Download citation
Download citation
link to html
The title compound, [Ni(C10H6NO2)2(H2O)2]·2H2O·2C2H5OH, contains a six-coordinate NiII ion displaying distorted octahedral coordination geometry defined by the two quinoline N atoms, two O atoms of the carboxyl­ate groups and two O atoms of the water mol­ecules. All of the corresponding pairs of ligand atoms lie in trans positions with respect to each other, the Ni atom lying on an inversion center. Molecules are linked together by an intermolecular hydrogen-bonding network involving the uncoordinated water and ethanol mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801009138/cf6071sup1.cif
Contains datablocks General, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801009138/cf6071Isup2.hkl
Contains datablock I

CCDC reference: 170731

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.033
  • wR factor = 0.118
  • Data-to-parameter ratio = 16.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

2-Quinolinecarboxylic acid is an intermediate of tryptophan metabolism and is known to chelate transition metal ions (Martell & Smith, 1974). Crystal structures of metal complexes of 2-quinolinecarboxylic acid have been determined for several metal ions, including CuII (Haendler, 1986), MnII (Haendler, 1996; Okabe & Koizumi, 1997), FeII and CoII (Okabe & Makino, 1998, 1999). We have obtained crystals of the title compound, (I), and carried out the structural analysis of the NiII complex.

The NiII complex is hexacoordinate with the NiII ion at a center of symmetry, similar to MnII, FeII and CoII complexes. The two 2-quinolinecarboxylate ligands chelate the metal through the N atom and one O atom to form the equatorial plane. Two water molecules are located at the axial position and complete the octahedron. The 2-quinolinecarboxylate and the NiII ion form a five-membered ring, which is also present in the other complexes. In this ring, the Ni—O bonds are 2.013 (2) Å and Ni—N bonds are 2.185 (2) Å. Therefore, the metal—O and the metal—N bond lengths decrease in the order Mn > Fe > Co > Ni > Cu. Two uncoordinated water molecules and two uncoordinated ethanol molecules per molecule of complex are present in this structure. Similar water and ethanol molecules are found in the Mn, Fe and Co complexes. These molecules are linked together by a hydrogen-bonding network involving the complex molecules, uncoordinated water and ethanol molecules.

Experimental top

Light-blue pillar-shaped crystals of the title compound were obtained at room temperature by the slow evaporation of a mixture of an ethanol–water solution (ca 50%) of 2-quinolinecarboxylic acid and nickel(II) acetate tetrahydrate (molar ratio 4:1).

Refinement top

H atoms were placed in calculated ideal positions, with the exception of those involved in hydrogen bonding, which were located in a difference Fourier map and were not refined.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) drawing of the title compound. Ellipsoids for non-H atoms are shown at the 50% probability level.
(I) top
Crystal data top
[Ni(C10H6NO2)2(H2O)2]·2C2H6O·2H2OF(000) = 298.00
Mr = 567.21Dx = 1.441 Mg m3
Triclinic, P1Melting point: 429.15 K
a = 8.978 (1) ÅMo Kα radiation, λ = 0.7107 Å
b = 11.073 (2) ÅCell parameters from 25 reflections
c = 7.2349 (7) Åθ = 14.9–15.0°
α = 106.25 (1)°µ = 0.80 mm1
β = 107.399 (9)°T = 296 K
γ = 78.47 (1)°Pillar, light blue
V = 653.6 (1) Å30.4 × 0.2 × 0.1 mm
Z = 1
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.008
ω–2θ scansθmax = 27.5°
Absorption correction: ψ scan
(North et al., 1968)
h = 011
Tmin = 0.822, Tmax = 0.923k = 1414
3199 measured reflectionsl = 98
3010 independent reflections3 standard reflections every 150 reflections
2838 reflections with I > 2σ(I) intensity decay: 1.1%
Refinement top
Refinement on F2H-atom parameters not refined
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.118(Δ/σ)max = 0.003
S = 1.03Δρmax = 0.80 e Å3
2838 reflectionsΔρmin = 0.39 e Å3
169 parameters
Crystal data top
[Ni(C10H6NO2)2(H2O)2]·2C2H6O·2H2Oγ = 78.47 (1)°
Mr = 567.21V = 653.6 (1) Å3
Triclinic, P1Z = 1
a = 8.978 (1) ÅMo Kα radiation
b = 11.073 (2) ŵ = 0.80 mm1
c = 7.2349 (7) ÅT = 296 K
α = 106.25 (1)°0.4 × 0.2 × 0.1 mm
β = 107.399 (9)°
Data collection top
Rigaku AFC-5R
diffractometer
2838 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.008
Tmin = 0.822, Tmax = 0.9233 standard reflections every 150 reflections
3199 measured reflections intensity decay: 1.1%
3010 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033169 parameters
wR(F2) = 0.118H-atom parameters not refined
S = 1.03Δρmax = 0.80 e Å3
2838 reflectionsΔρmin = 0.39 e Å3
Special details top

Refinement. Refinement using reflections with F2 > 0.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.50000.50000.0258 (1)
O10.5352 (2)0.3925 (1)0.6958 (2)0.0331 (3)
O20.4378 (2)0.3431 (1)0.9086 (2)0.0408 (3)
O30.6055 (2)0.6444 (1)0.7256 (2)0.0351 (3)
O40.5064 (3)0.1314 (2)0.3791 (3)0.0681 (6)
O50.4145 (3)0.8917 (2)1.2104 (3)0.0684 (5)
N10.2837 (2)0.5583 (1)0.5992 (2)0.0277 (3)
C20.2886 (2)0.5009 (2)0.7389 (2)0.0291 (3)
C30.1692 (2)0.5224 (2)0.8377 (3)0.0383 (4)
C40.0387 (2)0.6053 (2)0.7861 (3)0.0419 (4)
C50.0266 (2)0.6678 (2)0.6366 (3)0.0352 (4)
C60.1071 (2)0.7542 (2)0.5749 (4)0.0466 (5)
C70.1148 (3)0.8124 (2)0.4295 (4)0.0545 (6)
C80.0103 (3)0.7862 (3)0.3390 (4)0.0566 (6)
C90.1416 (3)0.7035 (2)0.3938 (4)0.0450 (5)
C100.1529 (2)0.6424 (2)0.5453 (3)0.0312 (3)
C110.4317 (2)0.4056 (2)0.7868 (2)0.0296 (3)
C120.2305 (5)0.9610 (4)0.9342 (6)0.099 (1)
C130.2565 (4)0.9005 (3)1.0960 (6)0.0823 (9)
H30.19010.47510.94150.0511*
H40.05720.61530.84680.0511*
H60.20230.77100.63700.0511*
H70.21510.86360.37340.0511*
H80.00270.82480.22430.0511*
H90.22900.69030.33130.0511*
H100.56120.71920.69810.0511*
H110.58940.64300.84130.0511*
H120.47910.05500.30210.0511*
H130.54790.14400.51420.0511*
H140.12320.96440.86330.1271*
H150.29450.91440.84860.1271*
H160.25801.04530.98730.1271*
H170.19330.94991.18270.1069*
H180.22580.81871.04260.1069*
H190.47170.82061.16970.0511*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0299 (2)0.0274 (2)0.0244 (2)0.0009 (1)0.0112 (1)0.0104 (1)
O10.0358 (6)0.0367 (6)0.0326 (6)0.0028 (5)0.0146 (5)0.0165 (5)
O20.0566 (8)0.0414 (7)0.0338 (7)0.0024 (6)0.0194 (6)0.0181 (6)
O30.0445 (7)0.0362 (6)0.0297 (6)0.0080 (5)0.0154 (5)0.0076 (5)
O40.107 (2)0.0401 (9)0.0503 (10)0.0139 (10)0.007 (1)0.0109 (7)
O50.087 (1)0.0352 (8)0.065 (1)0.0006 (8)0.0013 (10)0.0111 (7)
N10.0303 (7)0.0277 (6)0.0282 (7)0.0041 (5)0.0117 (5)0.0069 (5)
C20.0336 (8)0.0301 (8)0.0258 (7)0.0065 (6)0.0104 (6)0.0054 (6)
C30.0419 (9)0.0437 (10)0.0372 (9)0.0059 (8)0.0193 (8)0.0120 (8)
C40.0382 (9)0.047 (1)0.047 (1)0.0061 (8)0.0237 (8)0.0076 (8)
C50.0303 (8)0.0349 (9)0.0404 (9)0.0054 (7)0.0128 (7)0.0037 (7)
C60.0325 (9)0.046 (1)0.062 (1)0.0021 (8)0.0181 (9)0.0112 (9)
C70.036 (1)0.053 (1)0.073 (2)0.0100 (9)0.014 (1)0.024 (1)
C80.044 (1)0.063 (1)0.073 (2)0.014 (1)0.019 (1)0.042 (1)
C90.0381 (10)0.049 (1)0.056 (1)0.0065 (8)0.0186 (9)0.0271 (10)
C100.0290 (8)0.0301 (8)0.0355 (9)0.0030 (6)0.0100 (6)0.0080 (6)
C110.0394 (8)0.0288 (8)0.0233 (7)0.0068 (7)0.0101 (6)0.0067 (6)
C120.096 (3)0.108 (3)0.091 (3)0.021 (2)0.012 (2)0.054 (2)
C130.076 (2)0.069 (2)0.103 (3)0.012 (2)0.018 (2)0.026 (2)
Geometric parameters (Å, º) top
Ni1—O12.013 (2)C4—H41.053
Ni1—O32.082 (1)C5—C61.419 (3)
Ni1—N12.185 (2)C5—C101.420 (3)
O1—C111.255 (3)C6—C71.358 (4)
O2—C111.247 (3)C6—H61.042
O3—H100.893C7—C81.407 (4)
O3—H110.896C7—H71.002
O4—H120.908C8—C91.370 (3)
O4—H130.917C8—H81.002
O5—C131.412 (4)C9—C101.411 (4)
O5—H190.877C9—H90.986
N1—C21.323 (3)C12—C131.444 (7)
N1—C101.375 (2)C12—H140.945
C2—C31.406 (3)C12—H150.946
C2—C111.510 (2)C12—H160.956
C3—C41.362 (3)C13—H170.954
C3—H30.985C13—H180.942
C4—C51.407 (4)
O1···O5i3.318 (3)O4···O5iii2.771 (3)
O1···O2i3.464 (2)O4···O5i2.912 (3)
O2···O5i2.704 (2)O4···C13iii3.519 (4)
O2···O3i2.750 (2)O5···C11i3.309 (2)
O2···C11i3.209 (2)C2···C6ii3.438 (3)
O2···C2i3.318 (2)C4···C10ii3.460 (3)
O2···C13i3.444 (4)C11···C11i3.247 (3)
O2···C7ii3.571 (3)
O1—Ni1—O1iv180.0C5—C6—C7120.4 (2)
O1—Ni1—O390.84 (5)C5—C6—H6120.3
O1—Ni1—O3iv89.16 (5)C7—C6—H6119.2
O1—Ni1—N178.53 (6)C6—C7—C8119.7 (2)
O1—Ni1—N1iv101.47 (6)C6—C7—H7119.9
O3—Ni1—O3iv180.0C8—C7—H7119.8
O3—Ni1—N190.07 (6)C7—C8—C9121.8 (3)
O3—Ni1—N1iv89.93 (6)C7—C8—H8117.8
N1—Ni1—N1iv180.0C9—C8—H8120.2
Ni1—O1—C11118.1 (1)C8—C9—C10119.6 (2)
Ni1—O3—H10109.3C8—C9—H9119.6
Ni1—O3—H11109.5C10—C9—H9120.7
H10—O3—H11108.1N1—C10—C5121.4 (2)
H12—O4—H13121.6N1—C10—C9119.7 (2)
C13—O5—H19113.8C5—C10—C9118.9 (2)
Ni1—N1—C2110.3 (1)O1—C11—O2124.4 (2)
Ni1—N1—C10131.7 (1)O1—C11—C2117.1 (2)
C2—N1—C10117.9 (2)O2—C11—C2118.5 (2)
N1—C2—C3123.9 (2)C13—C12—H14109.5
N1—C2—C11115.9 (2)C13—C12—H15109.3
C3—C2—C11120.2 (2)C13—C12—H16109.2
C2—C3—C4118.9 (2)H14—C12—H15110.2
C2—C3—H3115.1H14—C12—H16109.4
C4—C3—H3125.9H15—C12—H16109.3
C3—C4—C5119.5 (2)O5—C13—C12113.2 (4)
C3—C4—H4120.1O5—C13—H17107.6
C5—C4—H4120.1O5—C13—H18109.4
C4—C5—C6122.1 (2)C12—C13—H17108.2
C4—C5—C10118.3 (2)C12—C13—H18108.5
C6—C5—C10119.6 (2)H17—C13—H18109.8
Ni1—O1—C11—O2178.5 (1)O3—Ni1—N1iv—C2iv92.2 (1)
Ni1—O1—C11—C20.6 (2)O3—Ni1—N1iv—C10iv89.4 (1)
Ni1—O1iv—C11iv—O2iv178.5 (1)N1—Ni1—O1—C112.0 (1)
Ni1—O1iv—C11iv—C2iv0.6 (2)N1—Ni1—O1iv—C11iv178.0 (1)
Ni1—N1—C2—C3177.6 (1)N1—C2—C3—C41.2 (3)
Ni1—N1—C2—C113.7 (2)N1—C10—C5—C40.5 (2)
Ni1—N1—C10—C5178.1 (1)N1—C10—C5—C6179.3 (2)
Ni1—N1—C10—C93.1 (2)N1—C10—C9—C8179.3 (2)
Ni1—N1iv—C2iv—C3iv177.6 (1)C2—N1—C10—C50.2 (2)
Ni1—N1iv—C2iv—C11iv3.7 (2)C2—N1—C10—C9178.6 (2)
Ni1—N1iv—C10iv—C5iv178.1 (1)C2—C3—C4—C50.3 (3)
Ni1—N1iv—C10iv—C9iv3.1 (2)C3—C2—N1—C101.1 (2)
O1—Ni1—N1—C23.1 (1)C3—C4—C5—C6179.3 (2)
O1—Ni1—N1—C10178.5 (1)C3—C4—C5—C100.5 (3)
O1—Ni1—N1iv—C2iv176.9 (1)C4—C3—C2—C11177.6 (2)
O1—Ni1—N1iv—C10iv1.5 (1)C4—C5—C6—C7179.8 (2)
O1—C11—C2—N12.3 (2)C4—C5—C10—C9179.4 (2)
O1—C11—C2—C3178.8 (2)C5—C6—C7—C80.3 (3)
O2—C11—C2—N1175.7 (1)C5—C10—C9—C80.5 (3)
O2—C11—C2—C33.1 (2)C6—C5—C10—C90.4 (3)
O3—Ni1—O1—C1188.0 (1)C6—C7—C8—C90.3 (4)
O3—Ni1—O1iv—C11iv92.0 (1)C7—C6—C5—C100.0 (3)
O3—Ni1—N1—C287.8 (1)C7—C8—C9—C100.1 (3)
O3—Ni1—N1—C1090.6 (1)C10—N1—C2—C11177.7 (1)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z+1; (iii) x, y1, z1; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C10H6NO2)2(H2O)2]·2C2H6O·2H2O
Mr567.21
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.978 (1), 11.073 (2), 7.2349 (7)
α, β, γ (°)106.25 (1), 107.399 (9), 78.47 (1)
V3)653.6 (1)
Z1
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.4 × 0.2 × 0.1
Data collection
DiffractometerRigaku AFC-5R
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.822, 0.923
No. of measured, independent and
observed [I > 2σ(I)] reflections
3199, 3010, 2838
Rint0.008
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.118, 1.03
No. of reflections2838
No. of parameters169
No. of restraints?
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.80, 0.39

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1999), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), TEXSAN.

Selected geometric parameters (Å, º) top
Ni1—O12.013 (2)C3—C41.362 (3)
Ni1—O32.082 (1)C4—C51.407 (4)
Ni1—N12.185 (2)C5—C61.419 (3)
O1—C111.255 (3)C5—C101.420 (3)
O2—C111.247 (3)C6—C71.358 (4)
O5—C131.412 (4)C7—C81.407 (4)
N1—C21.323 (3)C8—C91.370 (3)
N1—C101.375 (2)C9—C101.411 (4)
C2—C31.406 (3)C12—C131.444 (7)
C2—C111.510 (2)
O1—Ni1—O390.84 (5)C4—C5—C10118.3 (2)
O1—Ni1—N178.53 (6)C6—C5—C10119.6 (2)
O3—Ni1—N190.07 (6)C5—C6—C7120.4 (2)
Ni1—O1—C11118.1 (1)C6—C7—C8119.7 (2)
Ni1—N1—C2110.3 (1)C7—C8—C9121.8 (3)
Ni1—N1—C10131.7 (1)C8—C9—C10119.6 (2)
C2—N1—C10117.9 (2)N1—C10—C5121.4 (2)
N1—C2—C3123.9 (2)N1—C10—C9119.7 (2)
N1—C2—C11115.9 (2)C5—C10—C9118.9 (2)
C3—C2—C11120.2 (2)O1—C11—O2124.4 (2)
C2—C3—C4118.9 (2)O1—C11—C2117.1 (2)
C3—C4—C5119.5 (2)O2—C11—C2118.5 (2)
C4—C5—C6122.1 (2)O5—C13—C12113.2 (4)
Ni1—O1—C11—O2178.5 (1)O3—Ni1—N1i—C2i92.2 (1)
Ni1—O1—C11—C20.6 (2)O3—Ni1—N1i—C10i89.4 (1)
Ni1—O1i—C11i—O2i178.5 (1)N1—Ni1—O1—C112.0 (1)
Ni1—O1i—C11i—C2i0.6 (2)N1—Ni1—O1i—C11i178.0 (1)
Ni1—N1—C2—C3177.6 (1)N1—C2—C3—C41.2 (3)
Ni1—N1—C2—C113.7 (2)N1—C10—C5—C40.5 (2)
Ni1—N1—C10—C5178.1 (1)N1—C10—C5—C6179.3 (2)
Ni1—N1—C10—C93.1 (2)N1—C10—C9—C8179.3 (2)
Ni1—N1i—C2i—C3i177.6 (1)C2—N1—C10—C50.2 (2)
Ni1—N1i—C2i—C11i3.7 (2)C2—N1—C10—C9178.6 (2)
Ni1—N1i—C10i—C5i178.1 (1)C2—C3—C4—C50.3 (3)
Ni1—N1i—C10i—C9i3.1 (2)C3—C2—N1—C101.1 (2)
O1—Ni1—N1—C23.1 (1)C3—C4—C5—C6179.3 (2)
O1—Ni1—N1—C10178.5 (1)C3—C4—C5—C100.5 (3)
O1—Ni1—N1i—C2i176.9 (1)C4—C3—C2—C11177.6 (2)
O1—Ni1—N1i—C10i1.5 (1)C4—C5—C6—C7179.8 (2)
O1—C11—C2—N12.3 (2)C4—C5—C10—C9179.4 (2)
O1—C11—C2—C3178.8 (2)C5—C6—C7—C80.3 (3)
O2—C11—C2—N1175.7 (1)C5—C10—C9—C80.5 (3)
O2—C11—C2—C33.1 (2)C6—C5—C10—C90.4 (3)
O3—Ni1—O1—C1188.0 (1)C6—C7—C8—C90.3 (4)
O3—Ni1—O1i—C11i92.0 (1)C7—C6—C5—C100.0 (3)
O3—Ni1—N1—C287.8 (1)C7—C8—C9—C100.1 (3)
O3—Ni1—N1—C1090.6 (1)C10—N1—C2—C11177.7 (1)
Symmetry code: (i) x+1, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds