Download citation
Download citation
link to html
The [PtCl2(C27H26NP)] complex consists of a five-membered P,C-chelate ring, from the 2-(2-di­phenyl­phosphino)-N-(1-phenyl­ethyl)­benzyl­amine ligand, coordinating a platinum metal centre; the square-planar environment is completed by two cis-chloro ligands. The rigidity of the aromatic o-phenyl­ene backbone produces a shallow twist conformation for the P,C-chelate. The di­phenyl groups on phospho­rus are arranged in a face-on/edge-on orientation. The non-chelating pendant ammonium group forms weak intermolecular N—H...Cl contacts.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801002586/cf6045sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801002586/cf6045Isup2.hkl
Contains datablock I

CCDC reference: 159829

Key indicators

  • Single-crystal X-ray study
  • T = 150 K
  • Mean [sigma](C-C) = 0.010 Å
  • R factor = 0.031
  • wR factor = 0.065
  • Data-to-parameter ratio = 18.9

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 27.49 From the CIF: _reflns_number_total 5607 Count of symmetry unique reflns 3181 Completeness (_total/calc) 176.27% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 2426 Fraction of Friedel pairs measured 0.763 Are heavy atom types Z>Si present yes Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.

Comment top

Chelating ligands with rigid backbones are used to increase the stability of metal complexes; those attached to platinum group metal ions can potentially produce robust stereoselective catalysts. Diphosphine ligands offer backbone flexibility with a large P—M—P bite angle, whilst their bidentate nitrogen analogues tend to be more rigid and form smaller N—M—N chelate angles. Asymmetric phosphino–amine ligands benefit from the `hard' amine group which is more labile, and the softer high chelate stability of the phosphine group (Blacker et al., 2000). Cyclometalation reactions involving phosphino–carbon ligands generally form P,C-chelating or bridging species depending on the nature of the phosphorus substituents and other auxiliary ligands (Portnoy et al., 1995).

The title compound, (I), was formed unexpectedly in the attempted synthesis of [PtCl{C(O)Me}(C27H24NP)] (Ankersmit et al., 1996). A variety of reagents participate in addition reations with the polarized CN double bond; further protonation can create a more stable but reactive intermediate (Harada, 1970). Following a similar procedure, the AgO3SCF3 species reduced the imine group to an ammonium ion [C—N bond distances of 1.519 (7) and 1.513 (8) Å], and created a five-membered P,C-chelate ring, C19—Pt—P1 = 85.15 (16)°. Six-membered P,N-chelate rings incorporating the imine based precursor have been observed in palladium dichloride [PdCl2(C27H24NP)], (II), and platinum diiodide [PtI2(C27H24NP)] complexes, (III) (Ankersmit et al., 1996). These compounds, by comparison, have larger (N—Pt—P) bite angles, and smaller C—N bond distances typical of the starting ligand [87.37 (14)°/1.272 (8) Å and 88.3 (2)°/1.273 (12) Å for (II) and (III), respectively]. The ammonium ion of (I), rather than forming the P,N-chelate, participates in weak N—H···Cl hydrogen-bond contacts (Table 2) along the [010] direction in the crystal. The square-planar environment around platinum is fairly distorted; despite the restraint of the o-phenylene backbone, cis and trans angles deviate by up to 6° (Table 1). The P1—Pt1—Cl2 angle of 95.70 (6)° has widened to accommodate the larger phosphine group compared to the smaller substituents on the carbon side of the P,C-chelating ligand; C19—Pt1—Cl1 = 90.68 (17)°. The Pt—P bond length of 2.1769 (14) Å is unexceptional and comparable to the value of 2.217 (2) Å in (II). Although there are few characterized P,C-chelate species with platinum ions, the Pt1—C19 of 2.039 (6) Å can be compared to that observed in the dichloride bridged platinum species [Pt2Cl2(P2C54H64)] (Alyea et al., 1989). The Pt—Cl bonds in (I), 2.3728 (15) and 2.3802 (15) Å, are in good agreement with each other and consistent with values found in the literature. Platinum–halide bonds trans to carbon bonded ligands generally exert a greater trans influence than phosphorus moieties (Gandelman et al., 1997). The corresponding Pt—Cl bond values [2.345 (3) and 2.347 (3) Å] in dichloro(dimethyliminomethyl)(triphenylphosphine)platinum (Barefield et al., 1982) follow a similar trend as those in (I). The torsion angles around the five atom Pt—P—C—C—C ring (Table 1) are consistent with those of a (shallow) twist conformation. The diphenyl groups on P1 are arranged in a face-on/edge-on orientation as observed in many bidentate diphosphine chelate systems. The pendant amine arm is bent back towards the metal square plane such that the phenyl ring is almost parallel to the o-phenylene group.

Experimental top

The complex was formed as a by-product in the attempted synthesis of [PtCl{C(O)Me}(C27H24NP)], for which complete details have been reported (Ankersmit et al., 1996). Yellow crystals of (I) were obtained from recrystallization in a solution of CDCl3.

Refinement top

An initial absorption correction performed using three ψ-scans measurements revealed large residual density peaks around the platinum metal (maximum and minimum being 4.16 and -3.86 e Å-3, respectively). The highest peaks were arranged in a regular pattern around the metal centre indicative of the crystal habit. Presumably if a smaller crystal could have been selected, the problem may have been reduced and not caused such a significant effect. The Rint value of 0.053 for the ψ-scan data is relatively high, considering the complex contains a platinum metal ion, thus this absorption correction was deemed to be of insufficient quality. Unfortunately a numerical correction, from the crystal faces, was not feasible at the time of the measurement. Consequently, the final refinement utilized data from an absorption correction using DELABS (PLATON: Spek, 2000). As expected, significantly better residual density values and a decrease in the Rint (to 0.023) are observed. The displacement ellipsoids from both datasets are similar. H atoms attached to C atoms were constrained and allowed to ride on their carrier atoms with Uiso(H) = 1.2Ueq(C). The coordinates of H1A and H1B (on N1) were allowed to refine freely with their displacement parameters set at Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: locally modified CAD-4 Software (Enraf-Nonius, 1989); cell refinement: SET4 (de Boer & Duisenberg, 1984); data reduction: HELENA (Spek, 1997); program(s) used to solve structure: DIRDIF99 (Beurskens et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2000); software used to prepare material for publication: PLATON.

Figures top
[Figure 1] Fig. 1. PLATON/ORTEP representation (Spek, 2000) of (I) with displacement ellipsoids at 50% probability level.
(I) top
Crystal data top
[PtCl2(C27H26NP)]Dx = 1.792 Mg m3
Mr = 661.45Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 20 reflections
a = 10.0849 (9) Åθ = 11.6–13.9°
b = 10.6081 (7) ŵ = 6.02 mm1
c = 22.917 (3) ÅT = 150 K
V = 2451.7 (4) Å3Block, yellow
Z = 40.50 × 0.38 × 0.25 mm
F(000) = 1288
Data collection top
Enraf Nonius CAD4T
diffractometer
5121 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.023
Graphite monochromatorθmax = 27.5°, θmin = 1.8°
ω/2θ scansh = 013
Absorption correction: part of the refinement model (ΔF)
(DELABS in PLATON; Spek, 2000)
k = 1313
Tmin = 0.077, Tmax = 0.222l = 029
6345 measured reflections3 standard reflections every 60 min
5607 independent reflections intensity decay: 2.2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0259P)2 + 2.9856P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
5607 reflectionsΔρmax = 0.90 e Å3
296 parametersΔρmin = 1.21 e Å3
0 restraintsAbsolute structure: Flack (1983); 3181 Friedel pairs
Primary atom site location: heavy-atom methodAbsolute structure parameter: 0.000 (8)
Crystal data top
[PtCl2(C27H26NP)]V = 2451.7 (4) Å3
Mr = 661.45Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.0849 (9) ŵ = 6.02 mm1
b = 10.6081 (7) ÅT = 150 K
c = 22.917 (3) Å0.50 × 0.38 × 0.25 mm
Data collection top
Enraf Nonius CAD4T
diffractometer
5121 reflections with I > 2σ(I)
Absorption correction: part of the refinement model (ΔF)
(DELABS in PLATON; Spek, 2000)
Rint = 0.023
Tmin = 0.077, Tmax = 0.2223 standard reflections every 60 min
6345 measured reflections intensity decay: 2.2%
5607 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.065Δρmax = 0.90 e Å3
S = 1.06Δρmin = 1.21 e Å3
5607 reflectionsAbsolute structure: Flack (1983); 3181 Friedel pairs
296 parametersAbsolute structure parameter: 0.000 (8)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.06762 (2)0.02233 (2)0.179802 (10)0.01551 (5)
Cl10.12082 (15)0.06714 (15)0.23823 (8)0.0271 (4)
Cl20.02479 (15)0.17981 (14)0.16036 (7)0.0231 (3)
P10.24806 (14)0.00700 (14)0.12947 (6)0.0168 (3)
N10.0398 (5)0.2975 (5)0.1964 (2)0.0188 (11)
H1A0.014 (6)0.272 (6)0.222 (3)0.023*
H1B0.082 (6)0.376 (6)0.203 (3)0.023*
C10.3707 (6)0.1107 (6)0.1626 (3)0.0215 (14)
C20.5044 (6)0.0796 (7)0.1661 (3)0.0265 (16)
H20.53420.00000.15230.032*
C30.5937 (6)0.1633 (7)0.1895 (3)0.0300 (16)
H30.68470.14110.19210.036*
C40.5512 (7)0.2806 (7)0.2093 (3)0.0312 (16)
H40.61350.33940.22440.037*
C50.4171 (7)0.3112 (6)0.2070 (3)0.0296 (15)
H50.38650.38950.22180.035*
C60.3285 (6)0.2255 (5)0.1825 (3)0.0246 (13)
H60.23730.24710.17960.030*
C70.2288 (6)0.0675 (5)0.0558 (3)0.0191 (12)
C80.1052 (6)0.0594 (6)0.0287 (3)0.0253 (14)
H80.03300.02120.04860.030*
C90.0873 (8)0.1066 (6)0.0268 (3)0.0362 (17)
H90.00310.10190.04520.043*
C100.1941 (9)0.1607 (7)0.0550 (3)0.0393 (19)
H100.18200.19360.09320.047*
C110.3166 (8)0.1685 (7)0.0297 (3)0.0348 (17)
H110.38880.20510.05030.042*
C120.3338 (6)0.1223 (6)0.0260 (3)0.0259 (14)
H120.41830.12810.04410.031*
C130.3236 (6)0.1464 (6)0.1250 (3)0.0207 (13)
C140.4303 (7)0.1779 (6)0.0901 (3)0.0257 (13)
H140.46650.11720.06420.031*
C150.4841 (7)0.2965 (6)0.0928 (3)0.0287 (16)
H150.55750.31820.06880.034*
C160.4301 (7)0.3845 (6)0.1310 (3)0.0275 (13)
H160.46770.46650.13340.033*
C170.3231 (6)0.3545 (6)0.1653 (3)0.0217 (14)
H170.28790.41550.19140.026*
C180.2656 (6)0.2344 (6)0.1620 (3)0.0179 (13)
C190.1453 (6)0.1954 (5)0.1980 (3)0.0179 (13)
H190.17660.19120.23930.022*
C200.0356 (6)0.3183 (7)0.1402 (3)0.0300 (16)
H200.05960.23380.12390.036*
C210.1630 (7)0.3863 (9)0.1554 (4)0.055 (3)
H21A0.14200.46500.17590.082*
H21B0.21730.33250.18070.082*
H21C0.21200.40540.11960.082*
C220.0486 (7)0.3854 (6)0.0957 (3)0.0281 (15)
C230.1037 (7)0.3184 (7)0.0497 (3)0.0329 (17)
H230.08600.23090.04560.040*
C240.1847 (8)0.3795 (8)0.0099 (3)0.0402 (19)
H240.22500.33280.02070.048*
C250.2075 (7)0.5077 (7)0.0143 (3)0.0374 (18)
H250.26040.54900.01420.045*
C260.1543 (7)0.5755 (7)0.0594 (3)0.0338 (17)
H260.17140.66320.06270.041*
C270.0756 (7)0.5152 (6)0.1001 (3)0.0335 (14)
H270.03900.56220.13150.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01524 (8)0.01565 (9)0.01564 (9)0.00077 (9)0.00274 (10)0.00032 (9)
Cl10.0235 (7)0.0206 (7)0.0372 (10)0.0001 (6)0.0139 (7)0.0021 (7)
Cl20.0240 (7)0.0189 (7)0.0263 (8)0.0042 (6)0.0032 (6)0.0021 (6)
P10.0175 (6)0.0153 (8)0.0175 (7)0.0015 (6)0.0027 (5)0.0008 (6)
N10.021 (3)0.015 (2)0.020 (3)0.0016 (19)0.005 (2)0.0006 (19)
C10.024 (3)0.022 (3)0.019 (3)0.001 (3)0.002 (2)0.003 (2)
C20.021 (3)0.030 (4)0.028 (4)0.006 (3)0.004 (3)0.000 (3)
C30.016 (3)0.045 (4)0.028 (4)0.000 (3)0.001 (3)0.005 (3)
C40.024 (4)0.035 (4)0.034 (4)0.006 (3)0.002 (3)0.001 (3)
C50.028 (4)0.022 (3)0.039 (4)0.001 (3)0.002 (3)0.001 (3)
C60.020 (3)0.022 (3)0.033 (4)0.002 (2)0.005 (3)0.006 (3)
C70.021 (3)0.015 (3)0.021 (3)0.007 (2)0.001 (2)0.001 (2)
C80.029 (3)0.023 (3)0.023 (3)0.002 (2)0.002 (3)0.003 (3)
C90.049 (5)0.033 (4)0.027 (4)0.004 (4)0.009 (4)0.007 (3)
C100.066 (5)0.038 (4)0.014 (3)0.016 (4)0.001 (4)0.000 (3)
C110.048 (5)0.030 (4)0.027 (4)0.007 (3)0.012 (3)0.007 (3)
C120.027 (3)0.028 (4)0.023 (4)0.004 (3)0.005 (3)0.004 (3)
C130.022 (3)0.021 (3)0.019 (3)0.006 (2)0.003 (3)0.001 (3)
C140.030 (3)0.024 (3)0.024 (3)0.002 (3)0.013 (3)0.004 (2)
C150.027 (3)0.029 (4)0.030 (4)0.008 (3)0.013 (3)0.003 (3)
C160.030 (3)0.019 (3)0.034 (4)0.004 (3)0.003 (4)0.003 (3)
C170.022 (3)0.022 (3)0.021 (4)0.004 (2)0.001 (2)0.006 (2)
C180.020 (3)0.020 (3)0.014 (3)0.002 (2)0.003 (2)0.003 (2)
C190.019 (3)0.015 (3)0.020 (3)0.003 (2)0.002 (2)0.001 (2)
C200.028 (4)0.029 (4)0.033 (4)0.001 (3)0.008 (3)0.009 (3)
C210.023 (4)0.056 (6)0.085 (7)0.006 (4)0.002 (4)0.025 (5)
C220.034 (4)0.029 (3)0.022 (3)0.001 (3)0.007 (3)0.006 (3)
C230.038 (4)0.034 (4)0.026 (4)0.002 (3)0.013 (3)0.001 (3)
C240.043 (5)0.053 (5)0.024 (4)0.007 (4)0.007 (4)0.000 (4)
C250.046 (4)0.042 (5)0.024 (3)0.008 (4)0.009 (3)0.009 (3)
C260.040 (4)0.026 (4)0.036 (4)0.004 (3)0.001 (3)0.005 (3)
C270.037 (3)0.025 (3)0.038 (4)0.001 (4)0.010 (3)0.004 (3)
Geometric parameters (Å, º) top
Pt1—P12.1769 (14)C11—H110.950
Pt1—Cl12.3728 (15)C12—H120.950
Pt1—Cl22.3802 (15)C13—C141.381 (9)
Pt1—C192.039 (6)C13—C181.390 (9)
P1—C131.799 (6)C14—C151.371 (9)
P1—C71.817 (6)C14—H140.950
P1—C11.821 (7)C15—C161.391 (9)
N1—C191.519 (7)C15—H150.950
N1—C201.513 (8)C16—C171.372 (9)
N1—H1A0.85 (7)C16—H160.950
N1—H1B0.95 (7)C17—C181.402 (8)
C1—C61.369 (8)C17—H170.950
C1—C21.390 (8)C18—C191.523 (8)
C2—C31.373 (9)C19—H191.000
C2—H20.950C20—C221.506 (9)
C3—C41.392 (10)C20—C211.514 (10)
C3—H30.950C20—H201.000
C4—C51.392 (9)C21—H21A0.980
C4—H40.950C21—H21B0.980
C5—C61.393 (9)C21—H21C0.980
C5—H50.950C22—C231.386 (10)
C6—H60.950C22—C271.407 (10)
C7—C121.388 (8)C23—C241.386 (10)
C7—C81.395 (8)C23—H230.950
C8—C91.378 (9)C24—C251.383 (12)
C8—H80.950C24—H240.950
C9—C101.381 (11)C25—C261.369 (10)
C9—H90.950C25—H250.950
C10—C111.367 (11)C26—C271.380 (10)
C10—H100.950C26—H260.950
C11—C121.379 (9)C27—H270.950
C19—Pt1—P185.15 (16)C14—C13—C18121.2 (6)
C19—Pt1—Cl190.71 (17)C14—C13—P1125.5 (5)
P1—Pt1—Cl1175.67 (6)C18—C13—P1113.2 (4)
C19—Pt1—Cl2178.95 (18)C15—C14—C13120.3 (6)
P1—Pt1—Cl295.70 (5)C15—C14—H14119.8
Cl1—Pt1—Cl288.43 (5)C13—C14—H14119.8
C13—P1—C7108.2 (3)C14—C15—C16119.2 (6)
C13—P1—C1106.4 (3)C14—C15—H15120.4
C7—P1—C1104.3 (3)C16—C15—H15120.4
C13—P1—Pt1104.8 (2)C17—C16—C15120.8 (6)
C7—P1—Pt1116.98 (19)C17—C16—H16119.6
C1—P1—Pt1115.7 (2)C15—C16—H16119.6
C20—N1—C19118.4 (5)C16—C17—C18120.4 (6)
C20—N1—H1A109 (4)C16—C17—H17119.8
C19—N1—H1A102 (5)C18—C17—H17119.8
C20—N1—H1B104 (4)C13—C18—C17118.0 (5)
C19—N1—H1B108 (4)C13—C18—C19118.8 (5)
H1A—N1—H1B117 (6)C17—C18—C19123.2 (5)
C6—C1—C2119.6 (6)N1—C19—C18110.6 (5)
C6—C1—P1117.7 (5)N1—C19—Pt1111.6 (4)
C2—C1—P1122.7 (5)C18—C19—Pt1116.1 (4)
C3—C2—C1120.3 (6)N1—C19—H19105.9
C3—C2—H2119.8C18—C19—H19105.9
C1—C2—H2119.8Pt1—C19—H19105.9
C2—C3—C4120.3 (6)C22—C20—N1111.3 (5)
C2—C3—H3119.9C22—C20—C21114.2 (6)
C4—C3—H3119.9N1—C20—C21107.4 (6)
C3—C4—C5119.6 (6)C22—C20—H20107.9
C3—C4—H4120.2N1—C20—H20107.9
C5—C4—H4120.2C21—C20—H20107.9
C6—C5—C4119.1 (6)C20—C21—H21A109.5
C6—C5—H5120.4C20—C21—H21B109.5
C4—C5—H5120.4H21A—C21—H21B109.5
C1—C6—C5121.0 (6)C20—C21—H21C109.5
C1—C6—H6119.5H21A—C21—H21C109.5
C5—C6—H6119.5H21B—C21—H21C109.5
C12—C7—C8119.3 (6)C23—C22—C27118.6 (7)
C12—C7—P1121.6 (5)C23—C22—C20119.8 (6)
C8—C7—P1119.2 (5)C27—C22—C20121.6 (7)
C9—C8—C7120.3 (7)C24—C23—C22119.8 (7)
C9—C8—H8119.8C24—C23—H23120.1
C7—C8—H8119.8C22—C23—H23120.1
C8—C9—C10118.8 (7)C25—C24—C23120.6 (8)
C8—C9—H9120.6C25—C24—H24119.7
C10—C9—H9120.6C23—C24—H24119.7
C11—C10—C9122.1 (7)C26—C25—C24120.4 (7)
C11—C10—H10118.9C26—C25—H25119.8
C9—C10—H10118.9C24—C25—H25119.8
C10—C11—C12119.0 (7)C25—C26—C27119.5 (7)
C10—C11—H11120.5C25—C26—H26120.3
C12—C11—H11120.5C27—C26—H26120.3
C11—C12—C7120.6 (7)C26—C27—C22121.0 (7)
C11—C12—H12119.7C26—C27—H27119.5
C7—C12—H12119.7C22—C27—H27119.5
C19—Pt1—P1—C1311.6 (3)C1—P1—C13—C18111.7 (5)
Cl2—Pt1—P1—C13169.0 (2)Pt1—P1—C13—C1811.2 (5)
C19—Pt1—P1—C7131.4 (3)C18—C13—C14—C152.2 (10)
Cl2—Pt1—P1—C749.2 (2)P1—C13—C14—C15176.4 (5)
C19—Pt1—P1—C1105.1 (3)C13—C14—C15—C160.0 (11)
Cl2—Pt1—P1—C174.3 (2)C14—C15—C16—C170.8 (11)
C13—P1—C1—C6166.0 (5)C15—C16—C17—C180.5 (10)
C7—P1—C1—C679.8 (6)C14—C13—C18—C173.5 (9)
Pt1—P1—C1—C650.2 (6)P1—C13—C18—C17175.3 (5)
C13—P1—C1—C216.6 (7)C14—C13—C18—C19178.0 (6)
C7—P1—C1—C297.6 (6)P1—C13—C18—C193.2 (7)
Pt1—P1—C1—C2132.5 (5)C16—C17—C18—C132.6 (9)
C6—C1—C2—C30.1 (11)C16—C17—C18—C19178.9 (6)
P1—C1—C2—C3177.4 (5)C20—N1—C19—C1871.0 (7)
C1—C2—C3—C40.7 (10)C20—N1—C19—Pt159.8 (6)
C2—C3—C4—C51.9 (10)C13—C18—C19—N1136.1 (6)
C3—C4—C5—C62.6 (11)C17—C18—C19—N145.5 (8)
C2—C1—C6—C50.9 (11)C13—C18—C19—Pt17.6 (7)
P1—C1—C6—C5178.3 (6)C17—C18—C19—Pt1174.0 (5)
C4—C5—C6—C12.1 (11)P1—Pt1—C19—N1139.7 (4)
C13—P1—C7—C1280.4 (6)Cl1—Pt1—C19—N141.6 (4)
C1—P1—C7—C1232.6 (6)P1—Pt1—C19—C1811.8 (4)
Pt1—P1—C7—C12161.7 (4)Cl1—Pt1—C19—C18169.5 (4)
C13—P1—C7—C8100.1 (5)C19—N1—C20—C2274.8 (7)
C1—P1—C7—C8146.9 (5)C19—N1—C20—C21159.6 (6)
Pt1—P1—C7—C817.8 (6)N1—C20—C22—C23103.6 (7)
C12—C7—C8—C90.7 (9)C21—C20—C22—C23134.6 (7)
P1—C7—C8—C9178.9 (5)N1—C20—C22—C2775.0 (8)
C7—C8—C9—C100.5 (10)C21—C20—C22—C2746.7 (10)
C8—C9—C10—C110.3 (11)C27—C22—C23—C240.8 (10)
C9—C10—C11—C120.9 (11)C20—C22—C23—C24177.9 (6)
C10—C11—C12—C70.7 (10)C22—C23—C24—C252.3 (11)
C8—C7—C12—C110.1 (10)C23—C24—C25—C262.5 (11)
P1—C7—C12—C11179.5 (5)C24—C25—C26—C271.1 (11)
C7—P1—C13—C1444.6 (7)C25—C26—C27—C220.3 (11)
C1—P1—C13—C1467.0 (7)C23—C22—C27—C260.5 (10)
Pt1—P1—C13—C14170.0 (5)C20—C22—C27—C26179.2 (6)
C7—P1—C13—C18136.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl10.85 (7)2.45 (7)3.084 (6)132 (6)
N1—H1B···Cl1i0.95 (7)2.46 (6)3.330 (5)152 (5)
N1—H1A···Cl2i0.85 (7)2.76 (7)3.294 (5)122 (5)
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[PtCl2(C27H26NP)]
Mr661.45
Crystal system, space groupOrthorhombic, P212121
Temperature (K)150
a, b, c (Å)10.0849 (9), 10.6081 (7), 22.917 (3)
V3)2451.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)6.02
Crystal size (mm)0.50 × 0.38 × 0.25
Data collection
DiffractometerEnraf Nonius CAD4T
diffractometer
Absorption correctionPart of the refinement model (ΔF)
(DELABS in PLATON; Spek, 2000)
Tmin, Tmax0.077, 0.222
No. of measured, independent and
observed [I > 2σ(I)] reflections
6345, 5607, 5121
Rint0.023
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.065, 1.06
No. of reflections5607
No. of parameters296
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.90, 1.21
Absolute structureFlack (1983); 3181 Friedel pairs
Absolute structure parameter0.000 (8)

Computer programs: locally modified CAD-4 Software (Enraf-Nonius, 1989), SET4 (de Boer & Duisenberg, 1984), HELENA (Spek, 1997), DIRDIF99 (Beurskens et al., 1999), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2000), PLATON.

Selected geometric parameters (Å, º) top
Pt1—P12.1769 (14)Pt1—C192.039 (6)
Pt1—Cl12.3728 (15)N1—C191.519 (7)
Pt1—Cl22.3802 (15)N1—C201.513 (8)
C19—Pt1—P185.15 (16)C19—Pt1—Cl2178.95 (18)
C19—Pt1—Cl190.71 (17)P1—Pt1—Cl295.70 (5)
P1—Pt1—Cl1175.67 (6)Cl1—Pt1—Cl288.43 (5)
C19—Pt1—P1—C1311.6 (3)C13—C18—C19—Pt17.6 (7)
Pt1—P1—C13—C1811.2 (5)P1—Pt1—C19—C1811.8 (4)
P1—C13—C18—C193.2 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···Cl1i0.95 (7)2.46 (6)3.330 (5)152 (5)
N1—H1A···Cl2i0.85 (7)2.76 (7)3.294 (5)122 (5)
Symmetry code: (i) x, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds