Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, the two phenyl rings are oriented at an angle of 63.4 (1)° with respect to each other. The 4-piperidone ring adopts a slightly distorted chair conformation. Molecules are packed through N—H...O hydrogen bond and van der Waals interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801016026/cf6108sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801016026/cf6108Isup2.hkl
Contains datablock I

CCDC reference: 148947

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.063
  • wR factor = 0.195
  • Data-to-parameter ratio = 14.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
SHFSU_01 Alert C The absolute value of parameter shift to su ratio > 0.05 Absolute value of the parameter shift to su ratio given 0.061 Additional refinement cycles may be required. WEIGH_01 Alert C Extra text has been found in the _refine_ls_weighting_scheme field. This should be in the _refine_ls_weighting_details field. Weighting scheme given as calc w = 1/[\s^2^(Fo^2^)+(0.1P)^2^] where P Weighting scheme identified as calc PLAT_711 Alert C BOND Unknown or Inconsistent Label ........ H1B N1 H1B PLAT_712 Alert C ANGLE Unknown or Inconsistent Label ........ H1B C6 N1 H1B PLAT_712 Alert C ANGLE Unknown or Inconsistent Label ........ H1B C2 N1 H1B PLAT_712 Alert C ANGLE Unknown or Inconsistent Label ........ H1B H1B N1 H1
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
6 Alert Level C = Please check

Comment top

The piperidine ring is a characteristic feature of antihistaminic agents, oral anesthetics, narcotic analgesics, tranquillizers and hypotensive agents (Robinson, 1973). Many piperidine derivatives also form the skeleton of several alkaloids (Hootele et al., 1980). Several 2,6-substituted piperidine derivatives are found to possess fungicidal, herbicidal and bactericidal activities (Mobio et al., 1989). A large variety of 4-piperidones with different substituents in the 1, 2, 3, 5 and 6 positions with further substitutions in the 2- and 6-substituent phenyl rings are reported elsewhere (Jia et al., 1989a,b; Cheer et al., 1984; Sekar et al., 1990, 1993; Sukumar et al., 1994; Diaz et al., 1997). Continuing this series, we report here the structure of 2,6-diphenyl-3-isopropylpiperidin-4-one.

Colourless prism-shaped crystals obtained during the synthesis were suitable for X-ray crystallography.

Fig. 1 shows the molecular structure; bond lengths and angles are given in Table. 1. The piperidine ring adopts a slightly distorted chair conformation. Atoms C2, C3, C5 and C6 lie in a plane, whereas N1 and C4 deviate by -0.703 (3) and 0.518 (4) Å on either side of this plane. The phenyl rings are planar, with a maximum deviation of -0.009 (4) Å for ring A (C7–C8) and 0.003 (5) Å for ring B (C13–C14), and are cis to the piperidine ring [C5—C6—C7—C8 = 59.0 (5)°; C3—C2—C13—C14 = -72.5 (4)°]. The dihedral angle between the two phenyl rings is 63.4 (1)°.

The bond lengths of the rings vary from 1.352 (5) to 1.386 (5) Å. The bond lengths C6—C7 [1.513 (5) Å] and C2—C13 [1.503 (5) Å] are in good agreement with the overall distances of Csp3—Car [1.513 (14) Å] (Allen et al., 1987). The endocyclic angles C7—C8—C12 [117.3 (3)°] and C13—C14—C18 [117.8 (3)°] are smaller than the average value of 120° as observed in related structures (Singh et al., 1990; Eswaramoorthy, 1992). This may be due to conjugation.

Molecules are packed in chains running along the b axis. These continuous chains are stabilized by N—H···O intermolecular hydrogen bonds (Table 2). Further stabilization is provided by the shortest C—H···O contact and by van der Waals interactions.

Experimental top

The procedure adopted for the preparation of the title heterocyclic compound is similar to that of Noller & Baliah (1948). 0.2 mol of ammonium acetate was dissolved in 30 ml of rectified spirit, and 0.4 mol of benzaldehyde and 0.2 mol of isobutylmethyl ketone were added to this solution. The mixture was heated to boiling point and set aside for a day. The oily base obtained was converted into its hydrochloride by the addition of concentrated hydrochloric acid and the separated solid was filtered, dried and recrystallized from absolute ethanol. To the hydrochloride, a few drops of acetone were added and the mixture was neutralized with liquid ammonia. On dilution with water, the free base was separated and was filtered and recrystallized from absolute ethanol; m.p. 398–399 K.

Refinement top

All H atoms were fixed geometrically and refined isotropically using a riding model with N—H = 0.86, C—H(aromatic) = 0.93 and C—H(aliphatic) = 0.98 Å.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Enraf Nonius, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997) and PLUTON (Spek, 1997); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1983, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme and 50% probability level displacement ellipsoids for the non-H atoms.
2,6-Diphenyl-3-isopropylpiperidin-4-one top
Crystal data top
C20H23NOF(000) = 632
Mr = 293.39Dx = 1.179 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.6008 (8) ÅCell parameters from 25 reflections
b = 13.459 (3) Åθ = 6.2–11.6°
c = 12.0597 (12) ŵ = 0.07 mm1
β = 118.611 (9)°T = 293 K
V = 1653.0 (5) Å3Prism, colourless
Z = 40.4 × 0.3 × 0.2 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.030
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.0°
Graphite monochromatorh = 1312
ω/2θ scansk = 015
3046 measured reflectionsl = 014
2897 independent reflections3 standard reflections every 100 reflections
1320 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.195H-atom parameters constrained
S = 0.96Calculated w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
2897 reflections(Δ/σ)max = 0.061
201 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C20H23NOV = 1653.0 (5) Å3
Mr = 293.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.6008 (8) ŵ = 0.07 mm1
b = 13.459 (3) ÅT = 293 K
c = 12.0597 (12) Å0.4 × 0.3 × 0.2 mm
β = 118.611 (9)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.030
3046 measured reflections3 standard reflections every 100 reflections
2897 independent reflections intensity decay: none
1320 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.195H-atom parameters constrained
S = 0.96Δρmax = 0.20 e Å3
2897 reflectionsΔρmin = 0.24 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.5202 (2)0.1941 (2)0.7886 (3)0.0405 (7)
H1B0.56980.19110.87310.049*0.00
H10.48790.25620.76830.049*
C20.6028 (3)0.1737 (3)0.7300 (3)0.0442 (9)
H20.54580.16780.63860.053*
C30.6728 (3)0.0727 (3)0.7803 (4)0.0473 (10)
H30.72600.08120.87180.057*
C40.5729 (3)0.0056 (3)0.7628 (4)0.0506 (10)
C50.4696 (4)0.0224 (3)0.7980 (4)0.0629 (12)
H5A0.50750.02150.88920.075*
H5B0.39970.02650.76380.075*
C60.4124 (3)0.1247 (3)0.7489 (4)0.0497 (10)
H60.36650.12220.65640.060*
C70.3143 (3)0.1550 (3)0.7917 (4)0.0475 (10)
C80.3469 (4)0.1622 (3)0.9170 (4)0.0594 (11)
H80.43340.15080.97830.071*
C90.2553 (4)0.1857 (3)0.9543 (4)0.0702 (13)
H90.27930.18851.03970.084*
C100.1284 (4)0.2048 (3)0.8649 (5)0.0688 (13)
H100.06590.22100.88920.083*
C110.0944 (4)0.1999 (3)0.7405 (4)0.0652 (12)
H110.00830.21340.67980.078*
C120.1856 (4)0.1755 (3)0.7035 (4)0.0558 (11)
H120.16060.17260.61790.067*
C130.6972 (3)0.2577 (3)0.7539 (3)0.0403 (9)
C140.7737 (3)0.2965 (3)0.8731 (4)0.0503 (10)
H140.76680.26990.94090.060*
C150.8593 (3)0.3732 (3)0.8941 (4)0.0598 (11)
H150.90990.39800.97530.072*
C160.8703 (4)0.4131 (3)0.7959 (5)0.0605 (11)
H160.92790.46550.80970.073*
C170.7972 (4)0.3762 (3)0.6782 (4)0.0576 (11)
H170.80550.40340.61150.069*
C180.7100 (3)0.2986 (3)0.6550 (3)0.0481 (10)
H180.66030.27420.57350.058*
O190.5786 (3)0.0892 (2)0.7304 (3)0.0762 (9)
C200.7701 (4)0.0440 (3)0.7332 (4)0.0594 (11)
H200.82330.10330.74320.071*
C210.7080 (5)0.0162 (4)0.5963 (5)0.0956 (17)
H21A0.77520.00620.57250.143*
H21B0.65050.06870.54620.143*
H21C0.65850.04390.58250.143*
C220.8642 (4)0.0352 (4)0.8179 (5)0.0970 (18)
H22A0.81930.09780.80160.145*
H22B0.89600.01710.90480.145*
H22C0.93690.04070.80110.145*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0365 (15)0.0319 (16)0.0588 (19)0.0001 (13)0.0274 (15)0.0009 (14)
C20.0402 (19)0.043 (2)0.057 (2)0.0055 (17)0.0290 (18)0.0048 (18)
C30.0413 (19)0.045 (2)0.063 (2)0.0015 (18)0.0305 (18)0.0018 (19)
C40.050 (2)0.037 (2)0.074 (3)0.0006 (19)0.036 (2)0.004 (2)
C50.059 (2)0.044 (3)0.106 (3)0.004 (2)0.057 (3)0.001 (2)
C60.041 (2)0.047 (2)0.071 (3)0.0033 (18)0.0355 (19)0.005 (2)
C70.039 (2)0.043 (2)0.066 (3)0.0054 (17)0.030 (2)0.002 (2)
C80.046 (2)0.065 (3)0.066 (3)0.005 (2)0.026 (2)0.004 (2)
C90.071 (3)0.083 (3)0.072 (3)0.004 (3)0.046 (3)0.007 (3)
C100.060 (3)0.073 (3)0.094 (4)0.005 (2)0.054 (3)0.008 (3)
C110.038 (2)0.066 (3)0.087 (3)0.007 (2)0.028 (2)0.003 (3)
C120.051 (2)0.061 (3)0.061 (3)0.004 (2)0.031 (2)0.006 (2)
C130.0355 (17)0.044 (2)0.046 (2)0.0017 (17)0.0235 (17)0.0031 (18)
C140.053 (2)0.049 (2)0.053 (3)0.003 (2)0.029 (2)0.000 (2)
C150.044 (2)0.066 (3)0.069 (3)0.011 (2)0.027 (2)0.016 (2)
C160.048 (2)0.050 (3)0.098 (3)0.008 (2)0.047 (2)0.008 (3)
C170.061 (2)0.056 (3)0.073 (3)0.003 (2)0.046 (2)0.003 (2)
C180.042 (2)0.058 (3)0.048 (2)0.0042 (18)0.0254 (18)0.001 (2)
O190.078 (2)0.0398 (18)0.138 (3)0.0056 (15)0.074 (2)0.0108 (18)
C200.054 (2)0.049 (3)0.097 (3)0.004 (2)0.053 (2)0.011 (2)
C210.113 (4)0.106 (4)0.103 (4)0.003 (3)0.080 (3)0.012 (3)
C220.065 (3)0.094 (4)0.142 (5)0.027 (3)0.058 (3)0.007 (3)
Geometric parameters (Å, º) top
N1—C61.447 (4)C10—H100.930
N1—C21.463 (4)C11—C121.370 (5)
N1—H1B0.900C11—H110.930
N1—H10.900C12—H120.930
C2—C131.503 (5)C13—C141.381 (5)
C2—C31.550 (5)C13—C181.384 (5)
C2—H20.980C14—C151.370 (5)
C3—C41.504 (5)C14—H140.930
C3—C201.537 (5)C15—C161.360 (5)
C3—H30.980C15—H150.930
C4—O191.204 (4)C16—C171.352 (5)
C4—C51.498 (5)C16—H160.930
C5—C61.520 (5)C17—C181.386 (5)
C5—H5A0.970C17—H170.930
C5—H5B0.970C18—H180.930
C6—C71.513 (5)C20—C221.518 (6)
C6—H60.980C20—C211.499 (6)
C7—C81.375 (5)C20—H200.980
C7—C121.385 (5)C21—H21A0.960
C8—C91.375 (5)C21—H21B0.960
C8—H80.930C21—H21C0.960
C9—C101.369 (6)C22—H22A0.960
C9—H90.930C22—H22B0.960
C10—C111.358 (6)C22—H22C0.960
C6—N1—C2112.4 (3)C9—C10—H10120.1
C6—N1—H1B109.1C12—C11—C10120.6 (4)
C2—N1—H1B109.1C12—C11—H11119.7
C6—N1—H1109.1C10—C11—H11119.7
C2—N1—H1109.1C11—C12—C7121.0 (4)
H1B—N1—H1107.9C11—C12—H12119.5
N1—C2—C13110.7 (3)C7—C12—H12119.5
N1—C2—C3108.5 (3)C14—C13—C18117.8 (3)
C13—C2—C3112.8 (3)C14—C13—C2122.0 (3)
N1—C2—H2108.3C18—C13—C2120.2 (3)
C13—C2—H2108.3C15—C14—C13121.7 (4)
C3—C2—H2108.3C15—C14—H14119.2
C4—C3—C2109.6 (3)C13—C14—H14119.2
C4—C3—C20115.2 (3)C14—C15—C16119.9 (4)
C2—C3—C20114.6 (3)C14—C15—H15120.1
C4—C3—H3105.5C16—C15—H15120.1
C2—C3—H3105.5C17—C16—C15119.7 (4)
C20—C3—H3105.5C17—C16—H16120.1
O19—C4—C3122.8 (3)C15—C16—H16120.1
O19—C4—C5120.2 (3)C16—C17—C18121.3 (4)
C3—C4—C5116.8 (3)C16—C17—H17119.4
C4—C5—C6112.1 (3)C18—C17—H17119.4
C4—C5—H5A109.2C17—C18—C13119.7 (3)
C6—C5—H5A109.2C17—C18—H18120.2
C4—C5—H5B109.2C13—C18—H18120.2
C6—C5—H5B109.2C22—C20—C21112.2 (4)
H5A—C5—H5B107.9C22—C20—C3110.3 (3)
N1—C6—C7112.6 (3)C21—C20—C3114.8 (3)
N1—C6—C5108.0 (3)C22—C20—H20106.3
C7—C6—C5111.8 (3)C21—C20—H20106.3
N1—C6—H6108.1C3—C20—H20106.3
C7—C6—H6108.1C20—C21—H21A109.5
C5—C6—H6108.1C20—C21—H21B109.5
C8—C7—C12117.3 (3)H21A—C21—H21B109.5
C8—C7—C6122.5 (3)C20—C21—H21C109.5
C12—C7—C6120.2 (4)H21A—C21—H21C109.5
C7—C8—C9121.8 (4)H21B—C21—H21C109.5
C7—C8—H8119.1C20—C22—H22A109.5
C9—C8—H8119.1C20—C22—H22B109.5
C10—C9—C8119.6 (4)H22A—C22—H22B109.5
C10—C9—H9120.2C20—C22—H22C109.5
C8—C9—H9120.2H22A—C22—H22C109.5
C11—C10—C9119.7 (4)H22B—C22—H22C109.5
C11—C10—H10120.1
C6—N1—C2—C13169.3 (3)C7—C8—C9—C101.5 (7)
C6—N1—C2—C366.4 (4)C8—C9—C10—C110.3 (7)
N1—C2—C3—C452.3 (4)C9—C10—C11—C120.4 (7)
C13—C2—C3—C4175.3 (3)C10—C11—C12—C70.1 (6)
N1—C2—C3—C20176.4 (3)C8—C7—C12—C111.2 (6)
C13—C2—C3—C2053.5 (4)C6—C7—C12—C11177.8 (4)
C2—C3—C4—O19140.5 (4)N1—C2—C13—C1449.2 (4)
C20—C3—C4—O199.6 (6)C3—C2—C13—C1472.5 (4)
C2—C3—C4—C544.3 (5)N1—C2—C13—C18130.8 (3)
C20—C3—C4—C5175.3 (3)C3—C2—C13—C18107.5 (4)
O19—C4—C5—C6139.9 (4)C18—C13—C14—C150.2 (5)
C3—C4—C5—C644.8 (5)C2—C13—C14—C15179.8 (3)
C2—N1—C6—C7170.6 (3)C13—C14—C15—C160.1 (6)
C2—N1—C6—C565.5 (4)C14—C15—C16—C170.5 (6)
C4—C5—C6—N152.0 (4)C15—C16—C17—C180.5 (6)
C4—C5—C6—C7176.4 (3)C16—C17—C18—C130.1 (5)
N1—C6—C7—C862.9 (5)C14—C13—C18—C170.2 (5)
C5—C6—C7—C859.0 (5)C2—C13—C18—C17179.8 (3)
N1—C6—C7—C12118.1 (4)C4—C3—C20—C2270.2 (5)
C5—C6—C7—C12120.0 (4)C2—C3—C20—C22161.3 (3)
C12—C7—C8—C91.9 (6)C4—C3—C20—C2157.7 (5)
C6—C7—C8—C9177.1 (4)C2—C3—C20—C2170.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O19i0.902.223.101 (4)166
C9—H9···O19ii0.932.803.584 (6)143
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC20H23NO
Mr293.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.6008 (8), 13.459 (3), 12.0597 (12)
β (°) 118.611 (9)
V3)1653.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.4 × 0.3 × 0.2
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3046, 2897, 1320
Rint0.030
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.195, 0.96
No. of reflections2897
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.24

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Enraf Nonius, 1994), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ZORTEP (Zsolnai, 1997) and PLUTON (Spek, 1997), SHELXL97 and PARST (Nardelli, 1983, 1995).

Selected geometric parameters (Å, º) top
N1—C61.447 (4)C4—O191.204 (4)
N1—C21.463 (4)C4—C51.498 (5)
C2—C31.550 (5)C5—C61.520 (5)
C3—C41.504 (5)C20—C221.518 (6)
C3—C201.537 (5)C20—C211.499 (6)
C6—N1—C2112.4 (3)O19—C4—C5120.2 (3)
N1—C2—C13110.7 (3)C3—C4—C5116.8 (3)
N1—C2—C3108.5 (3)N1—C6—C7112.6 (3)
C13—C2—C3112.8 (3)N1—C6—C5108.0 (3)
C4—C3—C2109.6 (3)C7—C6—C5111.8 (3)
C4—C3—C20115.2 (3)C22—C20—C21112.2 (4)
C2—C3—C20114.6 (3)C22—C20—C3110.3 (3)
O19—C4—C3122.8 (3)C21—C20—C3114.8 (3)
C6—N1—C2—C366.4 (4)C2—N1—C6—C565.5 (4)
N1—C2—C3—C452.3 (4)C4—C5—C6—N152.0 (4)
C13—C2—C3—C2053.5 (4)N1—C6—C7—C862.9 (5)
C20—C3—C4—O199.6 (6)C4—C3—C20—C2270.2 (5)
C2—C3—C4—C544.3 (5)C2—C3—C20—C22161.3 (3)
C3—C4—C5—C644.8 (5)C4—C3—C20—C2157.7 (5)
C2—N1—C6—C7170.6 (3)C2—C3—C20—C2170.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O19i0.902.223.101 (4)166
C9—H9···O19ii0.932.803.584 (6)143
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y, z+2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds