Download citation
Download citation
link to html
In the title compound, K+·C8H7BF3, the closest distance between the K+ and C8H7BF3 moieties is a K...F distance of 2.1619 (17) Å. The overall structure consists of two-dimensional sheets in which C8H7BF3 moieties coordinate to both sides of layers of K+ ions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801010169/cf6083sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801010169/cf6083Isup2.hkl
Contains datablock I

CCDC reference: 170861

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.026
  • wR factor = 0.067
  • Data-to-parameter ratio = 13.2

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
STRVAL_01 From the CIF: _refine_ls_abs_structure_Flack 0.500 From the CIF: _refine_ls_abs_structure_Flack_su 0.040 Alert C Flack test results are ambiguous. General Notes
REFLT_03 From the CIF: _diffrn_reflns_theta_max 25.02 From the CIF: _reflns_number_total 1576 Count of symmetry unique reflns 919 Completeness (_total/calc) 171.49% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 657 Fraction of Friedel pairs measured 0.715 Are heavy atom types Z>Si present yes Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

While (E)-2-phenyl-1-ethenylboronic acid, along with other aryl- and alkenylboronic acids, has been successfully employed in rhodium(I)-catalyzed 1,4-additions to α,β-unsaturated carbonyl compounds (Sakai et al., 1997) and additions to aldehydes (Sakai et al., 1998), the title compound, (I), has shown greater reactivity in analogous processes (Batey et al., 1999). The potassium trifluoroborate salt, (I), is also considerably more stable towards air and water than the corresponding boronic acid, and consequently facile to prepare, isolate, store, and handle.

Compound (I) crystallizes as discrete K+ and C8H7BF3- moieties (Fig. 1). The closest distance between a cation and an anion is 2.1619 (17) Å, which is between K1 and F1. In the structure, each K+ is surrounded by five anions making close contacts with seven F atoms (Fig. 2) with distances ranging between 2.6169 (17) and 2.8924 (16) Å (see Table 1). The overall structure consists of two-dimensional sheets in which the –BF3 groups of C8H7BF3- are coordinated above and below layers of K+, and the terminal phenyl groups point away from the center on either side of the layers. Hence, each two-dimensional sheet is separated by normal van der Waals interactions between terminal phenyl groups (Fig. 3).

A search of the April 2001 release of the Cambridge Structural Database (Allen & Kennard, 1993) revealed only three other structures of potassium trifluoroborate salts, namely potassium methyltrifluoroborate (Brauer et al., 1982), potassium trifluoromethyltrifluoroborate (Brauer et al., 1977), and potassium phenyltrifluoroborate (Conole et al., 1995).

Experimental top

Crystals of (I) were obtained by treatment of (E)-2-phenyl-1-ethenylboronic acid in a minimal amount of methanol with aqueous potassium hydrogen fluoride. The precipitate was subsequently collected by filtration, and recrystallized from acetonitrile.

Refinement top

H atoms were included in calculated positions with C—H distances of 0.95 Å. 668 Friedel pairs were used to determine the absolute stereochemistry and the Flack parameter refined to 0.50 (4) indicating the crystal was a racemic twin (Flack, 1983).

Computing details top

Data collection: COLLECT (Nonius, 1997-2001); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXTL (Sheldrick, 1999); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. View of (I) showing the atom-labelling scheme. Ellipsoids are at the 50% probability level.
[Figure 2] Fig. 2. View of K+ cation environment with the five closest anions. Only F atoms involved in close contacts are labelled. Ellipsoids are at the 50% probability level.
[Figure 3] Fig. 3. Diagram viewed approximately perependicular to the ab plane showing the packing of two-dimensional sheets.
Potassium (E)-2-Phenyl-1-ethenyltrifluoroborate top
Crystal data top
K+·C8H7BF3Dx = 1.471 Mg m3
Mr = 210.05Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 5135 reflections
a = 7.0265 (4) Åθ = 4.2–25.0°
b = 18.9749 (10) ŵ = 0.55 mm1
c = 7.1157 (4) ÅT = 100 K
V = 948.72 (9) Å3Plate, colourless
Z = 40.30 × 0.30 × 0.05 mm
F(000) = 424
Data collection top
Nonius KappaCCD
diffractometer
1576 independent reflections
Radiation source: fine-focus sealed tube1488 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 4.2°
ϕ scans, and ω scans with κ offsetsh = 88
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
k = 2222
Tmin = 0.852, Tmax = 0.973l = 88
5135 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0117P)2 + 0.3254P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
1576 reflectionsΔρmax = 0.20 e Å3
119 parametersΔρmin = 0.27 e Å3
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.50 (4)
Crystal data top
K+·C8H7BF3V = 948.72 (9) Å3
Mr = 210.05Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 7.0265 (4) ŵ = 0.55 mm1
b = 18.9749 (10) ÅT = 100 K
c = 7.1157 (4) Å0.30 × 0.30 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
1576 independent reflections
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
1488 reflections with I > 2σ(I)
Tmin = 0.852, Tmax = 0.973Rint = 0.048
5135 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.067Δρmax = 0.20 e Å3
S = 1.06Δρmin = 0.27 e Å3
1576 reflectionsAbsolute structure: Flack (1983)
119 parametersAbsolute structure parameter: 0.50 (4)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.43167 (7)0.07292 (3)0.80398 (7)0.01951 (16)
F10.40771 (19)0.11045 (9)0.4509 (2)0.0209 (4)
F20.44468 (19)0.05323 (9)0.1735 (2)0.0201 (4)
F30.7002 (2)0.06972 (8)0.3648 (2)0.0231 (4)
B10.5347 (4)0.10411 (15)0.2950 (5)0.0177 (5)
C10.5722 (3)0.17718 (15)0.1942 (4)0.0195 (6)
H1A0.67300.18020.10550.023*
C20.4691 (4)0.23458 (15)0.2279 (4)0.0225 (6)
H2A0.37150.22920.31920.027*
C30.4847 (4)0.30522 (15)0.1439 (4)0.0211 (6)
C40.6188 (4)0.32289 (15)0.0041 (5)0.0266 (6)
H4A0.70360.28790.04150.032*
C50.6284 (4)0.39051 (16)0.0672 (4)0.0281 (6)
H5A0.72070.40170.16010.034*
C60.5045 (4)0.44212 (15)0.0044 (5)0.0256 (6)
H6A0.51150.48850.05420.031*
C70.3691 (4)0.42573 (16)0.1324 (4)0.0255 (6)
H7A0.28290.46080.17510.031*
C80.3607 (4)0.35829 (15)0.2057 (4)0.0233 (6)
H8A0.26920.34770.29980.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0150 (2)0.0296 (3)0.0139 (2)0.0017 (2)0.0002 (3)0.0010 (3)
F10.0196 (7)0.0293 (9)0.0138 (8)0.0007 (6)0.0036 (6)0.0011 (7)
F20.0188 (7)0.0265 (9)0.0151 (7)0.0026 (6)0.0020 (6)0.0007 (7)
F30.0139 (7)0.0288 (8)0.0267 (8)0.0011 (6)0.0037 (6)0.0003 (7)
B10.0135 (12)0.0264 (13)0.0133 (11)0.0009 (10)0.0011 (13)0.0020 (15)
C10.0156 (11)0.0296 (15)0.0133 (13)0.0028 (10)0.0028 (11)0.0029 (11)
C20.0193 (12)0.0290 (15)0.0193 (12)0.0030 (11)0.0033 (11)0.0027 (12)
C30.0202 (11)0.0265 (15)0.0167 (13)0.0018 (12)0.0011 (12)0.0013 (11)
C40.0250 (12)0.0296 (15)0.0251 (14)0.0001 (12)0.0043 (13)0.0028 (14)
C50.0283 (14)0.0310 (16)0.0251 (13)0.0053 (13)0.0046 (14)0.0044 (13)
C60.0290 (13)0.0264 (14)0.0215 (13)0.0051 (12)0.0059 (15)0.0038 (11)
C70.0275 (15)0.0293 (16)0.0198 (14)0.0019 (12)0.0038 (14)0.0015 (12)
C80.0220 (13)0.0299 (14)0.0179 (12)0.0002 (12)0.0009 (12)0.0012 (12)
Geometric parameters (Å, º) top
K1—F12.6169 (17)C2—C31.472 (4)
K1—F3i2.6235 (15)C2—H2A0.950
K1—F2ii2.6573 (16)C3—C81.403 (4)
K1—F1iii2.6993 (15)C3—C41.410 (4)
K1—F2iv2.7106 (17)C4—C51.382 (4)
K1—F2iii2.8275 (14)C4—H4A0.950
K1—F3iv2.8934 (16)C5—C61.385 (4)
F1—B11.429 (4)C5—H5A0.950
F2—B11.442 (3)C6—C71.396 (5)
F3—B11.423 (3)C6—H6A0.950
B1—C11.583 (4)C7—C81.383 (4)
C1—C21.330 (4)C7—H7A0.950
C1—H1A0.950C8—H8A0.950
F1—K1—F3i103.18 (5)F3—B1—C1115.1 (2)
F1—K1—F2ii172.09 (5)F1—B1—C1112.5 (2)
F3i—K1—F2ii78.44 (5)F2—B1—C1112.8 (3)
F1—K1—F1iii104.08 (4)F3—B1—K1v135.71 (17)
F3i—K1—F1iii144.43 (5)F1—B1—K1v52.08 (10)
F2ii—K1—F1iii71.60 (5)F2—B1—K1v57.38 (10)
F1—K1—F2iv86.10 (5)C1—B1—K1v109.15 (15)
F3i—K1—F2iv73.74 (5)F3—B1—K1vii58.58 (12)
F2ii—K1—F2iv101.76 (4)F1—B1—K1vii96.48 (15)
F1iii—K1—F2iv130.45 (5)F2—B1—K1vii51.28 (12)
F1—K1—F2iii70.15 (5)C1—B1—K1vii150.5 (2)
F3i—K1—F2iii166.73 (5)K1v—B1—K1vii83.77 (6)
F2ii—K1—F2iii109.79 (4)C2—C1—B1123.0 (2)
F1iii—K1—F2iii48.38 (4)C2—C1—H1A118.5
F2iv—K1—F2iii94.05 (4)B1—C1—H1A118.5
F1—K1—F3iv112.18 (5)C1—C2—C3129.2 (2)
F3i—K1—F3iv105.63 (4)C1—C2—H2A115.4
F2ii—K1—F3iv74.43 (5)C3—C2—H2A115.4
F1iii—K1—F3iv84.61 (5)C8—C3—C4117.8 (3)
F2iv—K1—F3iv47.75 (4)C8—C3—C2118.7 (2)
F2iii—K1—F3iv68.04 (4)C4—C3—C2123.6 (3)
B1—F1—K1133.03 (14)C5—C4—C3120.8 (3)
B1—F1—K1v103.23 (14)C5—C4—H4A119.6
K1—F1—K1v110.91 (5)C3—C4—H4A119.6
B1—F2—K1vi120.93 (16)C4—C5—C6120.5 (3)
B1—F2—K1vii104.20 (14)C4—C5—H5A119.7
K1vi—F2—K1vii118.30 (6)C6—C5—H5A119.7
B1—F2—K1v97.19 (13)C5—C6—C7119.7 (3)
K1vi—F2—K1v105.91 (5)C5—C6—H6A120.1
K1vii—F2—K1v107.70 (5)C7—C6—H6A120.1
B1—F3—K1viii137.52 (15)C8—C7—C6119.9 (3)
B1—F3—K1vii96.62 (13)C8—C7—H7A120.1
K1viii—F3—K1vii108.22 (5)C6—C7—H7A120.1
F3—B1—F1106.1 (2)C7—C8—C3121.3 (3)
F3—B1—F2105.1 (2)C7—C8—H8A119.4
F1—B1—F2104.34 (18)C3—C8—H8A119.4
Symmetry codes: (i) x+3/2, y, z1/2; (ii) x, y, z1; (iii) x+1/2, y, z1/2; (iv) x+1, y, z1/2; (v) x+1/2, y, z+1/2; (vi) x, y, z+1; (vii) x+1, y, z+1/2; (viii) x+3/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaK+·C8H7BF3
Mr210.05
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)100
a, b, c (Å)7.0265 (4), 18.9749 (10), 7.1157 (4)
V3)948.72 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.55
Crystal size (mm)0.30 × 0.30 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
Tmin, Tmax0.852, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
5135, 1576, 1488
Rint0.048
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.067, 1.06
No. of reflections1576
No. of parameters119
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.27
Absolute structureFlack (1983)
Absolute structure parameter0.50 (4)

Computer programs: COLLECT (Nonius, 1997-2001), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, SHELXTL (Sheldrick, 1999), SHELXTL.

Selected bond lengths (Å) top
K1—F12.6169 (17)K1—F2iii2.8275 (14)
K1—F3i2.6235 (15)K1—F3iv2.8934 (16)
K1—F2ii2.6573 (16)B1—C11.583 (4)
K1—F1iii2.6993 (15)C1—C21.330 (4)
K1—F2iv2.7106 (17)
Symmetry codes: (i) x+3/2, y, z1/2; (ii) x, y, z1; (iii) x+1/2, y, z1/2; (iv) x+1, y, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds