organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A charge-transfer salt, 3,5-di­methyl-1-(4-nitro­benz­yl)pyridinium 7,7,8,8-tetra­cyano­quinodi­methane

aAnhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246003, People's Republic of China
*Correspondence e-mail: liugx@live.com

(Received 16 March 2008; accepted 26 March 2008; online 4 April 2008)

In the title salt, C14H15N2O2+·C12H4N4, the asymmetric unit contains one cation and one anion. C—H⋯N and C—H⋯N and C—H⋯O hydrogen bonds and ππ stacking inter­actions (inter­planar distance 3.845 Å) are found in the crystal structure.

Related literature

For general background, see: Madalan et al. (2002[Madalan, A. M., Roesky, H. W., Andruh, M., Noltemeyer, M. & Stanica, N. (2002). Chem. Commun. pp. 1638-1639.]); Ren, Chen et al. (2002[Ren, X. M., Chen, Y. C., He, C. & Gao, S. (2002). J. Chem. Soc. Dalton Trans. pp. 3915-3918.]); Ren et al. (2003[Ren, X. M., Ma, J., Lu, C. S., Yang, S. Z., Meng, Q. J. & Wu, P. H. (2003). Dalton Trans. pp. 1345-1351.]); Ren, Meng et al. (2002[Ren, X. M., Meng, Q. J., Song, Y., Lu, C. S., Hu, C. J. & Chen, X. Y. (2002). Inorg. Chem. 41, 5686-5692.]). For related literature, see: Liu et al. (2005[Liu, G. X., Ren, X. M., Kremer, P. K. & Meng, Q. J. (2005). J. Mol. Struct. 743, 125-133.]); Wang et al. (2006[Wang, P.-F., Liu, G.-X. & Chen, Y.-C. (2006). Acta Cryst. E62, o3256-o3258.]).

[Scheme 1]

Experimental

Crystal data
  • C14H15N2O2+·C12H4N4

  • Mr = 447.47

  • Triclinic, [P \overline 1]

  • a = 8.098 (2) Å

  • b = 9.137 (2) Å

  • c = 16.542 (4) Å

  • α = 76.194 (3)°

  • β = 75.951 (3)°

  • γ = 86.933 (3)°

  • V = 1153.0 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.18 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.985, Tmax = 0.992

  • 5765 measured reflections

  • 3998 independent reflections

  • 3255 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.144

  • S = 1.00

  • 3998 reflections

  • 309 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯N2 0.93 2.56 2.895 (2) 102
C7—H7B⋯N4i 0.97 2.43 3.245 (3) 141
C8—H8⋯O2ii 0.93 2.46 3.119 (2) 128
Symmetry codes: (i) x-1, y-1, z; (ii) x, y+1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, using benzylpyridinium derivatives ([RBzPy]+ where R represents a substituent group) with flexible molecular configuration as a counter-cation to control the arrangement of anions [M(mnt)2]- (M = Ni, Pd, Pt), a series of ion-pair compounds that show segregated columnar stacks of cations and anions has been prepared (Madalan et al., 2002; Ren, Chen et al., 2002; Ren et al., 2003; Ren, Meng et al., 2002). The radical of TCNQ also shows a planar arrangement and extended electronic structures that are similar to the [M(mnt)2]- ion, and has been extensively used to build molecular solids with low-dimensional conductivity and magnetic features, in which the electronic transport and magnetically coupled interactions can be achieved through ππ interactions between radicals along the direction of the radical stack column (Liu et al., 2005; Wang et al., 2006). This character of the TCNQ- ion prompted us to extend our research to a series of [RBzPy][TCNQ] compounds in order to gain more insight into the relationship between the intermolecular cooperation interactions and the magnetic properties of the compounds with low-dimensional structural features. In this paper, we report the crystal structure of the title compound.

The asymmetric unit contains one (C14H15N2O2)+ cation and one [C8H4(CN)4]- anion (Fig. 1). It stacks as completely segregated columns of TCNQ anions/molecules and 3,5-dimethyl-1-(4-nitrobenzyl)pyridinium cations, as illustrated by the projection along the crystallographic a axis in Fig. 2. The cation and anion columns are linked by hydrogen-bonding interactions. Within an anionic column, a strongly bound [(TCNQ)2]2- unit is formed, and adjacent units are displaced relative to each other along the direction of the shorter molecular axis of TCNQ. The benzene rings are parallel to each other. In a TCNQ column, the mean interplanar separations within two different overlapping pairs are 5.745 Å inter-dimer and 3.845 Å intra-dimer, respectively, indicating weak ππ stacking interactions. The (C14H15N2O2)+ cation has a Λ-shaped conformation, and the dihedral angles formed by the C4/C7/N2 plane with the benzene and pyridinium rings are 4.12 (11) and 80.45 (12)°, respectively.

Related literature top

For general background, see: Madalan et al. (2002); Ren, Chen et al. (2002); Ren et al. (2003); Ren, Meng et al. (2002). For related literature, see: Liu et al. (2005); Wang et al. (2006).

Experimental top

3,5-Dimethyl-1-(4-nitrobenzyl)pyridinium iodide was prepared by the direct combination of 1:1 molar equivalents of 3,5-dimethyl-1-(4-nitrobenzyl)pyridinium chloride and NaI in a warm solution in acetone at 313 K. A white precipitate was formed (NaCl), which was filtered off, and a white microcrystalline product was obtained by evaporating the filtrate. 1:2 Molar equivalents of 3,5-dimethyl-1-(4-nitrobenzyl)pyridinium iodide and TCNQ were mixed directly in a solution in methanol, and the mixture was refluxed for 12 h. The dark-green microcrystalline product which formed was filtered off, washed with MeOH and dried in vacuo. Single crystals of (I) suitable for structure analysis were obtained by diffusing diethyl ether into an acetonitrile solution of (I).

Refinement top

H atoms were positioned geometrically, with C—H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram for (I). Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. A side-view of the one-dimensional anionic stack of (I).
3,5-dimethyl-1-(4-nitrobenzyl)pyridinium 7,7,8,8-tetracyanoquinodimethane top
Crystal data top
C14H15N2O2+·C12H4N4Z = 2
Mr = 447.47F(000) = 466
Triclinic, P1Dx = 1.289 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.098 (2) ÅCell parameters from 3033 reflections
b = 9.137 (2) Åθ = 2.3–27.9°
c = 16.542 (4) ŵ = 0.09 mm1
α = 76.194 (3)°T = 293 K
β = 75.951 (3)°Pillar, purple
γ = 86.933 (3)°0.18 × 0.12 × 0.10 mm
V = 1153.0 (5) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
3998 independent reflections
Radiation source: sealed tube3255 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 25.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 99
Tmin = 0.985, Tmax = 0.992k = 1010
5765 measured reflectionsl = 1916
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0904P)2 + 0.1284P]
where P = (Fo2 + 2Fc2)/3
3998 reflections(Δ/σ)max < 0.001
309 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C14H15N2O2+·C12H4N4γ = 86.933 (3)°
Mr = 447.47V = 1153.0 (5) Å3
Triclinic, P1Z = 2
a = 8.098 (2) ÅMo Kα radiation
b = 9.137 (2) ŵ = 0.09 mm1
c = 16.542 (4) ÅT = 293 K
α = 76.194 (3)°0.18 × 0.12 × 0.10 mm
β = 75.951 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3998 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3255 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.992Rint = 0.018
5765 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.00Δρmax = 0.15 e Å3
3998 reflectionsΔρmin = 0.20 e Å3
309 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3034 (2)0.11674 (18)0.07248 (10)0.0532 (4)
C20.1837 (3)0.0094 (3)0.06055 (17)0.0920 (8)
H20.09980.02280.03320.110*
C30.1875 (3)0.1190 (3)0.08930 (16)0.0863 (7)
H30.10660.19340.08050.104*
C40.30938 (19)0.13943 (17)0.13103 (9)0.0464 (4)
C50.4274 (2)0.02782 (18)0.14337 (11)0.0557 (4)
H50.50970.03920.17210.067*
C60.4257 (2)0.10127 (18)0.11367 (11)0.0579 (4)
H60.50670.17610.12170.069*
C70.3015 (2)0.28325 (18)0.16136 (11)0.0513 (4)
H7A0.30250.36810.11310.062*
H7B0.19460.28550.20310.062*
C80.5758 (2)0.39025 (17)0.15325 (10)0.0506 (4)
H80.57800.43660.09640.061*
C90.7086 (2)0.41397 (18)0.18741 (10)0.0535 (4)
C100.6996 (2)0.34162 (18)0.27232 (11)0.0545 (4)
H100.78670.35630.29730.065*
C110.5642 (2)0.24809 (17)0.32079 (10)0.0502 (4)
C120.4356 (2)0.23031 (17)0.28237 (9)0.0481 (4)
H120.34300.16860.31340.058*
C130.8551 (3)0.5148 (3)0.13244 (14)0.0805 (6)
H13A0.89470.48650.07870.121*
H13B0.94600.50450.16130.121*
H13C0.81780.61770.12230.121*
C140.5536 (3)0.1662 (2)0.41234 (11)0.0665 (5)
H14A0.66360.16600.42450.100*
H14B0.51680.06430.42100.100*
H14C0.47350.21610.44990.100*
C150.8272 (2)0.8781 (2)0.25321 (12)0.0631 (5)
C160.9551 (2)1.0193 (2)0.32804 (11)0.0566 (4)
C170.8784 (2)0.88381 (18)0.32838 (10)0.0539 (4)
C180.8522 (2)0.76197 (17)0.40146 (10)0.0497 (4)
C190.9004 (2)0.77045 (17)0.47720 (10)0.0506 (4)
H190.95260.85780.47850.061*
C200.8724 (2)0.65455 (17)0.54774 (10)0.0502 (4)
H200.90580.66460.59610.060*
C210.7936 (2)0.51845 (17)0.54952 (10)0.0502 (4)
C220.7464 (2)0.50974 (18)0.47347 (11)0.0588 (4)
H220.69530.42210.47180.071*
C230.7742 (2)0.62636 (19)0.40311 (11)0.0581 (4)
H230.74090.61660.35470.070*
C240.7631 (2)0.39860 (18)0.62288 (10)0.0553 (4)
C250.7996 (2)0.41186 (19)0.70048 (11)0.0583 (4)
C260.6899 (3)0.2598 (2)0.62445 (11)0.0639 (5)
N10.3014 (2)0.25176 (18)0.03913 (9)0.0650 (4)
N20.44324 (16)0.30155 (13)0.20044 (8)0.0456 (3)
N30.7848 (3)0.8728 (2)0.19242 (12)0.0903 (6)
N41.0142 (2)1.12948 (19)0.33055 (11)0.0752 (5)
N50.8270 (3)0.4254 (2)0.76315 (10)0.0802 (5)
N60.6314 (3)0.1475 (2)0.62508 (12)0.0907 (6)
O10.1827 (2)0.2699 (2)0.00906 (11)0.0984 (5)
O20.4200 (2)0.33952 (15)0.04148 (8)0.0797 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0619 (10)0.0509 (9)0.0478 (9)0.0093 (7)0.0113 (7)0.0133 (7)
C20.0824 (14)0.1014 (16)0.134 (2)0.0240 (12)0.0685 (14)0.0698 (15)
C30.0792 (14)0.0869 (14)0.1301 (19)0.0341 (11)0.0692 (14)0.0587 (14)
C40.0492 (8)0.0473 (8)0.0439 (8)0.0011 (6)0.0155 (6)0.0082 (6)
C50.0644 (10)0.0535 (9)0.0587 (10)0.0069 (7)0.0338 (8)0.0135 (7)
C60.0739 (11)0.0473 (9)0.0563 (10)0.0070 (8)0.0274 (8)0.0089 (7)
C70.0539 (9)0.0485 (8)0.0569 (9)0.0028 (7)0.0238 (7)0.0125 (7)
C80.0615 (10)0.0445 (8)0.0447 (8)0.0022 (7)0.0143 (7)0.0058 (6)
C90.0573 (10)0.0478 (8)0.0572 (9)0.0040 (7)0.0146 (8)0.0135 (7)
C100.0587 (10)0.0546 (9)0.0595 (10)0.0006 (7)0.0241 (8)0.0207 (7)
C110.0617 (10)0.0477 (8)0.0453 (8)0.0049 (7)0.0169 (7)0.0156 (7)
C120.0552 (9)0.0449 (8)0.0443 (8)0.0021 (6)0.0115 (7)0.0107 (6)
C130.0729 (13)0.0809 (14)0.0830 (14)0.0252 (11)0.0143 (11)0.0090 (11)
C140.0828 (13)0.0734 (12)0.0456 (9)0.0002 (9)0.0220 (9)0.0113 (8)
C150.0654 (11)0.0626 (11)0.0613 (11)0.0035 (8)0.0258 (9)0.0042 (8)
C160.0548 (10)0.0537 (10)0.0570 (10)0.0021 (8)0.0132 (8)0.0051 (7)
C170.0556 (9)0.0501 (9)0.0559 (9)0.0043 (7)0.0179 (7)0.0083 (7)
C180.0522 (9)0.0460 (8)0.0529 (9)0.0062 (7)0.0153 (7)0.0140 (7)
C190.0545 (9)0.0458 (8)0.0553 (9)0.0005 (7)0.0146 (7)0.0176 (7)
C200.0570 (9)0.0498 (8)0.0484 (9)0.0045 (7)0.0149 (7)0.0186 (7)
C210.0578 (9)0.0460 (8)0.0496 (9)0.0056 (7)0.0141 (7)0.0161 (7)
C220.0759 (11)0.0463 (9)0.0603 (10)0.0065 (8)0.0261 (8)0.0129 (7)
C230.0762 (11)0.0518 (9)0.0544 (9)0.0000 (8)0.0294 (8)0.0137 (7)
C240.0677 (10)0.0481 (9)0.0509 (9)0.0010 (7)0.0141 (8)0.0130 (7)
C250.0734 (11)0.0492 (9)0.0490 (10)0.0027 (8)0.0104 (8)0.0097 (7)
C260.0795 (12)0.0543 (10)0.0566 (10)0.0027 (9)0.0187 (9)0.0071 (8)
N10.0819 (11)0.0605 (9)0.0519 (8)0.0165 (8)0.0075 (7)0.0163 (7)
N20.0523 (7)0.0422 (6)0.0459 (7)0.0010 (5)0.0171 (6)0.0121 (5)
N30.0981 (14)0.1037 (14)0.0760 (12)0.0055 (11)0.0442 (11)0.0116 (10)
N40.0802 (11)0.0611 (10)0.0811 (11)0.0123 (8)0.0199 (9)0.0071 (8)
N50.1159 (15)0.0736 (11)0.0536 (9)0.0017 (10)0.0239 (9)0.0160 (8)
N60.1217 (16)0.0631 (11)0.0885 (13)0.0249 (10)0.0333 (11)0.0059 (9)
O10.0935 (11)0.1097 (12)0.1151 (13)0.0195 (9)0.0270 (9)0.0635 (10)
O20.1179 (12)0.0539 (7)0.0688 (8)0.0086 (8)0.0227 (8)0.0187 (6)
Geometric parameters (Å, º) top
C1—C21.356 (3)C13—H13B0.960
C1—C61.362 (2)C13—H13C0.960
C1—N11.469 (2)C14—H14A0.960
C2—C31.372 (3)C14—H14B0.960
C2—H20.930C14—H14C0.960
C3—C41.377 (2)C15—N31.151 (2)
C3—H30.930C15—C171.416 (2)
C4—C51.373 (2)C16—N41.151 (2)
C4—C71.508 (2)C16—C171.413 (2)
C5—C61.384 (2)C17—C181.416 (2)
C5—H50.930C18—C231.412 (2)
C6—H60.930C18—C191.419 (2)
C7—N21.4818 (19)C19—C201.357 (2)
C7—H7A0.970C19—H190.930
C7—H7B0.970C20—C211.419 (2)
C8—N21.343 (2)C20—H200.930
C8—C91.379 (2)C21—C241.408 (2)
C8—H80.930C21—C221.421 (2)
C9—C101.388 (2)C22—C231.359 (2)
C9—C131.509 (2)C22—H220.930
C10—C111.386 (2)C23—H230.930
C10—H100.930C24—C251.418 (2)
C11—C121.379 (2)C24—C261.420 (3)
C11—C141.505 (2)C25—N51.147 (2)
C12—N21.3442 (19)C26—N61.150 (2)
C12—H120.930N1—O11.220 (2)
C13—H13A0.960N1—O21.220 (2)
C2—C1—C6121.58 (16)H13A—C13—H13C109.5
C2—C1—N1118.90 (16)H13B—C13—H13C109.5
C6—C1—N1119.51 (16)C11—C14—H14A109.5
C1—C2—C3119.27 (16)C11—C14—H14B109.5
C1—C2—H2120.4H14A—C14—H14B109.5
C3—C2—H2120.4C11—C14—H14C109.5
C2—C3—C4121.06 (17)H14A—C14—H14C109.5
C2—C3—H3119.5H14B—C14—H14C109.5
C4—C3—H3119.5N3—C15—C17179.6 (2)
C5—C4—C3118.37 (15)N4—C16—C17177.63 (19)
C5—C4—C7124.51 (13)C16—C17—C15116.70 (15)
C3—C4—C7117.11 (14)C16—C17—C18120.87 (14)
C4—C5—C6120.97 (14)C15—C17—C18122.42 (15)
C4—C5—H5119.5C23—C18—C17121.56 (14)
C6—C5—H5119.5C23—C18—C19116.56 (14)
C1—C6—C5118.74 (15)C17—C18—C19121.88 (14)
C1—C6—H6120.6C20—C19—C18121.80 (14)
C5—C6—H6120.6C20—C19—H19119.1
N2—C7—C4113.85 (12)C18—C19—H19119.1
N2—C7—H7A108.8C19—C20—C21121.66 (14)
C4—C7—H7A108.8C19—C20—H20119.2
N2—C7—H7B108.8C21—C20—H20119.2
C4—C7—H7B108.8C24—C21—C20121.76 (14)
H7A—C7—H7B107.7C24—C21—C22121.76 (14)
N2—C8—C9121.24 (14)C20—C21—C22116.48 (14)
N2—C8—H8119.4C23—C22—C21121.60 (15)
C9—C8—H8119.4C23—C22—H22119.2
C8—C9—C10117.15 (15)C21—C22—H22119.2
C8—C9—C13119.71 (16)C22—C23—C18121.90 (15)
C10—C9—C13123.14 (16)C22—C23—H23119.1
C11—C10—C9121.71 (14)C18—C23—H23119.1
C11—C10—H10119.1C21—C24—C25121.48 (14)
C9—C10—H10119.1C21—C24—C26122.28 (14)
C12—C11—C10117.85 (14)C25—C24—C26116.22 (15)
C12—C11—C14119.55 (15)N5—C25—C24178.50 (19)
C10—C11—C14122.60 (15)N6—C26—C24179.5 (2)
N2—C12—C11120.51 (14)O1—N1—O2122.89 (16)
N2—C12—H12119.7O1—N1—C1118.57 (17)
C11—C12—H12119.7O2—N1—C1118.52 (15)
C9—C13—H13A109.5C8—N2—C12121.53 (13)
C9—C13—H13B109.5C8—N2—C7119.09 (12)
H13A—C13—H13B109.5C12—N2—C7119.38 (13)
C9—C13—H13C109.5
C6—C1—C2—C31.1 (4)C23—C18—C19—C200.3 (2)
N1—C1—C2—C3178.1 (2)C17—C18—C19—C20178.78 (15)
C1—C2—C3—C40.9 (4)C18—C19—C20—C210.1 (2)
C2—C3—C4—C50.1 (3)C19—C20—C21—C24179.44 (15)
C2—C3—C4—C7179.1 (2)C19—C20—C21—C220.3 (2)
C3—C4—C5—C60.9 (3)C24—C21—C22—C23179.20 (16)
C7—C4—C5—C6179.83 (16)C20—C21—C22—C230.6 (3)
C2—C1—C6—C50.4 (3)C21—C22—C23—C180.4 (3)
N1—C1—C6—C5178.90 (15)C17—C18—C23—C22179.01 (16)
C4—C5—C6—C10.7 (3)C19—C18—C23—C220.0 (3)
C5—C4—C7—N24.9 (2)C20—C21—C24—C254.2 (3)
C3—C4—C7—N2176.16 (17)C22—C21—C24—C25175.56 (16)
N2—C8—C9—C100.3 (2)C20—C21—C24—C26177.65 (16)
N2—C8—C9—C13179.80 (16)C22—C21—C24—C262.6 (3)
C8—C9—C10—C110.7 (2)C2—C1—N1—O16.9 (3)
C13—C9—C10—C11179.16 (17)C6—C1—N1—O1173.77 (16)
C9—C10—C11—C121.0 (2)C2—C1—N1—O2171.89 (19)
C9—C10—C11—C14178.76 (15)C6—C1—N1—O27.4 (2)
C10—C11—C12—N20.2 (2)C9—C8—N2—C121.1 (2)
C14—C11—C12—N2179.49 (14)C9—C8—N2—C7178.29 (13)
C16—C17—C18—C23179.39 (16)C11—C12—N2—C80.8 (2)
C15—C17—C18—C230.5 (3)C11—C12—N2—C7178.60 (13)
C16—C17—C18—C190.4 (2)C4—C7—N2—C899.78 (16)
C15—C17—C18—C19178.44 (16)C4—C7—N2—C1280.84 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···N20.932.562.895 (2)102
C7—H7B···N4i0.972.433.245 (3)141
C8—H8···O2ii0.932.463.119 (2)128
Symmetry codes: (i) x1, y1, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H15N2O2+·C12H4N4
Mr447.47
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.098 (2), 9.137 (2), 16.542 (4)
α, β, γ (°)76.194 (3), 75.951 (3), 86.933 (3)
V3)1153.0 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.18 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.985, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
5765, 3998, 3255
Rint0.018
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.144, 1.00
No. of reflections3998
No. of parameters309
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.20

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···N20.932.562.895 (2)102
C7—H7B···N4i0.972.433.245 (3)141
C8—H8···O2ii0.932.463.119 (2)128
Symmetry codes: (i) x1, y1, z; (ii) x, y+1, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (project Nos. 20371002 and 20771006) and the Natural Science Foundation of the Education Committee of Anhui Province, China (project No. KJ2008B004).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, G. X., Ren, X. M., Kremer, P. K. & Meng, Q. J. (2005). J. Mol. Struct. 743, 125–133.  Web of Science CSD CrossRef CAS Google Scholar
First citationMadalan, A. M., Roesky, H. W., Andruh, M., Noltemeyer, M. & Stanica, N. (2002). Chem. Commun. pp. 1638–1639.  Web of Science CSD CrossRef Google Scholar
First citationRen, X. M., Chen, Y. C., He, C. & Gao, S. (2002). J. Chem. Soc. Dalton Trans. pp. 3915–3918.  Web of Science CSD CrossRef Google Scholar
First citationRen, X. M., Ma, J., Lu, C. S., Yang, S. Z., Meng, Q. J. & Wu, P. H. (2003). Dalton Trans. pp. 1345–1351.  Web of Science CSD CrossRef Google Scholar
First citationRen, X. M., Meng, Q. J., Song, Y., Lu, C. S., Hu, C. J. & Chen, X. Y. (2002). Inorg. Chem. 41, 5686–5692.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, P.-F., Liu, G.-X. & Chen, Y.-C. (2006). Acta Cryst. E62, o3256–o3258.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds