metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m593-m594

Di­chloridobis[3-methyl-4-phenyl-5-(2-pyrid­yl)-4H-1,2,4-triazole-κ2N1,N5]copper(II) 3.33-hydrate

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: wangzx0908@yahoo.com.cn

(Received 19 January 2008; accepted 20 March 2008; online 29 March 2008)

In the title compound, [CuCl2(C14H12N4)2]·3.33H2O, the Cu(II) atom is coordinated by two chelating 3-methyl-4-phenyl-5-(2-pyrid­yl)-1,2,4-triazole ligands and two chloride anions in a distorted octa­hedral geometry with a CuN2N2Cl2 chromophore. The Cu atom is located on an inversion center. Two uncoordinated water mol­ecules lie on threefold rotation axes with disordered H atoms. Two hydrogen bonds are formed between the water mol­ecules, and another between water and a chlorido ligand.

Related literature

For related literature, see: Bencini et al. (1987[Bencini, A., Gatteschi, D., Zanchini, C., Haasnoot, J. G., Prins, R. & Reedijk, J. (1987). J. Am. Chem. Soc. 109, 2926-2931.]); Koningsbruggen et al. (1995[Koningsbruggen, P. J., Gatteshi, D., Graaff, R. A. G., Hassnoot, J. G., Reedijk, J. & Zanchini, C. (1995). Inorg. Chem. 34, 5175-5182.]); Moliner et al. (1998[Moliner, N., Munoz, M. C., Koningsbruggen, P. J. & Real, J. A. (1998). Inorg. Chim. Acta, 274, 1-6.], 2001[Moliner, N., Gaspar, A. B., Munoz, M. C., Niel, V., Cano, J. & Real, J. A. (2001). Inorg. Chem. 40, 3986-3991.]); Klingele & Brooker (2003[Klingele, M. H. & Brooker, S. (2003). Coord. Chem. Rev. 241, 119-132.]); Klingele et al. (2005[Klingele, M. H., Boyd, P. D. W., Moubaraki, B., Murray, K. S. & Brooker, S. (2005). Eur. J. Inorg. Chem. pp. 910-918.]); Garcia et al. (1997[Garcia, Y., Koningsbruggen, P. J., Codjovi, E., Lapouyade, R., Kahn, O. & Rabardel, L. (1997). J. Mater. Chem. 7, 857-858.]); Lavrenova & Larionov (1998[Lavrenova, L. G. & Larionov, S. V. (1998). Russ. J. Coord. Chem. 24, 379-395.]); Kahn & Martinez (1998[Kahn, O. & Martinez, C. J. (1998). Science, 279, 44-48.]); Koningsbruggen (2004[Koningsbruggen, P. J. (2004). Top. Curr. Chem. 233, 123-149.]); Matouzenko et al. (2004[Matouzenko, G. S., Bousseksou, A., Borshch, S. A., Perrin, M., Zein, S., Salmon, L., Molnar, G. & Lecocq, S. (2004). Inorg. Chem. 43, 227-236.]); Wang et al. (2005[Wang, Z.-X., Lan, Y., Yuan, L.-T. & Liu, C.-Y. (2005). Acta Cryst. E61, o2033-o2034.]); Zhou et al. (2006a[Zhou, B. G., Wang, Z. X., Qiao, X. Y. & Liu, C. Y. (2006a). Acta Cryst. E62, m3176-m3177.],b[Zhou, A.-Y., Wang, Z.-X., Lan, Y., Yuan, L.-T. & Liu, C.-Y. (2006b). Acta Cryst. E62, m591-m592.]).

[Scheme 1]

Experimental

Crystal data
  • [CuCl2(C14H12N4)2]·3.33H2O

  • Mr = 667.04

  • Rhombohedral, [R \overline 3]

  • a = 21.5496 (13) Å

  • c = 17.619 (2) Å

  • V = 7086.0 (10) Å3

  • Z = 9

  • Mo Kα radiation

  • μ = 0.91 mm−1

  • T = 293 (2) K

  • 0.28 × 0.26 × 0.22 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.78, Tmax = 0.82

  • 12784 measured reflections

  • 3091 independent reflections

  • 2155 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.114

  • S = 1.06

  • 3091 reflections

  • 194 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.82 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—N4 2.006 (2)
Cu1—N7 2.023 (2)
Cu1—Cl1 2.7537 (9)
N4i—Cu1—N7 99.70 (9)
N4—Cu1—N7 80.30 (9)
N4i—Cu1—Cl1 96.83 (8)
N4—Cu1—Cl1 83.17 (8)
N7—Cu1—Cl1 89.45 (7)
N7—Cu1—Cl1i 90.55 (7)
Symmetry code: (i) -x+1, -y+2, -z+2.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1D⋯Cl1 0.85 2.20 3.053 (2) 179
O1—H1A⋯O2 0.85 2.43 2.932 (3) 119
O2—H2B⋯O2ii 0.85 1.88 2.505 (8) 130
Symmetry code: (ii) [-x+{\script{2\over 3}}, -y+{\script{4\over 3}}, -z+{\script{4\over 3}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The coordination chemistry of 1,2,4-triazole derivatives has attracted great attention in recent years (Bencini et al., 1987; Koningsbruggen et al., 1995; Moliner et al., 1998, 2001; Klingele & Brooker, 2003; Klingele et al., 2005). Some spin-crossover complexes of 1,2,4-triazoles with iron(II) salts have been reported, which could be used as molecular-based memory devices, displays and optical switches (Garcia et al., 1997; Lavrenova & Larionov, 1998; Kahn & Martinez, 1998; Koningsbruggen, 2004; Matouzenko et al., 2004). We have synthesized some new 3,4-disubstituted-5-(2-pyridyl)-1,2,4-triazoles and their transition-metal complexes (Wang et al., 2005; Zhou et al., 2006a,b). We report here the crystal structure analysis of the title compound, (I).

The structure of (I) is shown in Fig.1. In the crystal structure, the Cu(II) atom is coordinated by two chelating 3-methyl-4-phenyl-5-(2-pyridyl)-1,2,4-triazole ligands and two chloride anions in a distorted octahedral geometry with a CuN2N'2Cl2 chromophore. Two hydrogen bonds are formed between the water molecules, and another involves the chloro ligand.

Related literature top

For related literature, see: Bencini et al. (1987); Koningsbruggen et al. (1995); Moliner et al. (1998, 2001); Klingele & Brooker (2003); Klingele et al. (2005); Garcia et al. (1997); Lavrenova & Larionov (1998); Kahn & Martinez (1998); Koningsbruggen (2004); Matouzenko et al. (2004); Wang et al. (2005); Zhou et al. (2006a,b).

Experimental top

To a warm solution of 0.944 g 3-methyl-4-phenyl-5-(2-pyridyl)-1,2,4-triazole (4.0 mmol) in 20 ml e thanol, 0.270 g copper(II) chloride (2.0 mmol) was added. The filtrate was left to stand at room temperature for several days, and blue single crystals suitable for X-ray diffraction were collected.

Refinement top

All H atoms were located in a difference Fourier map and allowed to ride on their parent atoms at distances of 0.93 Å (aromatic), 0.96 Å (methyl) and 0.85 (water), and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O). O2 and O3 lie on threefold rotation axes, and accordingly, their H atoms are disordered with a partial occupancy of 1/3 and U values in the range 0.64–0.85 Å2.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atomic labelling. Displacement ellipsoids are shown at the 30% probability level. [Symmetry code i: -x + 1, -y + 2, -z + 2.]
Dichloridobis[3-methyl-4-phenyl-5-(2-pyridyl)-4H-1,2,4-triazole- κ2N1,N5]copper(II) 3.33-hydrate top
Crystal data top
[CuCl2(C14H12N4)2]·3.33H2OF(000) = 3099
Mr = 667.04Dx = 1.407 Mg m3
Rhombohedral, R3Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -R 3Cell parameters from 3501 reflections
a = 21.5496 (13) Åθ = 2.5–23.9°
c = 17.619 (2) ŵ = 0.91 mm1
α = 90°T = 293 K
γ = 120°Polyhedron, blue
V = 7086.0 (10) Å30.28 × 0.26 × 0.22 mm
Z = 9
Data collection top
Bruker SMART APEX CCD
diffractometer
3091 independent reflections
Radiation source: sealed tube2155 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ϕ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2626
Tmin = 0.78, Tmax = 0.82k = 2126
12784 measured reflectionsl = 2119
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.05P)2]
where P = (Fo2 + 2Fc2)/3
3091 reflections(Δ/σ)max < 0.001
194 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.82 e Å3
Crystal data top
[CuCl2(C14H12N4)2]·3.33H2OV = 7086.0 (10) Å3
Mr = 667.04Z = 9
Rhombohedral, R3Mo Kα radiation
a = 21.5496 (13) ŵ = 0.91 mm1
c = 17.619 (2) ÅT = 293 K
α = 90°0.28 × 0.26 × 0.22 mm
γ = 120°
Data collection top
Bruker SMART APEX CCD
diffractometer
3091 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2155 reflections with I > 2σ(I)
Tmin = 0.78, Tmax = 0.82Rint = 0.055
12784 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.06Δρmax = 0.31 e Å3
3091 reflectionsΔρmin = 0.82 e Å3
194 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.50001.00001.00000.04781 (19)
C10.56211 (17)0.87212 (17)0.88733 (16)0.0408 (7)
C20.54547 (13)0.96307 (14)0.86885 (15)0.0280 (6)
C30.53495 (14)1.02034 (15)0.84128 (15)0.0292 (6)
C40.54676 (16)1.04762 (16)0.76855 (16)0.0366 (7)
H40.56261.02870.73070.044*
C50.53496 (19)1.10252 (19)0.75306 (16)0.0459 (8)
H50.54161.12060.70400.055*
C60.51311 (18)1.13172 (19)0.80953 (16)0.0444 (8)
H60.50531.16960.79950.053*
C70.50315 (17)1.10251 (16)0.88239 (17)0.0412 (7)
H70.48941.12220.92140.049*
C80.57362 (19)0.81162 (17)0.87105 (17)0.0445 (8)
H8A0.61360.81670.90010.067*
H8B0.58340.81120.81790.067*
H8C0.53140.76750.88450.067*
C90.56300 (18)0.90787 (16)0.74991 (16)0.0380 (7)
C100.4997 (2)0.86341 (18)0.71288 (19)0.0504 (8)
H100.45650.83950.73890.061*
C110.5032 (2)0.8556 (2)0.6345 (2)0.0574 (9)
H110.46170.82620.60720.069*
C120.56770 (19)0.89132 (18)0.59789 (17)0.0458 (8)
H120.56960.88590.54570.055*
C130.6281 (2)0.9340 (2)0.6358 (2)0.0563 (9)
H130.67110.95790.60930.068*
C140.62835 (19)0.94346 (18)0.71455 (19)0.0509 (8)
H140.67040.97220.74130.061*
N40.54193 (13)0.94977 (13)0.94163 (13)0.0361 (6)
N50.55287 (15)0.89213 (14)0.95473 (14)0.0411 (6)
N60.55975 (13)0.91589 (13)0.83203 (13)0.0333 (5)
N70.51276 (12)1.04744 (13)0.89762 (13)0.0356 (6)
Cl10.37209 (5)0.88666 (5)0.95079 (5)0.0581 (3)
O10.38596 (12)0.77383 (11)0.85941 (11)0.0424 (5)
H1D0.38250.80540.88500.051*
H1A0.34440.74090.84650.051*
O20.33330.66670.7377 (2)0.0567 (11)
H2A0.28950.63590.73040.068*0.334
H2B0.35040.69250.69830.068*0.334
O30.66670.33330.70495 (19)0.0428 (9)
H3A0.66500.31030.66510.051*0.3333
H3C0.64740.30420.74160.051*0.3333
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0484 (3)0.0501 (4)0.0456 (4)0.0251 (3)0.0044 (3)0.0055 (3)
C10.0531 (19)0.0518 (18)0.0298 (17)0.0356 (16)0.0098 (14)0.0032 (14)
C20.0275 (14)0.0340 (15)0.0229 (13)0.0158 (12)0.0030 (11)0.0039 (11)
C30.0295 (14)0.0369 (15)0.0227 (13)0.0178 (12)0.0003 (11)0.0025 (11)
C40.0469 (17)0.0542 (18)0.0184 (13)0.0326 (15)0.0003 (12)0.0004 (13)
C50.062 (2)0.068 (2)0.0205 (14)0.0417 (19)0.0051 (14)0.0132 (15)
C60.064 (2)0.062 (2)0.0292 (15)0.0477 (18)0.0059 (15)0.0107 (15)
C70.060 (2)0.0531 (19)0.0302 (15)0.0429 (16)0.0118 (14)0.0119 (14)
C80.065 (2)0.052 (2)0.0315 (17)0.0406 (18)0.0071 (15)0.0038 (14)
C90.064 (2)0.0440 (17)0.0176 (14)0.0356 (16)0.0047 (14)0.0010 (12)
C100.064 (2)0.053 (2)0.0408 (18)0.0341 (18)0.0118 (17)0.0035 (16)
C110.062 (2)0.070 (2)0.0377 (19)0.031 (2)0.0055 (18)0.0072 (18)
C120.070 (2)0.057 (2)0.0244 (16)0.0420 (19)0.0051 (16)0.0025 (14)
C130.063 (2)0.068 (2)0.042 (2)0.036 (2)0.0001 (18)0.0004 (18)
C140.050 (2)0.055 (2)0.0416 (19)0.0214 (17)0.0045 (16)0.0022 (16)
N40.0456 (14)0.0424 (14)0.0237 (13)0.0245 (12)0.0007 (10)0.0104 (10)
N50.0589 (17)0.0484 (15)0.0291 (13)0.0367 (14)0.0058 (12)0.0062 (11)
N60.0484 (15)0.0400 (13)0.0197 (11)0.0282 (12)0.0069 (10)0.0004 (10)
N70.0401 (13)0.0454 (14)0.0329 (13)0.0303 (12)0.0029 (11)0.0059 (11)
Cl10.0439 (5)0.0671 (6)0.0520 (5)0.0191 (4)0.0020 (4)0.0033 (4)
O10.0534 (13)0.0488 (13)0.0327 (11)0.0313 (11)0.0046 (10)0.0029 (10)
O20.0633 (16)0.0633 (16)0.043 (3)0.0317 (8)0.0000.000
O30.0519 (14)0.0519 (14)0.0245 (18)0.0259 (7)0.0000.000
Geometric parameters (Å, º) top
Cu1—N4i2.006 (2)C8—H8A0.960
Cu1—N42.006 (2)C8—H8B0.960
Cu1—N72.023 (2)C8—H8C0.960
Cu1—N7i2.023 (2)C9—C141.371 (5)
Cu1—Cl12.7537 (9)C9—C101.377 (5)
Cu1—Cl1i2.7537 (9)C9—N61.463 (3)
C1—N51.312 (4)C10—C111.398 (5)
C1—N61.375 (4)C10—H100.930
C1—C81.472 (4)C11—C121.368 (5)
C2—N41.308 (3)C11—H110.930
C2—N61.365 (3)C12—C131.338 (5)
C2—C31.446 (4)C12—H120.930
C3—N71.354 (3)C13—C141.402 (5)
C3—C41.380 (4)C13—H130.930
C4—C51.356 (4)C14—H140.930
C4—H40.930N4—N51.395 (3)
C5—C61.380 (4)O1—H1D0.850
C5—H50.930O1—H1A0.850
C6—C71.398 (4)O2—H2A0.850
C6—H60.930O2—H2B0.8499
C7—N71.330 (4)O3—H3A0.850
C7—H70.930O3—H3C0.850
N4i—Cu1—N4180.000 (1)C1—C8—H8B109.5
N4i—Cu1—N799.70 (9)H8A—C8—H8B109.5
N4—Cu1—N780.30 (9)C1—C8—H8C109.5
N4i—Cu1—N7i80.30 (9)H8A—C8—H8C109.5
N4—Cu1—N7i99.70 (9)H8B—C8—H8C109.5
N7—Cu1—N7i180.000 (1)C14—C9—C10123.8 (3)
N4i—Cu1—Cl196.83 (8)C14—C9—N6118.7 (3)
N4—Cu1—Cl183.17 (8)C10—C9—N6117.5 (3)
N7—Cu1—Cl189.45 (7)C9—C10—C11117.3 (3)
N4i—Cu1—Cl1i83.17 (8)C9—C10—H10121.4
N4—Cu1—Cl1i96.83 (8)C11—C10—H10121.4
N7—Cu1—Cl1i90.55 (7)C12—C11—C10119.9 (3)
N7i—Cu1—Cl1i89.45 (7)C12—C11—H11120.1
Cl1—Cu1—Cl1i180.00 (4)C10—C11—H11120.1
N5—C1—N6110.6 (3)C13—C12—C11121.2 (3)
N5—C1—C8126.0 (3)C13—C12—H12119.4
N6—C1—C8123.4 (3)C11—C12—H12119.4
N4—C2—N6108.2 (2)C12—C13—C14121.7 (3)
N4—C2—C3120.0 (2)C12—C13—H13119.2
N6—C2—C3131.8 (2)C14—C13—H13119.2
N7—C3—C4121.8 (3)C9—C14—C13116.1 (3)
N7—C3—C2111.2 (2)C9—C14—H14121.9
C4—C3—C2127.0 (2)C13—C14—H14121.9
C5—C4—C3118.9 (3)C2—N4—N5109.9 (2)
C5—C4—H4120.5C2—N4—Cu1112.15 (18)
C3—C4—H4120.5N5—N4—Cu1135.90 (18)
C4—C5—C6120.6 (3)C1—N5—N4105.3 (2)
C4—C5—H5119.7C2—N6—C1105.9 (2)
C6—C5—H5119.7C2—N6—C9126.9 (2)
C5—C6—C7117.9 (3)C1—N6—C9126.8 (2)
C5—C6—H6121.1C7—N7—C3118.9 (3)
C7—C6—H6121.1C7—N7—Cu1126.0 (2)
N7—C7—C6122.0 (3)C3—N7—Cu1115.07 (19)
N7—C7—H7119.0H1D—O1—H1A109.5
C6—C7—H7119.0H2A—O2—H2B109.5
C1—C8—H8A109.5H3A—O3—H3C109.5
Symmetry code: (i) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1D···Cl10.852.203.053 (2)179
O1—H1A···O20.852.432.932 (3)119
O2—H2B···O2ii0.851.882.505 (8)130
Symmetry code: (ii) x+2/3, y+4/3, z+4/3.

Experimental details

Crystal data
Chemical formula[CuCl2(C14H12N4)2]·3.33H2O
Mr667.04
Crystal system, space groupRhombohedral, R3
Temperature (K)293
a, c (Å)21.5496 (13), 17.619 (2)
V3)7086.0 (10)
Z9
Radiation typeMo Kα
µ (mm1)0.91
Crystal size (mm)0.28 × 0.26 × 0.22
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.78, 0.82
No. of measured, independent and
observed [I > 2σ(I)] reflections
12784, 3091, 2155
Rint0.055
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.114, 1.06
No. of reflections3091
No. of parameters194
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.82

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—N42.006 (2)Cu1—Cl12.7537 (9)
Cu1—N72.023 (2)
N4i—Cu1—N799.70 (9)N4—Cu1—Cl183.17 (8)
N4—Cu1—N780.30 (9)N7—Cu1—Cl189.45 (7)
N4i—Cu1—Cl196.83 (8)N7—Cu1—Cl1i90.55 (7)
Symmetry code: (i) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1D···Cl10.852.203.053 (2)179.3
O1—H1A···O20.852.432.932 (3)118.5
O2—H2B···O2ii0.851.882.505 (8)129.6
Symmetry code: (ii) x+2/3, y+4/3, z+4/3.
 

Acknowledgements

We are grateful to Jingye Pharmochemical Pilot Plant for financial assistance though project 8507041056.

References

First citationBencini, A., Gatteschi, D., Zanchini, C., Haasnoot, J. G., Prins, R. & Reedijk, J. (1987). J. Am. Chem. Soc. 109, 2926–2931.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGarcia, Y., Koningsbruggen, P. J., Codjovi, E., Lapouyade, R., Kahn, O. & Rabardel, L. (1997). J. Mater. Chem. 7, 857–858.  CrossRef CAS Web of Science Google Scholar
First citationKahn, O. & Martinez, C. J. (1998). Science, 279, 44–48.  Web of Science CrossRef CAS Google Scholar
First citationKlingele, M. H., Boyd, P. D. W., Moubaraki, B., Murray, K. S. & Brooker, S. (2005). Eur. J. Inorg. Chem. pp. 910–918.  Web of Science CSD CrossRef Google Scholar
First citationKlingele, M. H. & Brooker, S. (2003). Coord. Chem. Rev. 241, 119–132.  Web of Science CrossRef CAS Google Scholar
First citationKoningsbruggen, P. J. (2004). Top. Curr. Chem. 233, 123–149.  CrossRef Google Scholar
First citationKoningsbruggen, P. J., Gatteshi, D., Graaff, R. A. G., Hassnoot, J. G., Reedijk, J. & Zanchini, C. (1995). Inorg. Chem. 34, 5175–5182.  CrossRef Web of Science Google Scholar
First citationLavrenova, L. G. & Larionov, S. V. (1998). Russ. J. Coord. Chem. 24, 379–395.  CAS Google Scholar
First citationMatouzenko, G. S., Bousseksou, A., Borshch, S. A., Perrin, M., Zein, S., Salmon, L., Molnar, G. & Lecocq, S. (2004). Inorg. Chem. 43, 227–236.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMoliner, N., Gaspar, A. B., Munoz, M. C., Niel, V., Cano, J. & Real, J. A. (2001). Inorg. Chem. 40, 3986–3991.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMoliner, N., Munoz, M. C., Koningsbruggen, P. J. & Real, J. A. (1998). Inorg. Chim. Acta, 274, 1–6.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z.-X., Lan, Y., Yuan, L.-T. & Liu, C.-Y. (2005). Acta Cryst. E61, o2033–o2034.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, A.-Y., Wang, Z.-X., Lan, Y., Yuan, L.-T. & Liu, C.-Y. (2006b). Acta Cryst. E62, m591–m592.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, B. G., Wang, Z. X., Qiao, X. Y. & Liu, C. Y. (2006a). Acta Cryst. E62, m3176–m3177.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m593-m594
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds