organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2,3,5,6-Tetra­fluoro-4-iodo­anilino)­ethanol

aDipartimento di Chimica, Materiali e Ingegeria Chimica 'G. Natta', Politecnico di Milano, Via Mancinelli 7, I-20131 Milano, Italy, and bIstituto di Scienze e Tecnologie Molecolari del CNR, Via Golgi 19, 20133 Milano, Italy
*Correspondence e-mail: tullio.pilati@istm.cnr.it

(Received 2 November 2007; accepted 28 November 2007; online 6 December 2007)

The reaction of 2-amino­ethanol and iodo­penta­fluoro­benzene in the presence of K2CO3 gave the title compound, C8H6F4INO, in high yield. The structure is characterized by double layers of mol­ecules linked by O—H⋯O and N—H⋯O hydrogen bonds, and linear C—I⋯F [I⋯F = 3.049 (2) Å] and bent C—I⋯I [I⋯I = 3.9388 (7) Å] inter­actions between pairs of nearly parallel iodo­tetra­fluoro­phenyl groups. No O⋯I or N⋯I halogen bonding is found.

Related literature

For related literature, see: Metrangolo & Resnati (2001[Metrangolo, P. & Resnati, G. (2001). Chem. Eur. J. 7, 2511-2519.]); Metrangolo et al. (2005[Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386-395.], 2007[Metrangolo, P., Resnati, G., Pilati, T., Liantonio, R. & Meyer, F. (2007). J. Polym. Sci. Part. A, 45, 1-15.]).

[Scheme 1]

Experimental

Crystal data
  • C8H6F4INO

  • Mr = 335.04

  • Monoclinic, C 2/c

  • a = 13.327 (2) Å

  • b = 17.663 (3) Å

  • c = 8.3044 (14) Å

  • β = 96.94 (2)°

  • V = 1940.5 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.33 mm−1

  • T = 158 (2) K

  • 0.24 × 0.16 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.691, Tmax = 1.000 (expected range = 0.529–0.766)

  • 8054 measured reflections

  • 2924 independent reflections

  • 2422 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.092

  • S = 1.04

  • 2924 reflections

  • 162 parameters

  • 8 restraints

  • All H-atom parameters refined

  • Δρmax = 1.65 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.87 (2) 2.23 (3) 3.046 (3) 157 (3)
O1—H1O⋯O1ii 0.82 (5) 1.90 (7) 2.715 (4) 175 (8)
O1—H2O⋯O1iii 0.82 (5) 1.99 (5) 2.781 (4) 162 (8)
Symmetry codes: (i) [x, -y, z-{\script{1\over 2}}]; (ii) [-x, y, -z+{\script{1\over 2}}]; (iii) -x, -y, -z+1.

Data collection: SMART (Bruker, 1999[Bruker (1999). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Supramolecular architectures assembled by halogen bonding (XB) are our long-standing interest (Metrangolo & Resnati, 2001; Metrangolo et al., 2005, 2007). As preliminary work, we need to design and to synthesize molecules showing functional and geometric properties adequate to give the supramolecular structures we wish to obtain. In the present study, we report the structure of 2-(2,3,5,6-tetrafluoro-4-iodo-phenylamino)ethanol, an intermediate in the synthesis of more complex molecules to be used in XB supramolecular engineering and in particular to cover gold surfaces with iodotetrafluorobenzene pendants. The molecular structure is shown in Figure 1. Containing alcohol and amino H atoms, the main interactions in this structure are O—H···O and N—H···O hydrogen bonds (HB) rather then O···I or N···I XB. In fact, we find the short distances O1···O1(-x,y,1/2 - z), O1···O1(-x,-y,1 - z) and N1···O1(x,-y,1/2 + z) of 2.715 (5), 2.781 (5), 3.046 (4) Å, respectively. These HBs generate one-dimensional sandwich ribbons; the distance between the centroids of a benzene ring and the mean plane through the nearest benzene ring in the sandwich is 3.393 Å. As shown in Figure 2 and 3, parallel one-dimensional ribbons are linked together by I1···I1(-x,1 - y,2 - z) and I1···F3(x,1 - y,1/2 + x) interactions, with length of 3.9388 (7) and 3.049 (2) Å, respectively, to form a two-dimensional sandwich layer. These are linked together only by residual forces; no distance below the sum of van der Waals radii is found between atoms in different sandwiches, as shown by the distance between the benzene centroid and the plane of the nearest benzene ring in a second two-dimensional layer, 0.074 Å larger than the intra-sandwich one (see Figure 4).

Related literature top

For related literature, see: Metrangolo & Resnati (2001); Metrangolo et al. (2005, 2007).

Experimental top

500 mg (8.2 mmol) of ethanolamine, 1.64 ml (12.3 mmol) of iodopentafluorobenzene and 1.24 g (9.03 mmol) of K2CO3 were stirred in 15 ml of refluxing THF. After 5 h, water was added and the aqueous phase was extracted three times with dichloromethane. The combined organic phases were washed with saturated aqueous Na2S2O3 solution and dried over Na2SO4. The residue was chromatographied on silica gel (240–400 mesh, eluent dichloromethane) to give the product in 86% yield. 1H NMR (500 MHz, CDCl3): δ 3.84 (2H, t, J = 5.2 Hz, CH2), 3.56 (2H, tt, J = 1.4 Hz, J = 5.2 Hz, CH2), 3.06 (2H, br s, OH and NH); 19 F NMR (470 MHz, CDCl3): δ -157.8 (2 F, m, CF—C), -124.3 (2 F, m, CF—CI)

Refinement top

Exchanging the atomic assignments of N1 and O1 worsens the results of the least-squares refinement, thus confirming that the tetrafluoroiodobenzene is bound to the amine group of ethanolamine. The H atoms were located in a difference map. For H of the hydroxyl group two possible positions were found. Both the positions (corresponding to H1O and H2O) are incompatible with a symmetry-equivalent position. In fact, the H1O···H1O(-x, y, 1/2 - z) distance is only 1.08 Å, and the H2O···H2O(-x, -y, 1 - z) distance is 1.24 Å. However, the distances H1O···H2O(-x, y, 1/2 - z) and H1O···H2O(-x, -y, 1 - z) are compatible with hydrogen bonding, being 2.17 and 2.32 Å, respectively. Any rotation of C—O—H around the C—O bond does not remedy the situation. The the hydroxyl group is thus disordered. H atoms were refined with the following restraints: all the C—H distances are approximately equal, O—H is 0.82 (1) Å, and N—H is freely refined.

Structure description top

Supramolecular architectures assembled by halogen bonding (XB) are our long-standing interest (Metrangolo & Resnati, 2001; Metrangolo et al., 2005, 2007). As preliminary work, we need to design and to synthesize molecules showing functional and geometric properties adequate to give the supramolecular structures we wish to obtain. In the present study, we report the structure of 2-(2,3,5,6-tetrafluoro-4-iodo-phenylamino)ethanol, an intermediate in the synthesis of more complex molecules to be used in XB supramolecular engineering and in particular to cover gold surfaces with iodotetrafluorobenzene pendants. The molecular structure is shown in Figure 1. Containing alcohol and amino H atoms, the main interactions in this structure are O—H···O and N—H···O hydrogen bonds (HB) rather then O···I or N···I XB. In fact, we find the short distances O1···O1(-x,y,1/2 - z), O1···O1(-x,-y,1 - z) and N1···O1(x,-y,1/2 + z) of 2.715 (5), 2.781 (5), 3.046 (4) Å, respectively. These HBs generate one-dimensional sandwich ribbons; the distance between the centroids of a benzene ring and the mean plane through the nearest benzene ring in the sandwich is 3.393 Å. As shown in Figure 2 and 3, parallel one-dimensional ribbons are linked together by I1···I1(-x,1 - y,2 - z) and I1···F3(x,1 - y,1/2 + x) interactions, with length of 3.9388 (7) and 3.049 (2) Å, respectively, to form a two-dimensional sandwich layer. These are linked together only by residual forces; no distance below the sum of van der Waals radii is found between atoms in different sandwiches, as shown by the distance between the benzene centroid and the plane of the nearest benzene ring in a second two-dimensional layer, 0.074 Å larger than the intra-sandwich one (see Figure 4).

For related literature, see: Metrangolo & Resnati (2001); Metrangolo et al. (2005, 2007).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Molecular structure with the numbering scheme and ADPs at the 50% probability level.
[Figure 2] Fig. 2. A two-dimensional sandwich (see text) projected along the a* axis, in Mercury ball and stick style. H atoms omitted.
[Figure 3] Fig. 3. The two-dimensional sandwich projected along the c axis.
[Figure 4] Fig. 4. The complete packing viewed along the c axis with the distances between the centroid of the benzene ring and the planes of the two nearest benzene rings.
2-(2,3,5,6-Tetrafluoro-4-iodoanilino)ethanol top
Crystal data top
C8H6F4INOF(000) = 1264
Mr = 335.04Dx = 2.294 Mg m3
Monoclinic, C2/cMelting point = 343–348 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 13.327 (2) ÅCell parameters from 2964 reflections
b = 17.663 (3) Åθ = 3.0–29.1°
c = 8.3044 (14) ŵ = 3.33 mm1
β = 96.94 (2)°T = 158 K
V = 1940.5 (6) Å3Irregular table, colourless
Z = 80.24 × 0.16 × 0.08 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2924 independent reflections
Radiation source: fine-focus sealed tube2422 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω and φ scansθmax = 31.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1818
Tmin = 0.691, Tmax = 1.000k = 1625
8054 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: difference Fourier map
wR(F2) = 0.092All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0481P)2 + 2.2775P]
where P = (Fo2 + 2Fc2)/3
2924 reflections(Δ/σ)max = 0.001
162 parametersΔρmax = 1.65 e Å3
8 restraintsΔρmin = 0.47 e Å3
Crystal data top
C8H6F4INOV = 1940.5 (6) Å3
Mr = 335.04Z = 8
Monoclinic, C2/cMo Kα radiation
a = 13.327 (2) ŵ = 3.33 mm1
b = 17.663 (3) ÅT = 158 K
c = 8.3044 (14) Å0.24 × 0.16 × 0.08 mm
β = 96.94 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2924 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2422 reflections with I > 2σ(I)
Tmin = 0.691, Tmax = 1.000Rint = 0.026
8054 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0368 restraints
wR(F2) = 0.092All H-atom parameters refined
S = 1.04Δρmax = 1.65 e Å3
2924 reflectionsΔρmin = 0.47 e Å3
162 parameters
Special details top

Experimental. Data collection using an OXFORD low temperature device. Below 158 K the structure possibly shows a phase transition.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.116120 (18)0.431723 (13)1.05305 (3)0.03962 (10)
F10.11489 (13)0.12833 (11)1.03239 (18)0.0310 (4)
F20.10979 (15)0.26089 (11)1.1821 (2)0.0341 (4)
F30.13483 (15)0.38552 (11)0.6853 (2)0.0375 (4)
F40.13603 (14)0.25397 (11)0.53509 (19)0.0320 (4)
N10.12288 (19)0.11508 (15)0.7067 (3)0.0256 (5)
H1N0.120 (3)0.080 (2)0.779 (5)0.032 (10)*
O10.06410 (19)0.02423 (13)0.3901 (2)0.0322 (5)
H1O0.026 (5)0.027 (5)0.306 (6)0.048*0.50
H2O0.022 (5)0.020 (5)0.454 (8)0.048*0.50
C10.12620 (19)0.18530 (16)0.7785 (3)0.0211 (5)
C20.1188 (2)0.19221 (15)0.9451 (3)0.0220 (5)
C30.11614 (19)0.26044 (18)1.0212 (3)0.0239 (5)
C40.1225 (2)0.32801 (16)0.9396 (4)0.0257 (5)
C50.1307 (2)0.32223 (17)0.7744 (4)0.0266 (6)
C60.13237 (19)0.25369 (15)0.6968 (3)0.0235 (5)
C70.1830 (2)0.0964 (2)0.5749 (3)0.0300 (6)
H7A0.216 (3)0.0485 (14)0.602 (4)0.031 (9)*
H7B0.237 (2)0.1319 (17)0.573 (4)0.032 (9)*
C80.1226 (3)0.0915 (2)0.4085 (3)0.0303 (6)
H8A0.079 (3)0.136 (2)0.388 (6)0.072 (15)*
H8B0.161 (2)0.090 (2)0.319 (3)0.029 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.04639 (16)0.02605 (13)0.04478 (15)0.00436 (8)0.00122 (10)0.00885 (8)
F10.0507 (11)0.0251 (9)0.0177 (7)0.0040 (7)0.0061 (7)0.0048 (6)
F20.0505 (10)0.0345 (10)0.0177 (7)0.0006 (8)0.0052 (7)0.0053 (7)
F30.0486 (11)0.0235 (9)0.0403 (10)0.0035 (8)0.0052 (8)0.0108 (8)
F40.0446 (10)0.0336 (10)0.0190 (8)0.0037 (8)0.0089 (7)0.0048 (7)
N10.0371 (13)0.0243 (12)0.0161 (10)0.0009 (10)0.0068 (9)0.0017 (9)
O10.0516 (14)0.0244 (10)0.0190 (9)0.0051 (10)0.0024 (9)0.0019 (8)
C10.0215 (11)0.0249 (13)0.0171 (11)0.0001 (10)0.0032 (9)0.0004 (9)
C20.0263 (12)0.0208 (12)0.0192 (11)0.0011 (10)0.0040 (9)0.0039 (9)
C30.0248 (13)0.0273 (14)0.0195 (12)0.0018 (10)0.0021 (10)0.0017 (10)
C40.0229 (12)0.0215 (13)0.0325 (14)0.0001 (10)0.0021 (10)0.0011 (11)
C50.0243 (12)0.0253 (13)0.0297 (14)0.0023 (11)0.0020 (10)0.0084 (11)
C60.0240 (12)0.0275 (14)0.0194 (12)0.0035 (11)0.0045 (10)0.0030 (10)
C70.0345 (15)0.0359 (16)0.0204 (12)0.0057 (13)0.0061 (11)0.0026 (11)
C80.0408 (16)0.0331 (15)0.0172 (12)0.0021 (13)0.0049 (11)0.0016 (11)
Geometric parameters (Å, º) top
I1—C42.067 (3)C1—C61.393 (4)
F1—C21.345 (3)C1—C21.404 (4)
F2—C31.349 (3)C2—C31.363 (4)
F3—C51.346 (3)C3—C41.380 (4)
F4—C61.350 (3)C4—C51.392 (4)
N1—C11.375 (4)C5—C61.373 (4)
N1—C71.470 (4)C7—C81.516 (4)
N1—H1N0.87 (4)C7—H7A0.97 (2)
O1—C81.419 (4)C7—H7B0.96 (2)
O1—H1O0.818 (10)C8—H8A0.97 (2)
O1—H2O0.818 (10)C8—H8B0.96 (2)
C1—N1—C7122.3 (2)F3—C5—C6118.0 (3)
C1—N1—H1N110 (3)F3—C5—C4119.6 (3)
C7—N1—H1N115 (3)C6—C5—C4122.3 (3)
C8—O1—H1O108 (6)F4—C6—C5117.9 (2)
C8—O1—H2O115 (6)F4—C6—C1120.0 (2)
H1O—O1—H2O99 (8)C5—C6—C1122.0 (2)
N1—C1—C6124.9 (2)N1—C7—C8114.5 (3)
N1—C1—C2120.3 (2)N1—C7—H7A107 (2)
C6—C1—C2114.8 (2)C8—C7—H7A110 (2)
F1—C2—C3119.1 (2)N1—C7—H7B110 (2)
F1—C2—C1118.0 (2)C8—C7—H7B110 (2)
C3—C2—C1122.9 (3)H7A—C7—H7B105 (3)
F2—C3—C2118.2 (3)O1—C8—C7111.7 (3)
F2—C3—C4119.8 (3)O1—C8—H8A110 (3)
C2—C3—C4122.0 (3)C7—C8—H8A110 (3)
C3—C4—C5115.9 (3)O1—C8—H8B104 (2)
C3—C4—I1122.3 (2)C7—C8—H8B116 (2)
C5—C4—I1121.8 (2)H8A—C8—H8B105 (4)
C7—N1—C1—C638.5 (4)C3—C4—C5—F3178.5 (2)
C7—N1—C1—C2144.3 (3)I1—C4—C5—F30.1 (4)
N1—C1—C2—F14.1 (4)C3—C4—C5—C60.0 (4)
C6—C1—C2—F1178.5 (2)I1—C4—C5—C6178.3 (2)
N1—C1—C2—C3176.3 (3)F3—C5—C6—F41.3 (4)
C6—C1—C2—C31.1 (4)C4—C5—C6—F4177.1 (2)
F1—C2—C3—F20.1 (4)F3—C5—C6—C1178.6 (2)
C1—C2—C3—F2179.5 (2)C4—C5—C6—C10.1 (4)
F1—C2—C3—C4178.3 (2)N1—C1—C6—F40.3 (4)
C1—C2—C3—C41.3 (4)C2—C1—C6—F4177.6 (2)
F2—C3—C4—C5178.8 (2)N1—C1—C6—C5176.9 (3)
C2—C3—C4—C50.7 (4)C2—C1—C6—C50.4 (4)
F2—C3—C4—I12.8 (4)C1—N1—C7—C8106.0 (3)
C2—C3—C4—I1179.0 (2)N1—C7—C8—O174.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.87 (2)2.23 (3)3.046 (3)157 (3)
O1—H1O···O1ii0.82 (5)1.90 (7)2.715 (4)175 (8)
O1—H2O···O1iii0.82 (5)1.99 (5)2.781 (4)162 (8)
Symmetry codes: (i) x, y, z1/2; (ii) x, y, z+1/2; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC8H6F4INO
Mr335.04
Crystal system, space groupMonoclinic, C2/c
Temperature (K)158
a, b, c (Å)13.327 (2), 17.663 (3), 8.3044 (14)
β (°) 96.94 (2)
V3)1940.5 (6)
Z8
Radiation typeMo Kα
µ (mm1)3.33
Crystal size (mm)0.24 × 0.16 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.691, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8054, 2924, 2422
Rint0.026
(sin θ/λ)max1)0.731
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.092, 1.04
No. of reflections2924
No. of parameters162
No. of restraints8
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)1.65, 0.47

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.87 (2)2.23 (3)3.046 (3)157 (3)
O1—H1O···O1ii0.82 (5)1.90 (7)2.715 (4)175 (8)
O1—H2O···O1iii0.82 (5)1.99 (5)2.781 (4)162 (8)
Symmetry codes: (i) x, y, z1/2; (ii) x, y, z+1/2; (iii) x, y, z+1.
 

References

First citationBruker (1999). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMetrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMetrangolo, P. & Resnati, G. (2001). Chem. Eur. J. 7, 2511–2519.  CrossRef PubMed CAS Google Scholar
First citationMetrangolo, P., Resnati, G., Pilati, T., Liantonio, R. & Meyer, F. (2007). J. Polym. Sci. Part. A, 45, 1–15.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds