Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title complex, [Cu(C9H6NO2S2)2(C3H4N2)2], the CuII atom, lying on an inversion centre, is coordinated by two O atoms and two N atoms in a geometry deviating slightly from square planar. Inter­molecular hydrogen bonds link the complex mol­ecules into a layer structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807051586/cf2156sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807051586/cf2156Isup2.hkl
Contains datablock I

CCDC reference: 667223

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • R factor = 0.031
  • wR factor = 0.089
  • Data-to-parameter ratio = 12.6

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Comment top

The recognition of strong antitumor activity of the trans-bis(acetato)bis(imidazole)copper(II) complex caused a growing interest in the synthesis and characterization of new compounds of this type (Tamura et al., 1987; Raptopoulu et al., 1998). We report here the synthesis and crystal stucture of a new copper(II) complex [Cu(bttaa)2(Him)2] (where bttaa = 2-benzothiazolylthioacetate and Him = imidazole).

In the title complex, the CuII atom lying on an inversion centre, is coordinated by two imidazole nitrogen atoms and two carboxylate oxygen atoms. The Cu1···O2 separation of 2.767 Å indicates a weak interaction. Therefore, the title compound can be regarded as a pseudo-six-coordinate complex. This geometry around copper is typical of complexes of CuII with carboxylates and aromatic amines or imidazole (Battaglia et al., 1983; Houser et al., 2005; Ying et al., 2004; Noro et al., 2005). The length of Cu—O1 is in the normal range for a carboxylate group coordinated to copper in monodentate mode, and the Cu—N2 distance of 1.970 Å is similar to those observed for imidazole coordinated to copper(II) (Dobrzynska et al., 2002; Xu et al., 2005).

The supramolecular architecture is stabilized by an extensive 2-D network of intermolecular hydrogen bonds (N—H···O) involving imidazole N3 and bttaa O1 atoms.

Related literature top

For related literature, see: Tamura et al. (1987); Raptopoulu et al. (1998); Battaglia et al. (1983); Houser & Cheng (2005); Ying et al. (2004); Noro et al. (2005); Dobrzynska et al. (2002); Xu et al. (2005).

Experimental top

2-Benzothiazolylthioacetic acid (0.225 g, 1 mmol) and potassium hydroxide (0.06 g, 1 mmol) dissolved in water (10 ml) were added to a 1:1 methanol– water (10 ml) solution of CuCl2.2H2O (0.5 mmol). To this mixture was added a solution of imidazole (0.5 mmol) in methanol (4 ml). The blue solution was set aside for one week for the growth of blue block-shapped crystals.

Refinement top

H atoms on C and N atoms were positoned geometrically and refined using a riding model (C—H = 0.93 Å for C—Haromatic, C—H = 0.97 Å for C—Haliphatic and N—H = 0.86 Å) with Uiso(H) = 1.2Ueq(C,N)

Structure description top

The recognition of strong antitumor activity of the trans-bis(acetato)bis(imidazole)copper(II) complex caused a growing interest in the synthesis and characterization of new compounds of this type (Tamura et al., 1987; Raptopoulu et al., 1998). We report here the synthesis and crystal stucture of a new copper(II) complex [Cu(bttaa)2(Him)2] (where bttaa = 2-benzothiazolylthioacetate and Him = imidazole).

In the title complex, the CuII atom lying on an inversion centre, is coordinated by two imidazole nitrogen atoms and two carboxylate oxygen atoms. The Cu1···O2 separation of 2.767 Å indicates a weak interaction. Therefore, the title compound can be regarded as a pseudo-six-coordinate complex. This geometry around copper is typical of complexes of CuII with carboxylates and aromatic amines or imidazole (Battaglia et al., 1983; Houser et al., 2005; Ying et al., 2004; Noro et al., 2005). The length of Cu—O1 is in the normal range for a carboxylate group coordinated to copper in monodentate mode, and the Cu—N2 distance of 1.970 Å is similar to those observed for imidazole coordinated to copper(II) (Dobrzynska et al., 2002; Xu et al., 2005).

The supramolecular architecture is stabilized by an extensive 2-D network of intermolecular hydrogen bonds (N—H···O) involving imidazole N3 and bttaa O1 atoms.

For related literature, see: Tamura et al. (1987); Raptopoulu et al. (1998); Battaglia et al. (1983); Houser & Cheng (2005); Ying et al. (2004); Noro et al. (2005); Dobrzynska et al. (2002); Xu et al. (2005).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL (Bruker, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom-numbering scheme and 30% displacement ellipsoids (arbitrary spheres for the H atoms). Atoms with the suffix A are generated by the symmetry operation (-x + 1, -y + 2, -z).
[Figure 2] Fig. 2. The 2-D network structure of compound (I) (methylene H atoms are omitted for clarity). Hydrogen bonds are shown as dashed lines.
Bis[(1,3-benzothiazol-2-ylsulfanyl)acetato-κO]bis(imidazole-κN3)copper(II) top
Crystal data top
[Cu(C9H6NO2S2)2(C3H4N2)2]F(000) = 662
Mr = 648.24Dx = 1.684 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.086 (3) ÅCell parameters from 2567 reflections
b = 12.050 (3) Åθ = 2.6–27.6°
c = 10.521 (3) ŵ = 1.23 mm1
β = 91.281 (3)°T = 298 K
V = 1278.4 (6) Å3Block, blue
Z = 20.31 × 0.23 × 0.15 mm
Data collection top
Bruker SMART CCD
diffractometer
2250 independent reflections
Radiation source: fine-focus sealed tube1768 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 911
Tmin = 0.702, Tmax = 0.837k = 1214
6476 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0469P)2 + 0.8447P]
where P = (Fo2 + 2Fc2)/3
2250 reflections(Δ/σ)max < 0.001
178 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Cu(C9H6NO2S2)2(C3H4N2)2]V = 1278.4 (6) Å3
Mr = 648.24Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.086 (3) ŵ = 1.23 mm1
b = 12.050 (3) ÅT = 298 K
c = 10.521 (3) Å0.31 × 0.23 × 0.15 mm
β = 91.281 (3)°
Data collection top
Bruker SMART CCD
diffractometer
2250 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1768 reflections with I > 2σ(I)
Tmin = 0.702, Tmax = 0.837Rint = 0.026
6476 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.00Δρmax = 0.43 e Å3
2250 reflectionsΔρmin = 0.26 e Å3
178 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50001.00000.00000.02612 (16)
N10.1790 (2)1.1037 (2)0.4327 (2)0.0350 (6)
N20.5031 (2)0.9149 (2)0.1598 (2)0.0306 (6)
N30.5472 (3)0.7866 (2)0.3026 (3)0.0429 (7)
H30.57790.72680.33700.052*
O10.35753 (19)1.09765 (16)0.06651 (17)0.0297 (5)
O20.2287 (2)0.97582 (18)0.0341 (2)0.0438 (6)
S10.09591 (8)0.95164 (7)0.27425 (7)0.0356 (2)
S20.12226 (8)1.19910 (6)0.21074 (7)0.0355 (2)
C10.2436 (3)1.0601 (2)0.0281 (3)0.0291 (6)
C20.1223 (3)1.1293 (3)0.0589 (3)0.0340 (7)
H2A0.04531.08110.05410.041*
H2B0.11101.18500.00710.041*
C30.1361 (3)1.0878 (2)0.3167 (3)0.0312 (7)
C40.1860 (3)1.0024 (3)0.4970 (3)0.0325 (7)
C50.1485 (3)0.9090 (3)0.4248 (3)0.0310 (7)
C60.1636 (3)0.8019 (3)0.4724 (3)0.0380 (8)
H60.14100.74040.42320.046*
C70.2133 (3)0.7898 (3)0.5949 (3)0.0445 (8)
H70.22600.71900.62820.053*
C80.2446 (3)0.8817 (3)0.6688 (3)0.0468 (9)
H80.27500.87140.75200.056*
C90.2317 (3)0.9881 (3)0.6217 (3)0.0415 (8)
H90.25321.04910.67230.050*
C100.5633 (3)0.8185 (3)0.1828 (3)0.0369 (7)
H100.61040.77870.12300.044*
C110.4737 (3)0.8653 (3)0.3607 (3)0.0485 (9)
H110.44700.86490.44470.058*
C120.4469 (3)0.9442 (3)0.2732 (3)0.0423 (8)
H120.39811.00840.28710.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0296 (3)0.0238 (3)0.0250 (3)0.0048 (2)0.0015 (2)0.0009 (2)
N10.0394 (15)0.0286 (14)0.0373 (14)0.0021 (11)0.0031 (12)0.0042 (12)
N20.0298 (13)0.0320 (14)0.0301 (13)0.0031 (11)0.0013 (10)0.0070 (11)
N30.0392 (16)0.0440 (17)0.0456 (16)0.0033 (13)0.0004 (13)0.0229 (13)
O10.0316 (11)0.0277 (11)0.0298 (10)0.0058 (9)0.0004 (8)0.0015 (9)
O20.0503 (14)0.0364 (13)0.0447 (13)0.0035 (10)0.0046 (11)0.0134 (10)
S10.0399 (5)0.0299 (4)0.0368 (4)0.0038 (3)0.0006 (3)0.0031 (3)
S20.0383 (4)0.0258 (4)0.0425 (5)0.0060 (3)0.0045 (3)0.0019 (3)
C10.0355 (17)0.0263 (16)0.0255 (14)0.0018 (13)0.0007 (13)0.0054 (13)
C20.0333 (17)0.0340 (18)0.0347 (16)0.0013 (13)0.0022 (13)0.0009 (14)
C30.0278 (15)0.0257 (16)0.0404 (17)0.0051 (12)0.0096 (13)0.0008 (13)
C40.0288 (16)0.0344 (17)0.0346 (16)0.0014 (13)0.0070 (13)0.0023 (14)
C50.0253 (15)0.0356 (17)0.0324 (16)0.0024 (12)0.0059 (12)0.0019 (13)
C60.0373 (18)0.0326 (18)0.0445 (19)0.0076 (14)0.0066 (15)0.0010 (15)
C70.044 (2)0.040 (2)0.049 (2)0.0029 (15)0.0113 (16)0.0151 (16)
C80.049 (2)0.059 (2)0.0330 (17)0.0030 (17)0.0013 (15)0.0056 (17)
C90.044 (2)0.045 (2)0.0355 (18)0.0025 (15)0.0017 (14)0.0065 (15)
C100.0378 (18)0.0353 (18)0.0375 (17)0.0039 (14)0.0007 (14)0.0069 (14)
C110.0365 (18)0.071 (3)0.0383 (18)0.0105 (17)0.0098 (15)0.0213 (18)
C120.0363 (18)0.051 (2)0.0395 (18)0.0130 (15)0.0093 (14)0.0111 (16)
Geometric parameters (Å, º) top
Cu1—N2i1.970 (2)C1—C21.521 (4)
Cu1—N21.970 (2)C2—H2A0.970
Cu1—O1i1.9961 (19)C2—H2B0.970
Cu1—O11.9961 (19)C4—C91.391 (4)
N1—C31.300 (4)C4—C51.404 (4)
N1—C41.397 (4)C5—C61.392 (4)
N2—C101.330 (4)C6—C71.380 (4)
N2—C121.378 (4)C6—H60.930
N3—C101.332 (4)C7—C81.385 (5)
N3—C111.358 (4)C7—H70.930
N3—H30.860C8—C91.380 (5)
O1—C11.291 (3)C8—H80.930
O2—C11.216 (3)C9—H90.930
S1—C51.737 (3)C10—H100.930
S1—C31.746 (3)C11—C121.346 (4)
S2—C31.748 (3)C11—H110.930
S2—C21.806 (3)C12—H120.930
N2i—Cu1—N2180.0C9—C4—N1125.2 (3)
N2i—Cu1—O1i90.30 (9)C9—C4—C5119.4 (3)
N2—Cu1—O1i89.70 (9)N1—C4—C5115.3 (3)
N2i—Cu1—O189.70 (9)C6—C5—C4121.5 (3)
N2—Cu1—O190.30 (9)C6—C5—S1129.1 (2)
O1i—Cu1—O1180.0C4—C5—S1109.3 (2)
C3—N1—C4109.8 (2)C7—C6—C5117.9 (3)
C10—N2—C12105.2 (2)C7—C6—H6121.0
C10—N2—Cu1127.4 (2)C5—C6—H6121.0
C12—N2—Cu1127.4 (2)C6—C7—C8120.9 (3)
C10—N3—C11107.7 (3)C6—C7—H7119.6
C10—N3—H3126.2C8—C7—H7119.6
C11—N3—H3126.2C9—C8—C7121.5 (3)
C1—O1—Cu1109.05 (17)C9—C8—H8119.2
C5—S1—C388.84 (14)C7—C8—H8119.2
C3—S2—C2101.87 (14)C8—C9—C4118.7 (3)
O2—C1—O1124.0 (3)C8—C9—H9120.7
O2—C1—C2118.8 (3)C4—C9—H9120.7
O1—C1—C2117.1 (3)N2—C10—N3111.0 (3)
C1—C2—S2117.4 (2)N2—C10—H10124.5
C1—C2—H2A108.0N3—C10—H10124.5
S2—C2—H2A108.0C12—C11—N3106.8 (3)
C1—C2—H2B108.0C12—C11—H11126.6
S2—C2—H2B108.0N3—C11—H11126.6
H2A—C2—H2B107.2C11—C12—N2109.3 (3)
N1—C3—S1116.7 (2)C11—C12—H12125.3
N1—C3—S2120.4 (2)N2—C12—H12125.3
S1—C3—S2122.89 (18)
N2i—Cu1—N2—C1035 (100)C3—N1—C4—C50.8 (4)
O1i—Cu1—N2—C1011.8 (3)C9—C4—C5—C64.0 (4)
O1—Cu1—N2—C10168.2 (3)N1—C4—C5—C6173.3 (3)
N2i—Cu1—N2—C12148 (100)C9—C4—C5—S1179.9 (2)
O1i—Cu1—N2—C12165.9 (3)N1—C4—C5—S12.8 (3)
O1—Cu1—N2—C1214.1 (3)C3—S1—C5—C6172.7 (3)
N2i—Cu1—O1—C185.13 (18)C3—S1—C5—C42.9 (2)
N2—Cu1—O1—C194.87 (18)C4—C5—C6—C71.9 (4)
O1i—Cu1—O1—C155 (100)S1—C5—C6—C7177.0 (2)
Cu1—O1—C1—O22.9 (3)C5—C6—C7—C81.3 (5)
Cu1—O1—C1—C2174.60 (19)C6—C7—C8—C92.3 (5)
O2—C1—C2—S2145.5 (2)C7—C8—C9—C40.1 (5)
O1—C1—C2—S236.9 (3)N1—C4—C9—C8174.0 (3)
C3—S2—C2—C160.2 (3)C5—C4—C9—C83.0 (5)
C4—N1—C3—S11.6 (3)C12—N2—C10—N30.3 (4)
C4—N1—C3—S2177.7 (2)Cu1—N2—C10—N3178.4 (2)
C5—S1—C3—N12.8 (2)C11—N3—C10—N20.1 (4)
C5—S1—C3—S2176.57 (19)C10—N3—C11—C120.1 (4)
C2—S2—C3—N1159.1 (2)N3—C11—C12—N20.3 (4)
C2—S2—C3—S120.2 (2)C10—N2—C12—C110.3 (4)
C3—N1—C4—C9177.9 (3)Cu1—N2—C12—C11178.4 (2)
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1ii0.861.962.819174
Symmetry code: (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C9H6NO2S2)2(C3H4N2)2]
Mr648.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.086 (3), 12.050 (3), 10.521 (3)
β (°) 91.281 (3)
V3)1278.4 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.23
Crystal size (mm)0.31 × 0.23 × 0.15
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.702, 0.837
No. of measured, independent and
observed [I > 2σ(I)] reflections
6476, 2250, 1768
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.089, 1.00
No. of reflections2250
No. of parameters178
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.26

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Bruker, 1997).

Selected geometric parameters (Å, º) top
Cu1—N21.970 (2)Cu1—O11.9961 (19)
N2i—Cu1—N2180.0N2—Cu1—O1i89.70 (9)
N2i—Cu1—O1i90.30 (9)O1i—Cu1—O1180.0
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1ii0.861.962.819174
Symmetry code: (ii) x+1, y1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds