0.0149 (4)
C4A0.4422 (3)0.03480 (13)0.8294 (2)0.0169 (5)
C8A0.4248 (3)0.03982 (12)0.6714 (2)0.0145 (4)
C60.4344 (3)0.17285 (13)0.8421 (2)0.0187 (5)
C100.7314 (3)0.01735 (12)0.5362 (2)0.0160 (4)
C110.8279 (3)0.07786 (12)0.6423 (2)0.0173 (5)
H11A0.84100.07570.75130.021*
C180.3916 (4)0.29875 (13)0.7679 (3)0.0275 (6)
H18A0.48130.34460.79740.033*
H18B0.25480.31800.73280.033*
C160.3633 (4)0.17594 (12)0.5492 (3)0.0240 (5)
H16A0.30690.21960.58670.036*
H16B0.29050.16970.43160.036*
H16C0.50190.18700.57460.036*
C150.7207 (3)0.01961 (12)0.3804 (2)0.0189 (5)
H15A0.65420.02120.30640.023*
C200.9804 (4)0.20572 (15)0.2381 (3)0.0298 (6)
H20A1.04190.25420.22310.045*
H20B1.05580.16030.22840.045*
H20C0.84500.20250.15500.045*
C80.4067 (3)0.11286 (13)0.5944 (2)0.0172 (4)
H8A0.38980.11660.48450.021*
C40.4411 (3)0.04292 (12)0.9072 (2)0.0233 (5)
H4A0.55220.04401.01590.028*
H4B0.31770.04720.92310.028*
C170.1346 (3)0.08731 (13)0.5874 (3)0.0228 (5)
H17A0.07790.13190.62190.034*
H17B0.11960.03940.64140.034*
H17C0.06620.08090.46950.034*
C130.8959 (3)0.14161 (12)0.4341 (2)0.0171 (4)
C30.4571 (3)0.11353 (13)0.8127 (2)0.0200 (5)
H3A0.40310.16010.84610.024*
H3B0.59780.12390.83920.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl290.0223 (3)0.0266 (3)0.0174 (2)0.0004 (2)0.0097 (2)0.0025 (2)
O280.0476 (12)0.0484 (12)0.0505 (11)0.0100 (9)0.0371 (10)0.0013 (9)
O270.0391 (11)0.0447 (11)0.0251 (9)0.0025 (9)0.0108 (8)0.0109 (8)
O260.0223 (9)0.1190 (18)0.0229 (8)0.0034 (12)0.0054 (7)0.0106 (11)
O250.133 (2)0.0310 (11)0.0516 (13)0.0180 (12)0.0519 (14)0.0163 (10)
C10.0184 (11)0.0172 (10)0.0114 (9)0.0017 (9)0.0074 (8)0.0000 (8)
O220.0323 (10)0.0226 (9)0.0301 (9)0.0005 (7)0.0149 (8)0.0082 (7)
O210.0329 (9)0.0152 (8)0.0325 (9)0.0001 (7)0.0192 (7)0.0003 (7)
O240.0278 (9)0.0200 (8)0.0230 (8)0.0023 (7)0.0162 (7)0.0028 (6)
C50.0194 (11)0.0283 (13)0.0147 (10)0.0023 (10)0.0068 (9)0.0011 (9)
C70.0117 (11)0.0166 (11)0.0255 (11)0.0006 (9)0.0087 (9)0.0029 (9)
C190.0278 (13)0.0297 (13)0.0210 (11)0.0034 (11)0.0141 (10)0.0075 (10)
C90.0195 (11)0.0179 (12)0.0179 (10)0.0009 (9)0.0102 (9)0.0021 (9)
C140.0192 (12)0.0263 (12)0.0143 (10)0.0013 (9)0.0077 (9)0.0011 (9)
O230.0223 (8)0.0191 (8)0.0196 (7)0.0027 (7)0.0099 (6)0.0010 (6)
N20.0177 (10)0.0196 (10)0.0146 (9)0.0034 (7)0.0071 (8)0.0009 (7)
C120.0116 (10)0.0166 (11)0.0162 (10)0.0018 (9)0.0054 (8)0.0007 (9)
C4A0.0118 (11)0.0240 (12)0.0152 (10)0.0005 (9)0.0059 (8)0.0002 (8)
C8A0.0110 (11)0.0181 (11)0.0152 (10)0.0015 (9)0.0060 (8)0.0003 (8)
C60.0151 (11)0.0206 (12)0.0200 (11)0.0011 (9)0.0069 (9)0.0074 (9)
C100.0128 (11)0.0165 (11)0.0195 (10)0.0024 (8)0.0076 (8)0.0000 (8)
C110.0167 (11)0.0205 (12)0.0156 (10)0.0029 (9)0.0076 (9)0.0001 (8)
C180.0362 (15)0.0170 (12)0.0346 (13)0.0015 (10)0.0201 (12)0.0047 (10)
C160.0283 (13)0.0172 (12)0.0287 (12)0.0048 (10)0.0138 (10)0.0036 (10)
C150.0201 (12)0.0213 (12)0.0166 (10)0.0012 (9)0.0089 (9)0.0029 (9)
C200.0382 (14)0.0315 (13)0.0278 (12)0.0022 (12)0.0217 (11)0.0085 (11)
C80.0152 (11)0.0232 (12)0.0159 (10)0.0009 (9)0.0093 (8)0.0014 (9)
C40.0287 (13)0.0271 (14)0.0180 (11)0.0016 (10)0.0136 (10)0.0032 (9)
C170.0162 (11)0.0274 (13)0.0257 (11)0.0017 (9)0.0096 (9)0.0021 (9)
C130.0155 (11)0.0171 (11)0.0199 (11)0.0034 (9)0.0086 (9)0.0036 (9)
C30.0192 (12)0.0227 (12)0.0175 (10)0.0007 (10)0.0071 (9)0.0067 (9)
Geometric parameters (Å, º) top
Cl29—O251.406 (2)N2—C161.488 (3)
Cl29—O261.4164 (18)N2—C171.496 (3)
Cl29—O281.4211 (17)N2—C31.504 (3)
Cl29—O271.4292 (17)C12—C111.376 (3)
C1—C8A1.510 (3)C12—C131.404 (3)
C1—N21.526 (2)C4A—C8A1.383 (3)
C1—C91.533 (3)C4A—C41.499 (3)
C1—H1A1.000C8A—C81.403 (3)
O22—C61.374 (2)C10—C151.378 (3)
O22—C181.433 (3)C10—C111.388 (3)
O21—C71.365 (2)C11—H11A0.950
O21—C181.425 (3)C18—H18A0.990
O24—C131.371 (2)C18—H18B0.990
O24—C201.421 (3)C16—H16A0.980
C5—C61.352 (3)C16—H16B0.980
C5—C4A1.397 (3)C16—H16C0.980
C5—H5A0.950C15—H15A0.950
C7—C81.364 (3)C20—H20A0.980
C7—C61.377 (3)C20—H20B0.980
C19—O231.420 (2)C20—H20C0.980
C19—H19A0.980C8—H8A0.950
C19—H19B0.980C4—C31.507 (3)
C19—H19C0.980C4—H4A0.990
C9—C101.500 (3)C4—H4B0.990
C9—H9A0.990C17—H17A0.980
C9—H9B0.990C17—H17B0.980
C14—C131.374 (3)C17—H17C0.980
C14—C151.388 (3)C3—H3A0.990
C14—H14A0.950C3—H3B0.990
O23—C121.360 (2)
O25—Cl29—O26110.65 (16)C5—C6—C7122.32 (19)
O25—Cl29—O28109.40 (13)O22—C6—C7109.41 (18)
O26—Cl29—O28108.54 (12)C15—C10—C11118.74 (19)
O25—Cl29—O27109.67 (12)C15—C10—C9120.87 (18)
O26—Cl29—O27108.38 (11)C11—C10—C9120.38 (17)
O28—Cl29—O27110.17 (11)C12—C11—C10121.16 (18)
C8A—C1—N2109.19 (15)C12—C11—H11A119.4
C8A—C1—C9112.95 (17)C10—C11—H11A119.4
N2—C1—C9111.74 (16)O21—C18—O22107.50 (17)
C8A—C1—H1A107.6O21—C18—H18A110.2
N2—C1—H1A107.6O22—C18—H18A110.2
C9—C1—H1A107.6O21—C18—H18B110.2
C6—O22—C18105.02 (15)O22—C18—H18B110.2
C7—O21—C18105.11 (16)H18A—C18—H18B108.5
C13—O24—C20116.54 (17)N2—C16—H16A109.5
C6—C5—C4A117.70 (19)N2—C16—H16B109.5
C6—C5—H5A121.2H16A—C16—H16B109.5
C4A—C5—H5A121.2N2—C16—H16C109.5
C8—C7—O21128.32 (18)H16A—C16—H16C109.5
C8—C7—C6121.44 (19)H16B—C16—H16C109.5
O21—C7—C6110.21 (18)C10—C15—C14120.94 (19)
O23—C19—H19A109.5C10—C15—H15A119.5
O23—C19—H19B109.5C14—C15—H15A119.5
H19A—C19—H19B109.5O24—C20—H20A109.5
O23—C19—H19C109.5O24—C20—H20B109.5
H19A—C19—H19C109.5H20A—C20—H20B109.5
H19B—C19—H19C109.5O24—C20—H20C109.5
C10—C9—C1113.42 (17)H20A—C20—H20C109.5
C10—C9—H9A108.9H20B—C20—H20C109.5
C1—C9—H9A108.9C7—C8—C8A117.13 (18)
C10—C9—H9B108.9C7—C8—H8A121.4
C1—C9—H9B108.9C8A—C8—H8A121.4
H9A—C9—H9B107.7C4A—C4—C3114.85 (17)
C13—C14—C15120.00 (18)C4A—C4—H4A108.6
C13—C14—H14A120.0C3—C4—H4A108.6
C15—C14—H14A120.0C4A—C4—H4B108.6
C12—O23—C19116.69 (16)C3—C4—H4B108.6
C16—N2—C17107.30 (16)H4A—C4—H4B107.5
C16—N2—C3108.72 (16)N2—C17—H17A109.5
C17—N2—C3110.67 (16)N2—C17—H17B109.5
C16—N2—C1111.43 (15)H17A—C17—H17B109.5
C17—N2—C1108.78 (16)N2—C17—H17C109.5
C3—N2—C1109.92 (16)H17A—C17—H17C109.5
O23—C12—C11124.67 (17)H17B—C17—H17C109.5
O23—C12—C13115.96 (17)O24—C13—C14124.60 (18)
C11—C12—C13119.37 (18)O24—C13—C12115.73 (17)
C8A—C4A—C5120.3 (2)C14—C13—C12119.66 (18)
C8A—C4A—C4121.51 (19)N2—C3—C4112.33 (18)
C5—C4A—C4118.00 (17)N2—C3—H3A109.1
C4A—C8A—C8121.06 (19)C4—C3—H3A109.1
C4A—C8A—C1121.58 (19)N2—C3—H3B109.1
C8—C8A—C1117.30 (17)C4—C3—H3B109.1
C5—C6—O22128.27 (18)H3A—C3—H3B107.9
C18—O21—C7—C8171.2 (2)C1—C9—C10—C1595.6 (2)
C18—O21—C7—C610.8 (2)C1—C9—C10—C1185.1 (2)
C8A—C1—C9—C1057.4 (2)O23—C12—C11—C10176.16 (19)
N2—C1—C9—C10179.06 (15)C13—C12—C11—C103.9 (3)
C8A—C1—N2—C16177.27 (16)C15—C10—C11—C122.7 (3)
C9—C1—N2—C1651.6 (2)C9—C10—C11—C12178.02 (18)
C8A—C1—N2—C1764.6 (2)C7—O21—C18—O2216.4 (2)
C9—C1—N2—C17169.68 (16)C6—O22—C18—O2115.9 (2)
C8A—C1—N2—C356.7 (2)C11—C10—C15—C140.5 (3)
C9—C1—N2—C369.0 (2)C9—C10—C15—C14178.80 (19)
C19—O23—C12—C115.3 (3)C13—C14—C15—C102.4 (3)
C19—O23—C12—C13174.79 (16)O21—C7—C8—C8A176.3 (2)
C6—C5—C4A—C8A1.3 (3)C6—C7—C8—C8A1.6 (3)
C6—C5—C4A—C4176.2 (2)C4A—C8A—C8—C72.4 (3)
C5—C4A—C8A—C81.0 (3)C1—C8A—C8—C7174.71 (19)
C4—C4A—C8A—C8173.73 (19)C8A—C4A—C4—C310.6 (3)
C5—C4A—C8A—C1176.0 (2)C5—C4A—C4—C3174.57 (19)
C4—C4A—C8A—C19.3 (3)C20—O24—C13—C144.5 (3)
N2—C1—C8A—C4A32.1 (3)C20—O24—C13—C12176.64 (18)
C9—C1—C8A—C4A92.9 (2)C15—C14—C13—O24177.65 (19)
N2—C1—C8A—C8150.79 (17)C15—C14—C13—C121.2 (3)
C9—C1—C8A—C884.2 (2)O23—C12—C13—O240.8 (3)
C4A—C5—C6—O22177.6 (2)C11—C12—C13—O24179.15 (18)
C4A—C5—C6—C72.2 (3)O23—C12—C13—C14178.14 (18)
C18—O22—C6—C5170.8 (2)C11—C12—C13—C141.9 (3)
C18—O22—C6—C79.4 (2)C16—N2—C3—C4177.06 (17)
C8—C7—C6—C50.8 (3)C17—N2—C3—C459.5 (2)
O21—C7—C6—C5179.0 (2)C1—N2—C3—C460.7 (2)
C8—C7—C6—O22179.08 (19)C4A—C4—C3—N236.3 (3)
O21—C7—C6—O220.9 (2)

Experimental details

Crystal data
Chemical formulaC21H26NO4+·ClO4
Mr455.88
Crystal system, space groupMonoclinic, P21
Temperature (K)120
a, b, c (Å)7.450 (1), 17.010 (3), 9.038 (2)
β (°) 114.32 (3)
V3)1043.7 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.40 × 0.40 × 0.20
Data collection
DiffractometerKuma KM-4 CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6727, 3144, 3001
Rint0.035
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.067, 1.04
No. of reflections3144
No. of parameters281
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.20
Absolute structureFlack (1983), 1276 Friedel pairs
Absolute structure parameter0.04 (5)

Computer programs: Xcalibur (Oxford Diffraction Ltd, 2001), Xcalibur, SHELXTL (Bruker, 1998), SHELXTL.

 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds