Download citation
Download citation
link to html
The title compound, C22H22NP, a kind of Schiff base, which contains soft donor phosphines and hard donor nitro­gen, has been synthesized. The C=N double bond has length 1.253 (2) Å. There is a zigzag chain with a di­phenyl­phosphine and a benzene ring.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680101203X/cf6089sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680101203X/cf6089Isup2.hkl
Contains datablock I

CCDC reference: 172212

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.031
  • wR factor = 0.099
  • Data-to-parameter ratio = 14.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 24.99 From the CIF: _reflns_number_total 3202 Count of symmetry unique reflns 1875 Completeness (_total/calc) 170.77% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1327 Fraction of Friedel pairs measured 0.708 Are heavy atom types Z>Si present yes Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.

Comment top

Phosphines are among the most common ancillary ligands for transition metal complexes with the result that there are many reported systems (Newkome, 1993a,b; Uriarte et al., 1980). Ligands possessing both softer donor phosphines and harder donor nitrogen or oxygen sites have been studied extensively because they not only stabilize homobimetallic or heterobimetallic complexes but also provide catalyst system with hemilabile ligands that readily dissociate to provide vacant coordination sites for incoming substrates (Elliott et al., 1999). Issleib first synthesized the [Ph2P(CH2)3N=CH]C6H5 compound and prepared the Ni (Issleib et al., 1978), Pd and Pt (Issleib & Kipke, 1980) complexes with the ligand. Blinn et al. (1990) reported a new method to synthesize the ligand, which was obtained by reacting Ph2P(CH2)3NH2, from the reduction of Ph2P(CH2)3CN, with benzaldehyde in the presence of molecular sieves. However, they did not report a single-crystal structure. In addition, Hussain et al. (1990) and Banbery et al. (1991) prepared the ligand 2-[Ph2P(CH2)3N=CH]C6H4OH and its Re(V) complex. As the distance for C16—N1 is 1.256 (3) Å, typical for a double bond, this is a novel kind of Schiff base. There is a zigzag chain with a diphenylphosphine and a benzene ring in the molecule.

Experimental top

All commercially available reagents were used as supplied. 1H NMR spectra were obtained from CDCl3 solution using TMS as internal standard on a Bruker DRX 200 instrument. FT—IR spectra were measured by a Nicolet 1795X FT—IR spectrophotometer. Elemental analyses were performed on a Carlo-Erba 1106 elemental analyser. The compound [Ph2P(CH2)3N=CH]C6H5 was prepared by the reaction between Ph2P(CH2)3NH2 and benzaldehyde in the presence of molecular sieves in benzene according to previously described procedures (Blinn et al., 1990); m.p. 79–80° 1H NMR (CDCl3, 200 MHz): p.p.m. 8.26 (s, 1H, –N=CH), 7.71–7.73 (m, 15H, Ph), 3.70 (t, 2H, –CH2—N), 2.10 (t, 2H, –P—CH2), 1.88 (m, 2H, –CH2—CH2—CH2). IR (KBr) cm-1 1574, 1478 (C=C), 1697 (C=N) 1492 (C—P). Anal. Calcd: C, 79.74; H, 6.69; N, 4.23. Found: C, 79.57; H, 6.43; N, 4.18.

Refinement top

The positions of all H atoms were fixed geometrically.

Computing details top

Data collection: CAD-4-PC Software (Enraf-Nonius, 1989); cell refinement: CAD-4-PC Software; data reduction: TEXSAN (Molecular Structure Corporation, 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecule with labelling of the non-H atoms and 30% probability ellipsoids.
[Figure 2] Fig. 2. A view of the packing.
3-(Diphenylphosphino)-N-phenylmethylene-1-propanamine top
Crystal data top
C22H22NPDx = 1.209 Mg m3
Mr = 331.38Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 25 reflections
a = 5.768 (2) Åθ = 15.1–15.9°
b = 17.702 (3) ŵ = 0.15 mm1
c = 17.823 (4) ÅT = 293 K
V = 1819.8 (8) Å3Prismatic, colourless
Z = 40.4 × 0.3 × 0.2 mm
F(000) = 704
Data collection top
Enraf-Nonius CAD-4
diffractometer
3014 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.0°, θmin = 1.6°
ω/2θ scansh = 66
Absorption correction: ψ scan
(North et al., 1968)
k = 2021
Tmin = 0.946, Tmax = 0.970l = 2021
3202 measured reflections5 standard reflections every 300 reflections
3202 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.06P)2 + 0.35P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
3202 reflectionsΔρmax = 0.29 e Å3
217 parametersΔρmin = 0.10 e Å3
0 restraintsAbsolute structure: Flack (1983); 1327 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.09 (10)
Crystal data top
C22H22NPV = 1819.8 (8) Å3
Mr = 331.38Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.768 (2) ŵ = 0.15 mm1
b = 17.702 (3) ÅT = 293 K
c = 17.823 (4) Å0.4 × 0.3 × 0.2 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
3014 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.946, Tmax = 0.9705 standard reflections every 300 reflections
3202 measured reflections intensity decay: none
3202 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.099Δρmax = 0.29 e Å3
S = 1.05Δρmin = 0.10 e Å3
3202 reflectionsAbsolute structure: Flack (1983); 1327 Friedel pairs
217 parametersAbsolute structure parameter: 0.09 (10)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P11.24508 (8)1.32205 (3)1.15104 (2)0.05096 (14)
N11.7355 (3)1.47800 (8)1.00822 (8)0.0599 (4)
C11.5757 (3)1.20181 (11)1.14927 (11)0.0548 (4)
H1B1.67081.23201.11960.080*
C21.6446 (4)1.12841 (11)1.16820 (13)0.0636 (5)
H2A1.78491.10971.15040.080*
C31.5090 (4)1.08447 (12)1.21209 (12)0.0681 (6)
H3A1.55671.03581.22430.080*
C41.2995 (5)1.11147 (12)1.23889 (12)0.0733 (7)
H4A1.20741.08171.26990.080*
C51.2299 (4)1.18282 (10)1.21900 (11)0.0599 (5)
H5A1.08711.20041.23570.080*
C61.3654 (3)1.22925 (10)1.17491 (10)0.0485 (4)
C71.2363 (3)1.36542 (9)1.24433 (9)0.0478 (4)
C81.0424 (3)1.40853 (11)1.26416 (11)0.0559 (4)
H8A0.92311.41511.22970.080*
C91.0257 (4)1.44138 (11)1.33414 (12)0.0625 (5)
H9A0.89581.46991.34660.080*
C101.2000 (4)1.43205 (11)1.38502 (11)0.0618 (5)
H10A1.18811.45401.43230.080*
C111.3925 (4)1.39049 (12)1.36691 (11)0.0615 (5)
H11A1.51211.38511.40150.080*
C121.4084 (3)1.35677 (10)1.29746 (10)0.0523 (4)
H12A1.53781.32761.28610.080*
C131.4922 (3)1.37201 (11)1.10900 (10)0.0535 (4)
H13A1.48001.42541.12070.080*
H13B1.63451.35341.13130.080*
C141.5060 (4)1.36233 (11)1.02373 (10)0.0585 (5)
H14A1.50351.30891.01170.080*
H14B1.37081.38541.00090.080*
C151.7235 (4)1.39761 (10)0.99062 (10)0.0608 (5)
H15A1.85921.37231.01060.080*
H15B1.72321.39090.93660.080*
C161.9109 (4)1.50074 (11)1.04326 (10)0.0576 (5)
H16A2.02261.46541.05670.080*
C171.9500 (4)1.57962 (12)1.06419 (10)0.0563 (4)
C181.7897 (4)1.63596 (12)1.04701 (10)0.0615 (5)
H18A1.65291.62381.02220.080*
C191.8353 (4)1.71011 (12)1.06708 (12)0.0685 (6)
H19A1.72891.74781.05540.080*
C202.0387 (4)1.72848 (13)1.10443 (13)0.0706 (6)
H20A2.06821.77831.11780.080*
C212.1958 (4)1.67328 (14)1.12158 (14)0.0760 (6)
H21A2.33151.68531.14710.080*
C222.1516 (4)1.59971 (14)1.10068 (13)0.0680 (5)
H22A2.26071.56261.11150.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0468 (2)0.0558 (3)0.0503 (2)0.0015 (8)0.0055 (2)0.0044 (8)
N10.0671 (10)0.0593 (8)0.0534 (8)0.0076 (9)0.0020 (9)0.0063 (7)
C10.0475 (9)0.0543 (9)0.0627 (9)0.0016 (8)0.0059 (9)0.0041 (8)
C20.0569 (11)0.0586 (10)0.0754 (12)0.0104 (9)0.0015 (10)0.0075 (9)
C30.0880 (16)0.0532 (10)0.0631 (11)0.0031 (11)0.0043 (12)0.0044 (9)
C40.0816 (19)0.0595 (11)0.0590 (11)0.0158 (12)0.0159 (12)0.0075 (9)
C50.0583 (10)0.0575 (10)0.0639 (10)0.0068 (10)0.0111 (9)0.0140 (8)
C60.0475 (9)0.0493 (8)0.0485 (8)0.0014 (7)0.0061 (7)0.0093 (7)
C70.0481 (9)0.0418 (7)0.0534 (8)0.0002 (8)0.0032 (9)0.0007 (6)
C80.0453 (9)0.0598 (10)0.0627 (11)0.0045 (8)0.0004 (9)0.0022 (9)
C90.0564 (11)0.0535 (10)0.0778 (13)0.0038 (9)0.0088 (10)0.0086 (9)
C100.0783 (15)0.0522 (10)0.0548 (10)0.0079 (10)0.0108 (10)0.0085 (8)
C110.0691 (12)0.0624 (11)0.0530 (10)0.0033 (10)0.0078 (9)0.0013 (9)
C120.0470 (10)0.0556 (9)0.0544 (9)0.0075 (8)0.0012 (8)0.0006 (8)
C130.0581 (11)0.0554 (10)0.0469 (9)0.0021 (9)0.0004 (8)0.0007 (7)
C140.0687 (12)0.0598 (10)0.0471 (9)0.0066 (9)0.0037 (9)0.0009 (8)
C150.0685 (12)0.0620 (10)0.0519 (9)0.0067 (10)0.0070 (10)0.0065 (8)
C160.0585 (11)0.0633 (11)0.0509 (10)0.0095 (9)0.0024 (9)0.0064 (8)
C170.0574 (11)0.0632 (10)0.0484 (9)0.0097 (9)0.0084 (8)0.0074 (8)
C180.0626 (12)0.0712 (11)0.0508 (9)0.0092 (10)0.0004 (9)0.0031 (8)
C190.0795 (14)0.0591 (11)0.0670 (12)0.0161 (10)0.0036 (11)0.0003 (10)
C200.0810 (15)0.0650 (12)0.0658 (12)0.0023 (11)0.0172 (12)0.0024 (10)
C210.0674 (13)0.0809 (14)0.0796 (14)0.0055 (12)0.0045 (11)0.0025 (12)
C220.0589 (11)0.0729 (13)0.0721 (12)0.0056 (10)0.0021 (10)0.0007 (10)
Geometric parameters (Å, º) top
P1—C71.8321 (17)C11—C121.377 (3)
P1—C61.8334 (19)C11—H11A0.930
P1—C131.837 (2)C12—H12A0.930
N1—C161.256 (3)C13—C141.532 (2)
N1—C151.459 (2)C13—H13A0.970
C1—C61.384 (3)C13—H13B0.970
C1—C21.400 (3)C14—C151.521 (3)
C1—H1B0.930C14—H14A0.970
C2—C31.352 (3)C14—H14B0.970
C2—H2A0.930C15—H15A0.970
C3—C41.385 (3)C15—H15B0.970
C3—H3A0.930C16—C171.463 (3)
C4—C51.372 (3)C16—H16A0.930
C4—H4A0.930C17—C221.379 (3)
C5—C61.380 (3)C17—C181.394 (3)
C5—H5A0.930C18—C191.386 (3)
C7—C121.380 (3)C18—H18A0.930
C7—C81.399 (3)C19—C201.388 (4)
C8—C91.379 (3)C19—H19A0.930
C8—H8A0.930C20—C211.367 (3)
C9—C101.364 (3)C20—H20A0.930
C9—H9A0.930C21—C221.378 (3)
C10—C111.370 (3)C21—H21A0.930
C10—H10A0.930C22—H22A0.930
C7—P1—C6100.10 (8)C14—C13—P1113.02 (14)
C7—P1—C13100.94 (9)C14—C13—H13A109.0
C6—P1—C13103.42 (9)P1—C13—H13A109.0
C16—N1—C15117.25 (18)C14—C13—H13B109.0
C6—C1—C2119.64 (19)P1—C13—H13B109.0
C6—C1—H1B120.2H13A—C13—H13B107.8
C2—C1—H1B120.2C15—C14—C13112.46 (17)
C3—C2—C1120.6 (2)C15—C14—H14A109.1
C3—C2—H2A119.7C13—C14—H14A109.1
C1—C2—H2A119.7C15—C14—H14B109.1
C2—C3—C4120.4 (2)C13—C14—H14B109.1
C2—C3—H3A119.8H14A—C14—H14B107.8
C4—C3—H3A119.8N1—C15—C14110.87 (17)
C5—C4—C3118.9 (2)N1—C15—H15A109.5
C5—C4—H4A120.5C14—C15—H15A109.5
C3—C4—H4A120.5N1—C15—H15B109.5
C4—C5—C6122.0 (2)C14—C15—H15B109.5
C4—C5—H5A119.0H15A—C15—H15B108.1
C6—C5—H5A119.0N1—C16—C17123.85 (19)
C5—C6—C1118.39 (18)N1—C16—H16A118.1
C5—C6—P1116.83 (15)C17—C16—H16A118.1
C1—C6—P1124.72 (15)C22—C17—C18118.6 (2)
C12—C7—C8117.52 (16)C22—C17—C16119.75 (19)
C12—C7—P1123.80 (14)C18—C17—C16121.7 (2)
C8—C7—P1118.67 (15)C19—C18—C17119.7 (2)
C9—C8—C7120.94 (19)C19—C18—H18A120.2
C9—C8—H8A119.5C17—C18—H18A120.2
C7—C8—H8A119.5C20—C19—C18120.4 (2)
C10—C9—C8119.90 (19)C20—C19—H19A119.8
C10—C9—H9A120.0C18—C19—H19A119.8
C8—C9—H9A120.0C21—C20—C19120.0 (2)
C11—C10—C9120.37 (18)C21—C20—H20A120.0
C11—C10—H10A119.8C19—C20—H20A120.0
C9—C10—H10A119.8C20—C21—C22119.5 (2)
C10—C11—C12119.9 (2)C20—C21—H21A120.3
C10—C11—H11A120.0C22—C21—H21A120.3
C12—C11—H11A120.0C17—C22—C21121.8 (2)
C11—C12—C7121.35 (19)C17—C22—H22A119.1
C11—C12—H12A119.3C21—C22—H22A119.1
C7—C12—H12A119.3

Experimental details

Crystal data
Chemical formulaC22H22NP
Mr331.38
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)5.768 (2), 17.702 (3), 17.823 (4)
V3)1819.8 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.4 × 0.3 × 0.2
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.946, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
3202, 3202, 3014
Rint0.000
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.099, 1.05
No. of reflections3202
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.10
Absolute structureFlack (1983); 1327 Friedel pairs
Absolute structure parameter0.09 (10)

Computer programs: CAD-4-PC Software (Enraf-Nonius, 1989), CAD-4-PC Software, TEXSAN (Molecular Structure Corporation, 1989), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXL97.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds