organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(2,3-Di­methyl­phen­yl)piperazin-1-ium chloride monohydrate

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisia, and bUniverstié Lyon1, Centre de Diffractométrie Henri Longchambon, 43 boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
*Correspondence e-mail: cherif_bennasr@yahoo.fr

(Received 18 June 2008; accepted 23 June 2008; online 28 June 2008)

The title compound, C12H19N2+·Cl·H2O, contains a network of 4-(2,3-dimethyl­phen­yl)piperazin-1-ium cations, water mol­ecules and chloride anions. The crystal packing is influenced by O—H⋯Cl, N—H⋯Cl, N—H⋯O, C—H⋯O and C—H⋯Cl hydrogen bonds, resulting in structure with an open-framework architecture.

Related literature

For related literature, see: Ben Gharbia et al. (2005[Ben Gharbia, I., Kefi, R., Rayes, A. & Ben Nasr, C. (2005). Z. Kristallogr. New Cryst. Struct., 220, 333-334.], 2007[Ben Gharbia, I., Kefi, R., Rayes, A. & Ben Nasr, C. (2007). Anal. Sci. (X-Ray Str. Anal. Online), 27, x243-x244.]); Bernstein et al. (1995[Bernstein, J., David, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Pajewski et al. (2004[Pajewski, R., Ferdani, R., Schlesinger, P.-H. & Gokel, G.-W. (2004). Chem. Commun. pp. 160-161.]); Sessler et al. (2003[Sessler, J. L., Camiolo, S. & Gale, P. A. (2003). Coord. Chem. Rev. 240, 17-150.]); Schmidtchen & Berge (1997[Schmidtchen, F. P. & Berge, M. (1997). Chem. Rev. 97, 1609-1646.]). For the refinement weighting scheme, see: Prince (1982[Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer.]); Watkin (1994[Watkin, D. (1994). Acta Cryst. A50, 411-437.]).

[Scheme 1]

Experimental

Crystal data
  • C12H19N2+·Cl·H2O

  • Mr = 244.76

  • Triclinic, [P \overline 1]

  • a = 7.5439 (3) Å

  • b = 9.4204 (3) Å

  • c = 10.4347 (4) Å

  • α = 72.733 (2)°

  • β = 74.152 (2)°

  • γ = 70.250 (2)°

  • V = 654.05 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 150 K

  • 0.13 × 0.12 × 0.09 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 5719 measured reflections

  • 3073 independent reflections

  • 2601 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.035

  • S = 1.10

  • 2491 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H3⋯Cl1 0.90 2.18 3.069 (1) 169
N2—H4⋯O1i 0.91 1.86 2.776 (2) 175
O1—H1⋯Cl1 0.82 2.32 3.120 (1) 165
O1—H2⋯Cl1ii 0.83 2.31 3.136 (1) 171
C10—H15⋯Cl1iii 0.99 2.87 3.846 (1) 168
C12—H20⋯Cl1iv 0.97 2.84 3.779 (3) 161
C12—H19⋯O1v 0.99 2.73 3.448 (2) 130
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+2, -y+1, -z; (iii) x-1, y, z; (iv) x-1, y, z+1; (v) x-1, y-1, z+1.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

The coordination chemistry of anions is a fast-growing area of supramolecular chemistry (Schmidtchen & Berge, 1997), on account of the importance of anion binding, recognition and transport in many biochemical processes (Pajewski et al., 2004). Thus, the Cl- anion has been successfully used to assemble double-helical motifs of various molecules (Sessler et al., 2003). Here a new member of this family, the title compound, is presented, which was obtained during our studies of the preparation of new organic hydrochloride compounds. As shown in Fig. 1, the asymmetric unit of the crystal structure of the title compound contains a 4-(2,3-dimethylphenyl)piperazin-1-ium cation, a chloride anion and a water molecule, associated in a hydrogen-bonded network. Two water molecules and two Cl- anions are interconnected through O—H···Cl hydrogen bonds, forming an 8-membered ring with graph-set R24(8) Bernstein et al., 1995). These entities are connected to two antiparallel organic cations via N—H···Cl, N—H···O and C—H···Cl hydrogen-bonding interactions to construct a convoluted hydrogen-bonded chain which runs in the c-axis direction (Fig. 2). When projected along the b axis, the chains have a marked zigzag structure and somewhat resemble a helix (Fig. 3). In addition to the hydrogen-bonding associations to Cl1 and O1, the organic cations have a second role by linking these chains to each other to form layers parallel to the bc plane through C—H···O hydrogen bonds. Fig. 3 shows that these planes are interconnected by NH2+ groups to form an open framework architecture through hydrogen-bond interactions. An examination of the organic group geometrical features shows that the carbon atoms in the benzene ring of the title compound have a good coplanarity and they form a conjugated ring with an average deviation of 0.013 Å. The mean value of the C—C bond lengths [1.3967 (17) Å], which is between a single bond and a double bond, agrees with that in phenylpiperazinium tetrachloridozincate(II) [1.384 (4) Å] (Ben Gharbia et al., 2005). The piperazine-1,4-diium ring of the title compound adopts a typical chair conformation and its geometric parameters [dav(C—N) = 1.4818 (16) and dav(C—C) = 1.5437 (17) Å] are in full agreement with those found in 4-(2,3-dimethylphenyl)piperazin-1-ium tetrachloridozincate(II) (Ben Gharbia et al., 2007).

Related literature top

For related literature, see: Ben Gharbia et al. (2005, 2007); Bernstein et al. (1995); Pajewski et al. (2004); Sessler et al. (2003); Schmidtchen & Berge (1997). For the refinement weighting scheme, see: Prince (1982); Watkin (1994).

Experimental top

An aqueous 1M HCl solution and 1-(2,3-dimethylphenyl)piperazine in a 1:1 molar ratio were mixed and dissolved in sufficient ethanol. Crystals of (I) grew as the ethanol evaporated at 293 K over the course of a few days.

Refinement top

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 and O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints. Low-angle reflections possibly affected by the beam-stop and some other outliers were omitted from the refinement.

Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing 40% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing of (I), viewed down the a axis, showing the O—H···Cl, N—H···Cl, N—H···O, C—H···O and C—H···Cl interactions (dashed lines) between the 4-(2,3-dimethylphenyl)piperazin-1-ium cation, water molecule and chloride anion.
[Figure 3] Fig. 3. The packing of (I), viewed down the b axis, showing the zigzag character of the structure. Hydrogen bonds are indicated by dashed lines.
4-(2,3-Dimethylphenyl)piperazin-1-ium chloride monohydrate top
Crystal data top
C12H19N2+·Cl·H2OZ = 2
Mr = 244.76F(000) = 264
Triclinic, P1Dx = 1.243 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 7.5439 (3) ÅCell parameters from 2750 reflections
b = 9.4204 (3) Åθ = 0.4–27.9°
c = 10.4347 (4) ŵ = 0.28 mm1
α = 72.733 (2)°T = 150 K
β = 74.152 (2)°Block, colorless
γ = 70.250 (2)°0.13 × 0.12 × 0.09 mm
V = 654.05 (4) Å3
Data collection top
Nonius KappaCCD
diffractometer
Rint = 0.016
Graphite monochromatorθmax = 27.9°, θmin = 2.1°
ϕ and ω scansh = 99
5719 measured reflectionsk = 1212
3073 independent reflectionsl = 1313
2601 reflections with I > 2σ(I)
Refinement top
Refinement on FPrimary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.035 w = [1-(Fo-Fc)2/36σ2(F)]2/[0.443T0(x) + 0.129T1(x) + 0.131T2(x)]
where Ti are Chebychev polynomials and x = Fc/Fmax (Prince, 1982; Watkin, 1994)
S = 1.10(Δ/σ)max = 0.000359
2491 reflectionsΔρmax = 0.25 e Å3
145 parametersΔρmin = 0.20 e Å3
0 restraints
Crystal data top
C12H19N2+·Cl·H2Oγ = 70.250 (2)°
Mr = 244.76V = 654.05 (4) Å3
Triclinic, P1Z = 2
a = 7.5439 (3) ÅMo Kα radiation
b = 9.4204 (3) ŵ = 0.28 mm1
c = 10.4347 (4) ÅT = 150 K
α = 72.733 (2)°0.13 × 0.12 × 0.09 mm
β = 74.152 (2)°
Data collection top
Nonius KappaCCD
diffractometer
2601 reflections with I > 2σ(I)
5719 measured reflectionsRint = 0.016
3073 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.035H-atom parameters constrained
S = 1.10Δρmax = 0.25 e Å3
2491 reflectionsΔρmin = 0.20 e Å3
145 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.09326 (17)0.26100 (14)0.53871 (13)0.0211
C20.08069 (18)0.18226 (14)0.67481 (13)0.0224
C30.24822 (19)0.15986 (14)0.76843 (13)0.0243
C40.42381 (18)0.21709 (15)0.72522 (14)0.0270
C50.43454 (18)0.29399 (16)0.59077 (14)0.0285
C60.26999 (18)0.31526 (15)0.49687 (13)0.0255
C70.18840 (18)0.14963 (15)0.38467 (14)0.0276
C80.38588 (19)0.16564 (16)0.30991 (15)0.0313
C90.24578 (19)0.45044 (15)0.26085 (13)0.0260
C100.05184 (17)0.42554 (14)0.33543 (13)0.0230
C110.1080 (2)0.12337 (17)0.72288 (15)0.0320
C120.2398 (2)0.07656 (18)0.91485 (14)0.0353
Cl10.77820 (5)0.34324 (4)0.11653 (4)0.0340
O10.78625 (14)0.68790 (12)0.00994 (10)0.0353
N10.07922 (14)0.28419 (12)0.44468 (11)0.0216
N20.36750 (15)0.31276 (13)0.20308 (12)0.0278
H10.78480.59950.05260.0528*
H20.90070.68730.01820.0528*
H30.48450.32700.16610.0430*
H40.31440.30850.13580.0437*
H50.53850.20580.79160.0322*
H60.55650.33520.56100.0341*
H70.27700.36590.40450.0295*
H80.11980.14100.32000.0321*
H90.20400.05610.45750.0315*
H100.45880.07900.26440.0369*
H110.45820.16950.37490.0356*
H120.31140.46420.32200.0314*
H130.22990.54290.18500.0309*
H140.02660.51620.37730.0269*
H150.01410.41800.26840.0273*
H160.20870.15940.65140.0467*
H170.14840.00980.74640.0473*
H180.09400.16060.80470.0484*
H190.14760.02820.91970.0537*
H200.20110.13640.95870.0526*
H210.36710.06790.96390.0532*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0204 (5)0.0193 (5)0.0239 (6)0.0065 (4)0.0025 (4)0.0057 (5)
C20.0250 (6)0.0184 (5)0.0251 (6)0.0079 (5)0.0054 (5)0.0040 (5)
C30.0289 (6)0.0211 (6)0.0243 (6)0.0104 (5)0.0022 (5)0.0059 (5)
C40.0243 (6)0.0269 (6)0.0298 (7)0.0099 (5)0.0020 (5)0.0098 (5)
C50.0213 (6)0.0308 (7)0.0331 (7)0.0073 (5)0.0039 (5)0.0081 (6)
C60.0231 (6)0.0273 (6)0.0250 (6)0.0079 (5)0.0040 (5)0.0040 (5)
C70.0241 (6)0.0215 (6)0.0347 (7)0.0077 (5)0.0025 (5)0.0088 (5)
C80.0229 (6)0.0274 (7)0.0392 (8)0.0073 (5)0.0025 (5)0.0088 (6)
C90.0289 (6)0.0260 (6)0.0255 (6)0.0128 (5)0.0024 (5)0.0061 (5)
C100.0236 (6)0.0224 (6)0.0220 (6)0.0081 (5)0.0026 (5)0.0034 (5)
C110.0286 (7)0.0337 (7)0.0317 (7)0.0115 (6)0.0113 (5)0.0038 (6)
C120.0452 (8)0.0378 (8)0.0246 (7)0.0210 (7)0.0034 (6)0.0016 (6)
Cl10.02788 (17)0.0430 (2)0.03519 (18)0.01831 (14)0.00224 (13)0.00861 (14)
O10.0303 (5)0.0377 (6)0.0367 (5)0.0128 (4)0.0007 (4)0.0094 (4)
N10.0205 (5)0.0191 (5)0.0234 (5)0.0059 (4)0.0013 (4)0.0044 (4)
N20.0229 (5)0.0332 (6)0.0291 (6)0.0136 (4)0.0028 (4)0.0101 (5)
Geometric parameters (Å, º) top
C9—C101.5176 (17)C6—H70.947
C9—N21.4986 (17)C5—C41.3851 (19)
C9—H120.966C5—H60.968
C9—H130.985C4—C31.3957 (19)
C10—N11.4686 (16)C4—H50.965
C10—H141.005C3—C21.4070 (17)
C10—H150.993C3—C121.5038 (19)
C7—C81.5159 (17)C2—C111.5090 (17)
C7—N11.4701 (16)C12—H210.975
C7—H90.974C12—H200.974
C7—H80.991C12—H190.993
C8—N21.4900 (18)C11—H180.983
C8—H110.995C11—H160.981
C8—H100.989C11—H170.981
C1—C61.3979 (17)O1—H10.822
C1—C21.4060 (17)O1—H20.831
C1—N11.4391 (15)N2—H30.900
C6—C51.3886 (18)N2—H40.914
C10—C9—N2109.56 (10)C4—C5—H6120.8
C10—C9—H12111.0C5—C4—C3120.72 (12)
N2—C9—H12108.8C5—C4—H5120.5
C10—C9—H13110.3C3—C4—H5118.7
N2—C9—H13108.5C4—C3—C2119.63 (12)
H12—C9—H13108.6C4—C3—C12119.84 (12)
C9—C10—N1109.41 (10)C2—C3—C12120.53 (12)
C9—C10—H14109.0C3—C2—C1119.20 (11)
N1—C10—H14108.9C3—C2—C11119.40 (12)
C9—C10—H15108.6C1—C2—C11121.39 (11)
N1—C10—H15111.3C3—C12—H21109.5
H14—C10—H15109.6C3—C12—H20109.5
C8—C7—N1110.04 (10)H21—C12—H20107.6
C8—C7—H9108.4C3—C12—H19110.4
N1—C7—H9109.2H21—C12—H19109.8
C8—C7—H8109.4H20—C12—H19109.9
N1—C7—H8110.2C2—C11—H18109.7
H9—C7—H8109.5C2—C11—H16110.8
C7—C8—N2109.88 (11)H18—C11—H16109.0
C7—C8—H11110.1C2—C11—H17110.4
N2—C8—H11107.8H18—C11—H17108.5
C7—C8—H10111.2H16—C11—H17108.4
N2—C8—H10108.0H1—O1—H2107.1
H11—C8—H10109.9C7—N1—C10109.62 (10)
C6—C1—C2120.31 (11)C7—N1—C1112.16 (9)
C6—C1—N1121.24 (11)C10—N1—C1115.19 (10)
C2—C1—N1118.45 (11)C9—N2—C8112.04 (10)
C1—C6—C5119.86 (12)C9—N2—H3107.5
C1—C6—H7119.9C8—N2—H3109.3
C5—C6—H7120.2C9—N2—H4108.6
C6—C5—C4120.27 (12)C8—N2—H4110.2
C6—C5—H6118.9H3—N2—H4109.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H3···Cl10.902.183.069 (1)169
N2—H4···O1i0.911.862.776 (2)175
O1—H1···Cl10.822.323.120 (1)165
O1—H2···Cl1ii0.832.313.136 (1)171
C10—H15···Cl1iii0.992.873.846 (1)168
C12—H20···Cl1iv0.972.843.779 (3)161
C12—H19···O1v0.992.733.448 (2)130
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z; (iii) x1, y, z; (iv) x1, y, z+1; (v) x1, y1, z+1.

Experimental details

Crystal data
Chemical formulaC12H19N2+·Cl·H2O
Mr244.76
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)7.5439 (3), 9.4204 (3), 10.4347 (4)
α, β, γ (°)72.733 (2), 74.152 (2), 70.250 (2)
V3)654.05 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.13 × 0.12 × 0.09
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5719, 3073, 2601
Rint0.016
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.035, 1.10
No. of reflections2491
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.20

Computer programs: COLLECT (Nonius, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), CRYSTALS (Betteridge et al., 2003), DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H3···Cl10.902.183.069 (1)169
N2—H4···O1i0.911.862.776 (2)175
O1—H1···Cl10.822.323.120 (1)165
O1—H2···Cl1ii0.832.313.136 (1)171
C10—H15···Cl1iii0.992.873.846 (1)168
C12—H20···Cl1iv0.972.843.779 (3)161
C12—H19···O1v0.992.733.448 (2)130
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z; (iii) x1, y, z; (iv) x1, y, z+1; (v) x1, y1, z+1.
 

Acknowledgements

We acknowledge support provided by the Secretary of State for Scientific Research and Technology of Tunisia.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBen Gharbia, I., Kefi, R., Rayes, A. & Ben Nasr, C. (2005). Z. Kristallogr. New Cryst. Struct., 220, 333–334.  Google Scholar
First citationBen Gharbia, I., Kefi, R., Rayes, A. & Ben Nasr, C. (2007). Anal. Sci. (X-Ray Str. Anal. Online), 27, x243–x244.  CSD CrossRef Google Scholar
First citationBernstein, J., David, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPajewski, R., Ferdani, R., Schlesinger, P.-H. & Gokel, G.-W. (2004). Chem. Commun. pp. 160–161.  Web of Science CrossRef Google Scholar
First citationPrince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer.  Google Scholar
First citationSchmidtchen, F. P. & Berge, M. (1997). Chem. Rev. 97, 1609–1646.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSessler, J. L., Camiolo, S. & Gale, P. A. (2003). Coord. Chem. Rev. 240, 17–150.  CrossRef CAS Google Scholar
First citationWatkin, D. (1994). Acta Cryst. A50, 411–437.  CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds