Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The 1,2-dioxolane of the title adduct, C5H4F6O4·C4H8O2, is produced slowly by air oxidation of di­aqua­bis(1,1,1,5,5,5-hexa­fluoro­pentane-2,4-dionato)­manganese(II) in the pres­ence of 1,4-dioxane. This dioxolane is formally derived from the addition of H2O2 to 1,1,1,5,5,5-hexa­fluoro­pentane-2,4-dione. The hydroxy groups of the dioxolane are hydrogen bonded to dioxane to form an alternating chain structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801010340/cf6091sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801010340/cf6091Isup2.hkl
Contains datablock I

CCDC reference: 170779

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.053
  • wR factor = 0.105
  • Data-to-parameter ratio = 13.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

An attempt to synthesize bis(1,4-dioxane)bis(hfac)manganese(II) (hfac = 1,1,1,5,5,5-hexafluoropentane-2,4-dionato) resulted in the isolation of diaquabis(1,1,1,5,5,5-hexafluoropentane-2,4-dionato)manganese(II) 1.5(1,4-dioxane) solvate, identified by an X-ray crystal structure analysis. A sample of this solvate kept in a sealed glass vial was observed, after several months, to deposit colourless crystals near the top of the vial, apparently by sublimation. Structure analysis of these crystals revealed the title 1,2-dioxolane, (I), hydrogen bonded to 1,4-dioxane (Fig. 1). The two hydroxy groups are hydrogen bonded to different dioxane molecules to form a chain in which dioxane and dioxolane alternate.

Presumably autoxidation of 1,4-dioxane forms peroxide which then reacts with Mn(hfac)2(H2O)2 to produce 1,2-dioxolane. Fluorinated organic peroxides have been found useful as synthetic reagents (Sawada, 1996).

O1 and O2 are out of the C2–C3–C4 plane by -0.295 (5) and 0.361 (5) Å, respectively. Structure reports of 1,2-dioxolanes in which the dioxolane ring is not fused to other rings are relatively uncommon. Among these are 3,3'-vinylidene-di-(5-phenyl-1,2-dioxolane) and 4-(5'-phenyl-1',2'-dioxolan-3'-yl)-3-vinyl-1,2-dioxolane (Feldman et al., 1986); bis(3,5,5-trimethyl-1,2-dioxolan-3-yl) peroxide (Ramm, 1996); and two steroid derivatives (Hernández et al., 1996; Boto et al., 1998).

Experimental top

Mn(hfac)2(H2O)3 was made by a standard procedure (Morris et al., 1968). Mn(hfac)2(H2O)3 (0.5 g) was added to a mixture of n-heptane (50 ml) and 1,4-dioxane (5 ml). This mixture was distilled until nearly 5 ml of the solution had evaporated. The remaining yellow solution was allowed to cool at room temperature in a loosely covered beaker. After about a day, yellow crystals formed. These were identified as Mn(hfac)2(H2O)2 1.5-(1,4-dioxane) solvate. This compound was isolated by filtration and stored in a sealed glass vial. Colourless crystals of the title formula formed slowly over a period of months.

Refinement top

H atoms were refined isotropically in observed positions. C—H distances ranged from 0.94 (2) to 1.06 (3) Å and O–H distances were 0.85 (3) and 0.86 (3) Å.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SHELXTL (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the title structure. Displacement ellipsoids are drawn at the 50% probability level.
3,5-Dihydroxy-3,5-bis(trifluoromethyl)-1,2-dioxolane 1,4-dioxane top
Crystal data top
C5H4F6O4·C4H8O2F(000) = 672
Mr = 330.19Dx = 1.658 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.1997 (3) ÅCell parameters from 5471 reflections
b = 18.2477 (6) Åθ = 2.2–28.3°
c = 8.8871 (3) ŵ = 0.19 mm1
β = 95.798 (1)°T = 173 K
V = 1322.94 (8) Å3Rod, colorless
Z = 40.36 × 0.15 × 0.15 mm
Data collection top
CCD area-detector
diffractometer
1972 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.059
Graphite monochromatorθmax = 28.3°, θmin = 2.2°
ω scansh = 1010
14324 measured reflectionsk = 2323
3163 independent reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: difference Fourier map
wR(F2) = 0.105All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.026P)2 + 0.85P]
where P = (Fo2 + 2Fc2)/3
3163 reflections(Δ/σ)max < 0.001
238 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C5H4F6O4·C4H8O2V = 1322.94 (8) Å3
Mr = 330.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1997 (3) ŵ = 0.19 mm1
b = 18.2477 (6) ÅT = 173 K
c = 8.8871 (3) Å0.36 × 0.15 × 0.15 mm
β = 95.798 (1)°
Data collection top
CCD area-detector
diffractometer
1972 reflections with I > 2σ(I)
14324 measured reflectionsRint = 0.059
3163 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.105All H-atom parameters refined
S = 1.04Δρmax = 0.21 e Å3
3163 reflectionsΔρmin = 0.27 e Å3
238 parameters
Special details top

Experimental. Data set was 97.5% complete to 0.75 angstrom resolution with average redundancy 4.46. Crystal decay was monitored by re-collection of the first 60 frames after regular data collection was complete. No significant change was observed.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 6.9638 (0.0047) x + 1.0567 (0.0205) y - 3.8773 (0.0087) z = 0.0810 (0.0143)

* -0.1364 (0.0013) C2 * -0.0080 (0.0013) C3 * 0.1519 (0.0013) C4 * 0.2420 (0.0012) O1 * -0.2494 (0.0012) O2

Rms deviation of fitted atoms = 0.1803

6.3830 (0.0067) x - 1.1866 (0.0557) y + 4.8212 (0.0106) z = 0.5330 (0.0358)

Angle to previous plane (with approximate e.s.d.) = 7.02 (0.17)

* 0.0000 (0.0000) C2 * 0.0000 (0.0000) C3 * 0.0000 (0.0000) C4 - 0.2947 (0.0053) O1 0.3607 (0.0052) O2

Rms deviation of fitted atoms = 0.0000

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2201 (3)0.60124 (13)0.3134 (3)0.0355 (6)
C20.1703 (3)0.60104 (11)0.4839 (2)0.0271 (5)
C30.2440 (3)0.53778 (12)0.5659 (3)0.0279 (5)
C40.3292 (3)0.57642 (11)0.6882 (2)0.0261 (5)
C50.2830 (3)0.54601 (14)0.8472 (3)0.0360 (6)
C60.1961 (3)0.84774 (14)0.3706 (4)0.0435 (7)
C70.0834 (3)0.78324 (14)0.3605 (4)0.0430 (7)
C80.3108 (3)0.70342 (15)0.3821 (4)0.0451 (7)
C90.4238 (3)0.76778 (16)0.3923 (4)0.0516 (8)
O10.24388 (19)0.66614 (8)0.53627 (17)0.0314 (4)
O20.26438 (18)0.64919 (8)0.69518 (16)0.0310 (4)
O30.00145 (19)0.60093 (9)0.51480 (18)0.0321 (4)
O40.49705 (18)0.57478 (9)0.65256 (18)0.0308 (4)
O50.34649 (19)0.82868 (9)0.3109 (2)0.0428 (4)
O60.15997 (19)0.72218 (8)0.44301 (19)0.0383 (4)
F10.15800 (19)0.65878 (9)0.24585 (16)0.0542 (4)
F20.16385 (19)0.54089 (8)0.25039 (16)0.0503 (4)
F30.38182 (17)0.60265 (8)0.27995 (16)0.0463 (4)
F40.12240 (17)0.54721 (8)0.88728 (16)0.0498 (4)
F50.33115 (19)0.47633 (8)0.85480 (18)0.0567 (4)
F60.3550 (2)0.58357 (10)0.95058 (16)0.0593 (5)
H1O30.039 (3)0.6401 (14)0.484 (3)0.042 (8)*
H1O40.541 (3)0.6054 (15)0.709 (3)0.059 (9)*
H1C30.157 (3)0.5085 (12)0.609 (3)0.033 (6)*
H2C30.324 (3)0.5100 (14)0.500 (3)0.048 (7)*
H1C60.221 (3)0.8624 (15)0.479 (3)0.062 (9)*
H2C60.148 (3)0.8872 (16)0.308 (3)0.062 (9)*
H1C70.016 (3)0.7952 (13)0.410 (3)0.045 (7)*
H2C70.061 (3)0.7668 (15)0.246 (4)0.067 (9)*
H1C80.358 (3)0.6618 (15)0.446 (3)0.058 (8)*
H2C80.284 (3)0.6884 (15)0.272 (3)0.063 (9)*
H1C90.445 (3)0.7818 (15)0.507 (4)0.064 (9)*
H2C90.527 (4)0.7575 (15)0.346 (3)0.064 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0355 (14)0.0390 (14)0.0325 (13)0.0026 (11)0.0064 (10)0.0005 (11)
C20.0249 (12)0.0255 (11)0.0316 (12)0.0036 (9)0.0068 (9)0.0001 (9)
C30.0264 (12)0.0260 (12)0.0322 (13)0.0002 (10)0.0071 (10)0.0018 (10)
C40.0237 (11)0.0253 (11)0.0297 (12)0.0011 (9)0.0057 (9)0.0027 (9)
C50.0284 (13)0.0458 (15)0.0342 (14)0.0001 (11)0.0049 (10)0.0023 (11)
C60.0391 (15)0.0344 (14)0.0582 (19)0.0042 (12)0.0102 (13)0.0096 (14)
C70.0292 (14)0.0384 (14)0.0623 (19)0.0040 (11)0.0083 (13)0.0182 (13)
C80.0369 (15)0.0377 (15)0.063 (2)0.0079 (12)0.0154 (13)0.0165 (14)
C90.0287 (14)0.0478 (17)0.079 (2)0.0031 (12)0.0089 (14)0.0305 (16)
O10.0387 (9)0.0252 (8)0.0312 (9)0.0033 (7)0.0085 (7)0.0020 (7)
O20.0367 (9)0.0283 (8)0.0288 (9)0.0038 (7)0.0065 (7)0.0058 (7)
O30.0253 (9)0.0316 (9)0.0398 (10)0.0006 (7)0.0062 (7)0.0076 (8)
O40.0234 (8)0.0354 (9)0.0337 (9)0.0020 (7)0.0035 (7)0.0081 (7)
O50.0302 (9)0.0403 (10)0.0592 (11)0.0005 (7)0.0105 (8)0.0210 (9)
O60.0291 (9)0.0369 (10)0.0498 (11)0.0018 (7)0.0085 (7)0.0178 (8)
F10.0646 (11)0.0602 (10)0.0371 (8)0.0139 (8)0.0015 (7)0.0154 (7)
F20.0609 (10)0.0562 (10)0.0346 (8)0.0134 (8)0.0089 (7)0.0118 (7)
F30.0361 (8)0.0597 (10)0.0413 (8)0.0032 (7)0.0058 (6)0.0041 (7)
F40.0338 (8)0.0650 (10)0.0483 (9)0.0012 (7)0.0074 (7)0.0084 (8)
F50.0598 (10)0.0528 (10)0.0564 (10)0.0126 (8)0.0004 (8)0.0244 (8)
F60.0601 (10)0.0910 (13)0.0274 (8)0.0181 (9)0.0077 (7)0.0007 (8)
Geometric parameters (Å, º) top
C1—F31.330 (3)C6—C71.494 (4)
C1—F11.336 (3)C6—H1C61.00 (3)
C1—F21.338 (3)C6—H2C60.97 (3)
C1—C21.530 (3)C7—O61.442 (3)
C2—O31.384 (3)C7—H1C70.99 (3)
C2—O11.431 (2)C7—H2C71.06 (3)
C2—C31.522 (3)C8—O61.440 (3)
C3—C41.523 (3)C8—C91.493 (4)
C3—H1C30.94 (2)C8—H1C81.00 (3)
C3—H2C30.98 (3)C8—H2C81.02 (3)
C4—O41.381 (2)C9—O51.438 (3)
C4—O21.429 (2)C9—H1C91.04 (3)
C4—C51.529 (3)C9—H2C90.99 (3)
C5—F41.329 (3)O1—O21.472 (2)
C5—F61.331 (3)O3—H1O30.85 (3)
C5—F51.335 (3)O4—H1O40.86 (3)
C6—O51.433 (3)
F3—C1—F1107.54 (19)O5—C6—C7109.7 (2)
F3—C1—F2107.50 (19)O5—C6—H1C6109.0 (16)
F1—C1—F2107.21 (19)C7—C6—H1C6109.3 (16)
F3—C1—C2112.45 (18)O5—C6—H2C6106.5 (17)
F1—C1—C2111.79 (19)C7—C6—H2C6109.7 (17)
F2—C1—C2110.10 (19)H1C6—C6—H2C6113 (2)
O3—C2—O1112.52 (17)O6—C7—C6110.1 (2)
O3—C2—C3109.97 (18)O6—C7—H1C7106.3 (14)
O1—C2—C3105.85 (17)C6—C7—H1C7109.5 (15)
O3—C2—C1110.99 (18)O6—C7—H2C7107.1 (16)
O1—C2—C1103.94 (17)C6—C7—H2C7109.1 (16)
C3—C2—C1113.38 (19)H1C7—C7—H2C7115 (2)
C2—C3—C4102.91 (17)O6—C8—C9110.0 (2)
C2—C3—H1C3107.9 (14)O6—C8—H1C8105.2 (16)
C4—C3—H1C3110.6 (14)C9—C8—H1C8111.1 (16)
C2—C3—H2C3112.4 (15)O6—C8—H2C8108.4 (16)
C4—C3—H2C3109.8 (15)C9—C8—H2C8110.1 (16)
H1C3—C3—H2C3113 (2)H1C8—C8—H2C8112 (2)
O4—C4—O2112.80 (17)O5—C9—C8109.8 (2)
O4—C4—C3110.15 (18)O5—C9—H1C9108.7 (16)
O2—C4—C3105.40 (16)C8—C9—H1C9107.0 (16)
O4—C4—C5110.61 (17)O5—C9—H2C9106.8 (16)
O2—C4—C5103.95 (17)C8—C9—H2C9112.1 (17)
C3—C4—C5113.74 (18)H1C9—C9—H2C9113 (2)
F4—C5—F6107.61 (19)C2—O1—O2103.30 (13)
F4—C5—F5106.98 (19)C4—O2—O1103.40 (14)
F6—C5—F5107.5 (2)C2—O3—H1O3110.9 (17)
F4—C5—C4112.81 (19)C4—O4—H1O4108.9 (19)
F6—C5—C4111.42 (19)C6—O5—C9110.7 (2)
F5—C5—C4110.23 (19)C8—O6—C7109.80 (19)
F3—C1—C2—O3178.89 (17)O2—C4—C5—F663.2 (2)
F1—C1—C2—O357.8 (2)C3—C4—C5—F6177.28 (19)
F2—C1—C2—O361.3 (2)O4—C4—C5—F561.2 (2)
F3—C1—C2—O157.7 (2)O2—C4—C5—F5177.50 (17)
F1—C1—C2—O163.4 (2)C3—C4—C5—F563.4 (2)
F2—C1—C2—O1177.55 (17)O5—C6—C7—O658.5 (3)
F3—C1—C2—C356.8 (3)O6—C8—C9—O558.5 (3)
F1—C1—C2—C3177.85 (18)O3—C2—O1—O285.55 (18)
F2—C1—C2—C363.1 (2)C3—C2—O1—O234.6 (2)
O3—C2—C3—C4109.4 (2)C1—C2—O1—O2154.29 (15)
O1—C2—C3—C412.4 (2)O4—C4—O2—O183.74 (19)
C1—C2—C3—C4125.67 (19)C3—C4—O2—O136.48 (19)
C2—C3—C4—O4106.8 (2)C5—C4—O2—O1156.40 (15)
C2—C3—C4—O215.2 (2)C2—O1—O2—C444.83 (18)
C2—C3—C4—C5128.40 (19)C7—C6—O5—C958.6 (3)
O4—C4—C5—F4179.32 (18)C8—C9—O5—C658.6 (3)
O2—C4—C5—F458.0 (2)C9—C8—O6—C758.9 (3)
C3—C4—C5—F456.1 (3)C6—C7—O6—C858.9 (3)
O4—C4—C5—F658.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O60.85 (3)1.85 (3)2.688 (2)170 (3)
O4—H1O4···O5i0.86 (3)1.81 (3)2.663 (2)173 (3)
Symmetry code: (i) x1, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC5H4F6O4·C4H8O2
Mr330.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)8.1997 (3), 18.2477 (6), 8.8871 (3)
β (°) 95.798 (1)
V3)1322.94 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.36 × 0.15 × 0.15
Data collection
DiffractometerCCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14324, 3163, 1972
Rint0.059
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.105, 1.04
No. of reflections3163
No. of parameters238
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.21, 0.27

Computer programs: SMART (Bruker, 1998), SMART, SHELXTL (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
C1—F31.330 (3)C5—F41.329 (3)
C1—F11.336 (3)C5—F61.331 (3)
C1—F21.338 (3)C5—F51.335 (3)
C1—C21.530 (3)C6—O51.433 (3)
C2—O31.384 (3)C6—C71.494 (4)
C2—O11.431 (2)C7—O61.442 (3)
C2—C31.522 (3)C8—O61.440 (3)
C3—C41.523 (3)C8—C91.493 (4)
C4—O41.381 (2)C9—O51.438 (3)
C4—O21.429 (2)O1—O21.472 (2)
C4—C51.529 (3)
O1—C2—C3105.85 (17)C2—O1—O2103.30 (13)
C2—C3—C4102.91 (17)C4—O2—O1103.40 (14)
O2—C4—C3105.40 (16)
O1—C2—C3—C412.4 (2)C3—C4—O2—O136.48 (19)
C2—C3—C4—O215.2 (2)C2—O1—O2—C444.83 (18)
C3—C2—O1—O234.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O60.85 (3)1.85 (3)2.688 (2)170 (3)
O4—H1O4···O5i0.86 (3)1.81 (3)2.663 (2)173 (3)
Symmetry code: (i) x1, y+3/2, z+1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds