Download citation
Download citation
link to html
The title compound, C23H13N5, derived from cinnamyl alcohol and 2,2′-(isoindolin-1,3-diyl­idene)­bis­propane­di­nitrile, is a heterocyclic TCNQ analogue of interest as an electron-deficient component in charge-transfer complexes. A small perturbation of the four C—C[triple bond]N angles from linearity is observed, which are in the range 173.41 (18)–176.3 (2)°; the C[triple bond]N bond lengths are in the range 1.144 (2)–1.146 (2) Å. The terminal phenyl group is oriented at an angle of 77.17 (6)° to the C4N ring and the C=C bond is short, 1.319 (2) Å. There are no classical hydrogen bonds, although intramolecular C—H...N and intermolecular C—H...π(arene) interactions influence the crystal-structure packing.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801002598/cf6047sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801002598/cf6047Isup2.hkl
Contains datablock I

CCDC reference: 159855

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.042
  • wR factor = 0.112
  • Data-to-parameter ratio = 13.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_371 Alert C Long C(sp2)-C(sp1) Bond C(6A) - C(7A) = 1.44 Ang. PLAT_371 Alert C Long C(sp2)-C(sp1) Bond C(6A) - C(8A) = 1.42 Ang. PLAT_371 Alert C Long C(sp2)-C(sp1) Bond C(6B) - C(7B) = 1.43 Ang. PLAT_371 Alert C Long C(sp2)-C(sp1) Bond C(6B) - C(8B) = 1.43 Ang.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
4 Alert Level C = Please check

Comment top

Organic conductors are currently an important research area in materials chemistry (Martin et al., 1997; Yamashita & Tomura, 1998), with special interest in the interaction of π-deficient and π-excessive materials in 1:1 complexes, e.g. TCNQ/TTF, where TCNQ is tetracyanoquinodimethane and TTF is tetrathiafulvalene.

The bond lengths and angles in the heterocyclic ring of the title compound, (I) (Fig. 1), are similar to those reported previously in related systems (McNab et al., 1997; Brady et al., 1998; Gallagher & Murphy, 1999; Brady & Gallagher, 2000). For TCNQ (tetracyanoquinodimethane) systems (280 examples), the average exocyclic Csp2Csp2 and Csp2—Csp1 bond lengths are 1.392 (17) and 1.427 (10) Å, respectively; thus, in (I), the C6A—C7A, C6A—C8A and C6B—C7B and C6B—C8B bond lengths in the range 1.425 (3)–1.436 (3) Å are normal (Orpen et al., 1994). The four nitrile CN values are from 1.144 (2) to 1.146 (2) Å, which compare with the average CN dimension from the literature, 1.144 (8) Å (Orpen et al., 1994). The exocyclic indolinyl ring CC bond lengths are 1.372 (2) and 1.374 (2) Å, which are longer than typical double bonds. The four remaining exocyclic indolinyl cyano C—C bond lengths are in the range 1.425 (3)–1.436 (3) Å and similar to previously reported values. The angles which the C(CN)2 groups make with the C4N ring are 7.01 (10) (C6A) and 2.33 (10)° (C6B), demonstrating a small twist from planarity about the C4—C6(A/B) bonds.

The hydrogen bonding in (I) is dominated by intramolecular C—H···N interactions and close contacts (details in Table 3). There are two intramolecular C(arene)—H···π(CN) interactions with C12—H12···N2A and C15—H15···N2B C···N distances of 3.390 (3) and 3.390 (2) Å, respectively. A C1—H1B···N3A intramolecular contact is present [C1···N3A 3.401 (2) Å and C—H···N 139°]. A C—H···π(arene) interaction is also present, C14—H14···Cg1, where Cg1 is the centroid of {C21–C26}i [symmetry code: (i) 1/2 - x, 1/2 + y, 1/2 - z; details in Table 3]. The closest C14···C26i contact distance is 3.696 (2) Å with a C14—H14···Cg1 angle of 121°.

Experimental top

The title compound was prepared by the 5 d reaction under argon of DIAD (diisopropylazodicarboxylate) (0.37 g, 1.9 mmol), triphenylphosphine (0.49 g, 1.9 mmol), 2,2'-(isoindolin-1,3-diylidene)bispropanedinitrile (0.25 g, 1.9 mmol) (French patent No. 1537299), cinnamyl alcohol (0.25 g, 1.9 mmol) in 40 ml tetrahydrofuran. 2,2'-(Cinnamylisoindolin-1,3-diylidene)bispropanedinitrile, (I), was isolated as an orange crystalline material after column chromatography. (m.p. 469–471 K uncorrected). IR (KBr, cm-1): 3049, 2372, 2335, 2224, 1563, 1465, 1407, 1228, 1146, 1109, 983, 775, 723; UV-Vis (CH3CN) λmax(ε): 552 (5250), 459 (6667), 414 (38333), 392 (39167), 249 (47083) nm; 1H NMR (400 MHz, δ, CDCl3): 8.75 (m, 2H, aromatic), 7.85 (m, 2H, aromatic), 7.37 (m, 2H, aromatic), 7.30 (m, 3H, aromatic), 6.50 (d, J = 16 Hz, 1H), 6.25 (m, 1H), 5.50 (m, 2H); 13C NMR (δC, CDCl3): 156.8, 135.0, 134.8, 134.0, 130.9, 128.8, 128.7, 126.9, 126.0, 120.5, 113.1, 112.3, 62.1, 47.8.

Refinement top

In (I), all H atoms bound to C atoms were treated as riding, with SHELXL97 (Sheldrick, 1997) defaults for C—H lengths and with Uiso(H) = 1.5Ueq(C) for methylene H atoms and 1.2Ueq(C) for the remainder. Examination of the structure with PLATON (Spek, 1998) showed that there were no solvent-accessible voids in the crystal lattice.

Structure description top

Organic conductors are currently an important research area in materials chemistry (Martin et al., 1997; Yamashita & Tomura, 1998), with special interest in the interaction of π-deficient and π-excessive materials in 1:1 complexes, e.g. TCNQ/TTF, where TCNQ is tetracyanoquinodimethane and TTF is tetrathiafulvalene.

The bond lengths and angles in the heterocyclic ring of the title compound, (I) (Fig. 1), are similar to those reported previously in related systems (McNab et al., 1997; Brady et al., 1998; Gallagher & Murphy, 1999; Brady & Gallagher, 2000). For TCNQ (tetracyanoquinodimethane) systems (280 examples), the average exocyclic Csp2Csp2 and Csp2—Csp1 bond lengths are 1.392 (17) and 1.427 (10) Å, respectively; thus, in (I), the C6A—C7A, C6A—C8A and C6B—C7B and C6B—C8B bond lengths in the range 1.425 (3)–1.436 (3) Å are normal (Orpen et al., 1994). The four nitrile CN values are from 1.144 (2) to 1.146 (2) Å, which compare with the average CN dimension from the literature, 1.144 (8) Å (Orpen et al., 1994). The exocyclic indolinyl ring CC bond lengths are 1.372 (2) and 1.374 (2) Å, which are longer than typical double bonds. The four remaining exocyclic indolinyl cyano C—C bond lengths are in the range 1.425 (3)–1.436 (3) Å and similar to previously reported values. The angles which the C(CN)2 groups make with the C4N ring are 7.01 (10) (C6A) and 2.33 (10)° (C6B), demonstrating a small twist from planarity about the C4—C6(A/B) bonds.

The hydrogen bonding in (I) is dominated by intramolecular C—H···N interactions and close contacts (details in Table 3). There are two intramolecular C(arene)—H···π(CN) interactions with C12—H12···N2A and C15—H15···N2B C···N distances of 3.390 (3) and 3.390 (2) Å, respectively. A C1—H1B···N3A intramolecular contact is present [C1···N3A 3.401 (2) Å and C—H···N 139°]. A C—H···π(arene) interaction is also present, C14—H14···Cg1, where Cg1 is the centroid of {C21–C26}i [symmetry code: (i) 1/2 - x, 1/2 + y, 1/2 - z; details in Table 3]. The closest C14···C26i contact distance is 3.696 (2) Å with a C14—H14···Cg1 angle of 121°.

Computing details top

Data collection: XSCANS (Bruker, 1994); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: NRCVAX96 (Gabe et al., 1989) and SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 1998); software used to prepare material for publication: NRCVAX96, SHELXL97 and WORDPERFECT macro PREP8 (Ferguson, 1998).

Figures top
[Figure 1] Fig. 1. A view of (I) with the atomic numbering scheme. Displacement ellipsoids are depicted at the 30% probability level.
2,2'-{2-[(E)-3-phenylprop-2-enyl]-2,3-dihydro-1H-isoindol-1,3-diylidene}- dimalononitrile top
Crystal data top
C23H13N5Dx = 1.309 Mg m3
Mr = 359.38Melting point: 470 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 14.3872 (18) ÅCell parameters from 33 reflections
b = 8.2696 (10) Åθ = 7.1–20.5°
c = 16.1442 (15) ŵ = 0.08 mm1
β = 108.327 (7)°T = 296 K
V = 1823.4 (4) Å3Block, orange
Z = 40.43 × 0.38 × 0.28 mm
F(000) = 744
Data collection top
Bruker P4
diffractometer
Rint = 0.012
Radiation source: X-ray tubeθmax = 25.5°, θmin = 2.7°
Graphite monochromatorh = 117
ω–2θ scansk = 110
4331 measured reflectionsl = 1918
3367 independent reflections3 standard reflections every 197 reflections
2630 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0529P)2 + 0.3178P]
where P = (Fo2 + 2Fc2)/3
3367 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C23H13N5V = 1823.4 (4) Å3
Mr = 359.38Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.3872 (18) ŵ = 0.08 mm1
b = 8.2696 (10) ÅT = 296 K
c = 16.1442 (15) Å0.43 × 0.38 × 0.28 mm
β = 108.327 (7)°
Data collection top
Bruker P4
diffractometer
Rint = 0.012
4331 measured reflections3 standard reflections every 197 reflections
3367 independent reflections intensity decay: 2%
2630 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.06Δρmax = 0.25 e Å3
3367 reflectionsΔρmin = 0.16 e Å3
253 parameters
Special details top

Experimental. The phenyl ring carbon atoms C23 and C24 have large displacement parameters, however, there is no evidence for disorder in this aromatic ring system.

Geometry. Selected Geometrical Data Ex-PLATON (Spek, 1998) =================================================

Specific hydrogen bonds (with e.s.d.'s except fixed and riding H) =========================================================================== Interaction D—H H···A D···A D—H···A (symmetry operator) =========================================================================== C1—H1B···N3A 0.97 2.61 3.401 (2) 139.0 C12—H12···N2A 0.93 2.59 3.390 (3) 144.9 C15—H15···N2B 0.93 2.59 3.390 (2) 144.7 C3—H3···N1 0.93 2.52 2.887 (2) 103.6 C12—H12···C7A 0.93 2.45 3.019 (3) 119.2 C15—H15···C7B 0.93 2.46 3.015 (2) 118.7

# A test for the pi(arene) interactions C14—H14···C21_$1 0.93 3.01 3.758 (2) 139.1 C14—H14···C22_$1 0.93 3.38 4.278 (3) 162.9 ** No suitable H-bond found for C14···C23_$1 = 4.681 (3) A ** ** No suitable H-bond found for C14···C24_$1 = 4.623 (3) A ** C14—H14···C25_$1 0.93 3.59 4.155 (3) 121.6 C14—H14···C26_$1 0.93 3.13 3.696 (2) 120.9

Mean plane data ex-SHELXL97 for compound (I) #################################################################

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

2.2436(0.0097)x + 2.9253(0.0053)y + 13.3422(0.0062)z = 4.6210(0.0046)

* -0.0103 (0.0008) N1 * 0.0087 (0.0008) C4 * 0.0074 (0.0008) C5 * -0.0039 (0.0009) C11 * -0.0019 (0.0009) C16 - 0.2010 (0.0037) N2A 0.3218 (0.0039) N3A 0.1300 (0.0037) N2B 0.0531 (0.0036) N3B

Rms deviation of fitted atoms = 0.0071

2.0759(0.0091)x + 2.8298(0.0049)y + 13.4969(0.0058)z = 4.5230(0.0049)

Angle to previous plane (with approximate e.s.d.) = 1.01 (8)

* -0.0039 (0.0010) C11 * 0.0015 (0.0011) C12 * 0.0013 (0.0012) C13 * -0.0017 (0.0012) C14 * -0.0007 (0.0011) C15 * 0.0036 (0.0010) C16 - 0.0473 (0.0033) C1 1.2661 (0.0038) C2 2.4434 (0.0035) C3 0.0297 (0.0024) N1

Rms deviation of fitted atoms = 0.0024

-9.6646(0.0099)x + 6.0973(0.0052)y + 4.5061(0.0133)z = 6.6496(0.0070)

Angle to previous plane (with approximate e.s.d.) = 77.19 (6)

* -0.0069 (0.0013) C21 * 0.0009 (0.0015) C22 * 0.0057 (0.0018) C23 * -0.0063 (0.0017) C24 * 0.0002 (0.0015) C25 * 0.0063 (0.0013) C26 - 0.3313 (0.0046) C1 - 0.1496 (0.0036) C2 - 0.0684 (0.0029) C3 - 0.5732 (0.0048) N1

Rms deviation of fitted atoms = 0.0052

2.2436(0.0097)x + 2.9253(0.0053)y + 13.3422(0.0062)z = 4.6210(0.0046)

Angle to previous plane (with approximate e.s.d.) = 77.17 (6)

* -0.0103 (0.0008) N1 * 0.0087 (0.0008) C4 * 0.0074 (0.0008) C5 * -0.0039 (0.0009) C11 * -0.0019 (0.0009) C16 - 0.2010 (0.0037) N2A 0.3218 (0.0039) N3A 0.1300 (0.0037) N2B 0.0531 (0.0036) N3B

Rms deviation of fitted atoms = 0.0071

2.0759(0.0091)x + 2.8298(0.0049)y + 13.4969(0.0058)z = 4.5230(0.0049)

Angle to previous plane (with approximate e.s.d.) = 1.01 (8)

* -0.0039 (0.0010) C11 * 0.0015 (0.0011) C12 * 0.0013 (0.0012) C13 * -0.0017 (0.0012) C14 * -0.0007 (0.0011) C15 * 0.0036 (0.0010) C16 - 0.0473 (0.0033) C1 1.2661 (0.0038) C2 2.4434 (0.0035) C3 0.0297 (0.0024) N1

Rms deviation of fitted atoms = 0.0024

-9.3535(0.0348)x + 6.2714(0.0167)y + 2.5779(0.0290)z = 6.0796(0.0067)

Angle to previous plane (with approximate e.s.d.) = 83.00 (12)

* 0.0000 (0.0000) C1 * 0.0000 (0.0000) C2 * 0.0000 (0.0000) C3

Rms deviation of fitted atoms = 0.0000

-9.6646(0.0099)x + 6.0973(0.0052)y + 4.5061(0.0133)z = 6.6496(0.0070)

Angle to previous plane (with approximate e.s.d.) = 7.0 (3)

* -0.0069 (0.0013) C21 * 0.0009 (0.0015) C22 * 0.0057 (0.0018) C23 * -0.0063 (0.0017) C24 * 0.0002 (0.0015) C25 * 0.0063 (0.0013) C26 - 0.3313 (0.0046) C1 - 0.1496 (0.0036) C2 - 0.0684 (0.0029) C3 - 0.5732 (0.0048) N1

Rms deviation of fitted atoms = 0.0052

3.4727(0.0172)x + 3.5183(0.0076)y + 12.1414(0.0074)z = 5.0679(0.0114)

Angle to previous plane (with approximate e.s.d.) = 77.65 (8)

* -0.0017 (0.0009) C6A * 0.0152 (0.0014) C7A * -0.0113 (0.0016) C8A * -0.0086 (0.0008) N2A * 0.0064 (0.0009) N3A 0.0001 (0.0035) C4 - 0.0447 (0.0064) C5

Rms deviation of fitted atoms = 0.0098

2.2436(0.0097)x + 2.9253(0.0053)y + 13.3422(0.0062)z = 4.6210(0.0046)

Angle to previous plane (with approximate e.s.d.) = 7.01 (10)

* -0.0103 (0.0008) N1 * 0.0087 (0.0008) C4 * 0.0074 (0.0008) C5 * -0.0039 (0.0009) C11 * -0.0019 (0.0009) C16 - 0.2010 (0.0037) N2A 0.3218 (0.0039) N3A 0.1300 (0.0037) N2B 0.0531 (0.0036) N3B

Rms deviation of fitted atoms = 0.0071

1.8392(0.0096)x + 3.1608(0.0091)y + 13.3766(0.0058)z = 4.7690(0.0036)

Angle to previous plane (with approximate e.s.d.) = 2.33 (10)

* 0.0000 (0.0008) C6B * -0.0070 (0.0015) C7B * 0.0068 (0.0013) C8B * 0.0040 (0.0008) N2B * -0.0038 (0.0007) N3B 0.1146 (0.0058) C4 0.0217 (0.0032) C5

Rms deviation of fitted atoms = 0.0050

2.0759(0.0091)x + 2.8298(0.0049)y + 13.4969(0.0058)z = 4.5230(0.0049)

Angle to previous plane (with approximate e.s.d.) = 2.59 (9)

* -0.0039 (0.0010) C11 * 0.0015 (0.0011) C12 * 0.0013 (0.0012) C13 * -0.0017 (0.0012) C14 * -0.0007 (0.0011) C15 * 0.0036 (0.0010) C16 - 0.0473 (0.0033) C1 1.2661 (0.0038) C2 2.4434 (0.0035) C3 0.0297 (0.0024) N1

Rms deviation of fitted atoms = 0.0024

3.4727(0.0172)x + 3.5183(0.0076)y + 12.1414(0.0074)z = 5.0679(0.0114)

Angle to previous plane (with approximate e.s.d.) = 8.01 (10)

* -0.0017 (0.0009) C6A * 0.0152 (0.0014) C7A * -0.0113 (0.0016) C8A * -0.0086 (0.0008) N2A * 0.0064 (0.0009) N3A 0.0001 (0.0035) C4 - 0.0447 (0.0064) C5

Rms deviation of fitted atoms = 0.0098

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.00647 (8)0.87131 (15)0.15563 (8)0.0367 (3)
N2A0.11664 (14)1.4060 (2)0.04262 (12)0.0788 (6)
N3A0.24231 (13)1.0780 (3)0.17486 (15)0.0907 (6)
N2B0.28853 (13)0.5619 (2)0.18438 (12)0.0732 (5)
N3B0.04444 (12)0.42660 (19)0.24932 (11)0.0620 (4)
C10.07949 (11)0.7765 (2)0.18104 (10)0.0437 (4)
C20.05987 (12)0.7661 (2)0.27751 (11)0.0470 (4)
C30.00903 (12)0.8440 (2)0.33779 (11)0.0458 (4)
C40.01804 (11)1.02862 (18)0.12450 (9)0.0380 (3)
C50.08302 (10)0.80880 (18)0.15561 (9)0.0349 (3)
C110.06880 (11)1.06855 (18)0.10020 (9)0.0380 (3)
C120.09685 (13)1.2087 (2)0.06691 (10)0.0479 (4)
C130.18639 (13)1.2119 (2)0.05246 (11)0.0539 (5)
C140.24716 (13)1.0783 (2)0.07089 (11)0.0524 (4)
C150.22077 (11)0.9379 (2)0.10446 (10)0.0443 (4)
C160.13076 (10)0.93386 (18)0.11947 (9)0.0363 (3)
C6A0.09671 (11)1.1275 (2)0.11819 (10)0.0465 (4)
C7A0.10479 (13)1.2830 (2)0.07685 (12)0.0559 (5)
C8A0.17655 (13)1.0939 (2)0.14997 (13)0.0598 (5)
C6B0.11864 (11)0.65823 (18)0.18467 (9)0.0390 (4)
C7B0.21323 (13)0.6091 (2)0.18276 (11)0.0483 (4)
C8B0.07334 (12)0.5348 (2)0.22056 (10)0.0441 (4)
C210.03457 (13)0.8243 (2)0.43290 (11)0.0488 (4)
C220.01487 (18)0.7189 (2)0.47126 (13)0.0697 (6)
C230.0135 (2)0.6989 (3)0.56013 (15)0.0909 (8)
C240.0913 (2)0.7812 (3)0.61307 (15)0.0896 (8)
C250.14131 (17)0.8881 (3)0.57716 (14)0.0791 (7)
C260.11258 (13)0.9101 (3)0.48711 (12)0.0601 (5)
H1A0.08140.66790.15780.052*
H1B0.14350.82460.15470.052*
H20.10020.69800.29690.056*
H30.04530.91940.31810.055*
H120.05601.29870.05460.057*
H130.20601.30480.03010.065*
H140.30711.08290.06050.063*
H150.26210.84860.11670.053*
H220.06810.66080.43620.084*
H230.02100.62820.58440.109*
H240.11070.76550.67310.108*
H250.19430.94550.61310.095*
H260.14620.98310.46320.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0329 (6)0.0395 (7)0.0373 (6)0.0023 (5)0.0102 (5)0.0005 (5)
N2A0.0846 (13)0.0526 (10)0.0805 (12)0.0195 (9)0.0009 (10)0.0042 (9)
N3A0.0570 (11)0.1029 (16)0.1203 (17)0.0166 (11)0.0396 (11)0.0124 (13)
N2B0.0652 (11)0.0815 (12)0.0802 (12)0.0323 (10)0.0333 (9)0.0223 (10)
N3B0.0682 (10)0.0506 (9)0.0639 (10)0.0038 (8)0.0162 (8)0.0115 (8)
C10.0340 (8)0.0465 (9)0.0508 (9)0.0028 (7)0.0133 (7)0.0014 (7)
C20.0429 (9)0.0499 (10)0.0543 (10)0.0040 (8)0.0241 (8)0.0002 (8)
C30.0461 (9)0.0452 (9)0.0516 (9)0.0007 (7)0.0232 (8)0.0014 (8)
C40.0376 (8)0.0377 (8)0.0331 (7)0.0013 (6)0.0030 (6)0.0037 (6)
C50.0330 (7)0.0390 (8)0.0302 (7)0.0013 (6)0.0063 (6)0.0030 (6)
C110.0375 (8)0.0391 (8)0.0325 (7)0.0016 (6)0.0042 (6)0.0024 (6)
C120.0539 (10)0.0373 (9)0.0462 (9)0.0018 (7)0.0070 (7)0.0019 (7)
C130.0580 (11)0.0481 (10)0.0537 (10)0.0152 (9)0.0148 (8)0.0051 (8)
C140.0446 (9)0.0603 (11)0.0528 (10)0.0107 (8)0.0160 (8)0.0012 (8)
C150.0381 (8)0.0501 (9)0.0439 (8)0.0003 (7)0.0116 (7)0.0009 (7)
C160.0351 (7)0.0397 (8)0.0305 (7)0.0014 (6)0.0051 (6)0.0015 (6)
C6A0.0405 (8)0.0460 (9)0.0460 (9)0.0071 (7)0.0035 (7)0.0070 (7)
C7A0.0512 (10)0.0479 (11)0.0550 (10)0.0125 (8)0.0028 (8)0.0075 (9)
C8A0.0430 (10)0.0642 (12)0.0672 (12)0.0152 (9)0.0102 (9)0.0109 (9)
C6B0.0393 (8)0.0404 (8)0.0358 (7)0.0043 (7)0.0097 (6)0.0017 (6)
C7B0.0517 (10)0.0477 (9)0.0469 (9)0.0126 (8)0.0173 (8)0.0090 (8)
C8B0.0469 (9)0.0416 (9)0.0400 (8)0.0052 (7)0.0080 (7)0.0020 (7)
C210.0536 (10)0.0469 (9)0.0495 (9)0.0109 (8)0.0212 (8)0.0031 (8)
C220.0976 (16)0.0588 (12)0.0567 (11)0.0052 (11)0.0299 (11)0.0051 (9)
C230.148 (2)0.0689 (15)0.0624 (14)0.0006 (16)0.0430 (16)0.0082 (12)
C240.137 (2)0.0792 (16)0.0507 (12)0.0340 (17)0.0264 (14)0.0085 (12)
C250.0769 (14)0.0912 (17)0.0586 (12)0.0252 (13)0.0061 (11)0.0192 (12)
C260.0550 (11)0.0695 (13)0.0572 (11)0.0104 (10)0.0197 (9)0.0117 (9)
Geometric parameters (Å, º) top
N1—C11.469 (2)C11—C161.399 (2)
N1—C41.386 (2)C12—C131.380 (2)
N1—C51.388 (2)C13—C141.382 (3)
N2A—C7A1.145 (2)C14—C151.384 (2)
N3A—C8A1.146 (2)C15—C161.391 (2)
N2B—C7B1.144 (2)C6A—C8A1.425 (3)
N3B—C8B1.145 (2)C6A—C7A1.436 (3)
C1—C21.495 (2)C6B—C8B1.428 (2)
C2—C31.319 (2)C6B—C7B1.430 (2)
C3—C211.471 (2)C21—C261.382 (3)
C4—C6A1.374 (2)C21—C221.388 (3)
C4—C111.460 (2)C22—C231.373 (3)
C5—C6B1.372 (2)C23—C241.359 (4)
C5—C161.461 (2)C24—C251.377 (4)
C11—C121.389 (2)C25—C261.393 (3)
C1—N1—C4125.99 (12)C5—C16—C11107.80 (13)
C1—N1—C5123.11 (12)C5—C16—C15131.85 (14)
C4—N1—C5110.82 (12)C4—C6A—C7A120.78 (16)
N1—C1—C2113.84 (13)C4—C6A—C8A126.56 (16)
C1—C2—C3126.34 (15)C8A—C6A—C7A112.66 (15)
C2—C3—C21126.82 (16)N2A—C7A—C6A176.3 (2)
N1—C4—C6A126.02 (15)N3A—C8A—C6A175.3 (2)
N1—C5—C6B125.80 (14)C5—C6B—C7B120.42 (14)
N1—C4—C11107.12 (12)C5—C6B—C8B128.19 (14)
C6A—C4—C11126.86 (15)C8B—C6B—C7B111.37 (14)
C6B—C5—C16127.39 (13)N2B—C7B—C6B175.81 (18)
N1—C5—C16106.81 (12)N3B—C8B—C6B173.41 (18)
C4—C11—C12132.04 (14)C3—C21—C22122.70 (17)
C4—C11—C16107.42 (13)C3—C21—C26119.39 (17)
C12—C11—C16120.50 (14)C22—C21—C26117.89 (18)
C11—C12—C13118.79 (16)C21—C22—C23121.1 (2)
C12—C13—C14120.64 (16)C22—C23—C24120.8 (2)
C13—C14—C15121.46 (16)C23—C24—C25119.5 (2)
C14—C15—C16118.26 (16)C24—C25—C26120.0 (2)
C11—C16—C15120.35 (14)C21—C26—C25120.6 (2)
C4—N1—C1—C2102.16 (17)C4—C11—C16—C50.19 (15)
C5—N1—C1—C281.50 (18)C4—C11—C16—C15178.86 (13)
N1—C1—C2—C36.6 (2)C6B—C5—C16—C11178.82 (14)
C1—C2—C3—C21174.28 (16)C6B—C5—C16—C150.1 (3)
C1—N1—C4—C6A5.3 (2)N1—C5—C16—C110.90 (15)
C5—N1—C4—C6A178.02 (14)N1—C5—C16—C15179.80 (15)
C1—N1—C4—C11174.88 (13)N1—C4—C6A—C7A173.84 (14)
C5—N1—C4—C111.84 (15)N1—C4—C6A—C8A6.6 (3)
C1—N1—C5—C6B5.2 (2)C11—C4—C6A—C7A6.3 (2)
C4—N1—C5—C6B178.01 (13)C11—C4—C6A—C8A173.25 (15)
C1—N1—C5—C16175.11 (12)N1—C5—C6B—C7B178.75 (14)
C4—N1—C5—C161.72 (15)N1—C5—C6B—C8B0.0 (2)
N1—C4—C11—C12178.93 (15)C16—C5—C6B—C7B0.9 (2)
N1—C4—C11—C161.22 (15)C16—C5—C6B—C8B179.65 (14)
C6A—C4—C11—C120.9 (3)C2—C3—C21—C221.5 (3)
C6A—C4—C11—C16178.64 (14)C2—C3—C21—C26176.66 (17)
C4—C11—C12—C13178.09 (15)C26—C21—C22—C230.8 (3)
C16—C11—C12—C130.6 (2)C3—C21—C22—C23177.4 (2)
C12—C11—C16—C5178.22 (13)C3—C21—C26—C25176.94 (17)
C12—C11—C16—C150.8 (2)C21—C22—C23—C240.4 (4)
C11—C12—C13—C140.1 (2)C22—C23—C24—C251.1 (4)
C12—C13—C14—C150.2 (3)C23—C24—C25—C260.6 (3)
C13—C14—C15—C160.0 (2)C22—C21—C26—C251.3 (3)
C14—C15—C16—C110.5 (2)C24—C25—C26—C210.6 (3)
C14—C15—C16—C5178.28 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···N3A0.972.613.401 (2)139
C12—H12···N2A0.932.593.390 (3)145
C12—H12···C7A0.932.453.019 (3)119
C15—H15···N2B0.932.593.390 (2)145
C15—H15···C7B0.932.463.015 (2)119
C14—H14···Cg1i0.933.203.984 (2)143
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC23H13N5
Mr359.38
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)14.3872 (18), 8.2696 (10), 16.1442 (15)
β (°) 108.327 (7)
V3)1823.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.43 × 0.38 × 0.28
Data collection
DiffractometerBruker P4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4331, 3367, 2630
Rint0.012
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.112, 1.06
No. of reflections3367
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.16

Computer programs: XSCANS (Bruker, 1994), XSCANS, SHELXS97 (Sheldrick, 1997), NRCVAX96 (Gabe et al., 1989) and SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 1998), NRCVAX96, SHELXL97 and WORDPERFECT macro PREP8 (Ferguson, 1998).

Selected geometric parameters (Å, º) top
N1—C11.469 (2)C1—C21.495 (2)
N1—C41.386 (2)C2—C31.319 (2)
N1—C51.388 (2)C3—C211.471 (2)
N2A—C7A1.145 (2)C4—C6A1.374 (2)
N3A—C8A1.146 (2)C4—C111.460 (2)
N2B—C7B1.144 (2)C5—C6B1.372 (2)
N3B—C8B1.145 (2)C5—C161.461 (2)
C1—N1—C4125.99 (12)N1—C5—C6B125.80 (14)
C1—N1—C5123.11 (12)N1—C4—C11107.12 (12)
C4—N1—C5110.82 (12)N1—C5—C16106.81 (12)
N1—C1—C2113.84 (13)N2A—C7A—C6A176.3 (2)
C1—C2—C3126.34 (15)N3A—C8A—C6A175.3 (2)
C2—C3—C21126.82 (16)N2B—C7B—C6B175.81 (18)
N1—C4—C6A126.02 (15)N3B—C8B—C6B173.41 (18)
C4—N1—C1—C2102.16 (17)C1—C2—C3—C21174.28 (16)
C5—N1—C1—C281.50 (18)C2—C3—C21—C221.5 (3)
N1—C1—C2—C36.6 (2)C2—C3—C21—C26176.66 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···N3A0.972.613.401 (2)139
C12—H12···N2A0.932.593.390 (3)145
C12—H12···C7A0.932.453.019 (3)119
C15—H15···N2B0.932.593.390 (2)145
C15—H15···C7B0.932.463.015 (2)119
C14—H14···Cg1i0.933.203.984 (2)143
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds