Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, [V2(C17H17N2O2)2O2]·2C3H7NO, each V atom is chelated by a Schiff base ligand via two N and two O atoms. The two octa­hedrally coordinated V atoms are linked by two bridging oxide ligands to give a centrosymmetric dimer.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807049987/cf2153sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807049987/cf2153Isup2.hkl
Contains datablock I

CCDC reference: 667162

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.044
  • wR factor = 0.133
  • Data-to-parameter ratio = 12.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.98 PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 3.06 PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) V1 - O1 .. 5.08 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) V1 - N2 .. 6.00 su PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C19 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C20
Alert level G FORMU01_ALERT_1_G There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C40 H46 N6 O8 V2 Atom count from _chemical_formula_moiety:C40 H48 N6 O8 V2 PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for V1 (4) 4.40
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Schiff base ligands have been studied for a long time due to their easy synthesis and versatile complexing properties. They play an important role in the development of coordination chemistry as well as inorganic biochemistry, catalysis, optical materials etc. (Garnovskii et al., 1993; Huang et al., 2002). The richness and importance of vanadate chemistry (Gresser & Tracey, 1986; Posner et al., 1994) have aroused our particular interest in designing new vanadium complexes with ONNO-donor ligands. In this paper, we report the structure of the title compound, (I).

As shown in Fig. 1, each V atom is chelated by a Schiff base ligand via two N and two O atoms. The two octahedrally coordinated V atoms are linked by two bridging oxide ligands to give a centrosymmetric dimer. The V—N and V—O bond lengths are in the ranges 2.028 (2)–2.078 (2) and 1.8187 (18)–1.9364 (19) %A, respectively.

Related literature top

For related literature, see: Garnovskii et al. (1993); Gresser & Tracey (1986); Huang et al. (2002); Posner et al. (1994).

Experimental top

A mixture of vanadium(IV) sulfate (1 mmol) and N,N'-bis(2-hydroxybenzyl)-1,3-propanediamine (1 mmol) in 20 ml me thanol was refluxed for two hours. The above solution was filtered and the filtrate was allowed to evaporate naturally at room temperature. Two days later, blue blocks of (I) were obtained with a yield of 16%. Anal. calc. for C40H46V2N6O8: C 56.56, H 5.42, N 6.60%; found: C 56.52, H 5.44, N 6.51%.

Refinement top

All H atoms were placed in calculated positions with C—H = 0.93–0.96Å and refined as riding with Uiso(H) = 1.2 or 1.5 times Ueq(C).

Structure description top

Schiff base ligands have been studied for a long time due to their easy synthesis and versatile complexing properties. They play an important role in the development of coordination chemistry as well as inorganic biochemistry, catalysis, optical materials etc. (Garnovskii et al., 1993; Huang et al., 2002). The richness and importance of vanadate chemistry (Gresser & Tracey, 1986; Posner et al., 1994) have aroused our particular interest in designing new vanadium complexes with ONNO-donor ligands. In this paper, we report the structure of the title compound, (I).

As shown in Fig. 1, each V atom is chelated by a Schiff base ligand via two N and two O atoms. The two octahedrally coordinated V atoms are linked by two bridging oxide ligands to give a centrosymmetric dimer. The V—N and V—O bond lengths are in the ranges 2.028 (2)–2.078 (2) and 1.8187 (18)–1.9364 (19) %A, respectively.

For related literature, see: Garnovskii et al. (1993); Gresser & Tracey (1986); Huang et al. (2002); Posner et al. (1994).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), drawn with 30% probability displacement ellipsoids for the non-hydrogen atoms. [Symmetry code for unlabelled atoms: -x + 1, -y + 1, -z.]
Di-µ-oxido-bis({2,2'-[propane-1,3- diylbis(nitrilomethylidyne)]diphenolato}vanadium(IV)) dimethylformamide disolvate top
Crystal data top
[V2(C17H17N2O2)2O2]·2C3H7NOF(000) = 876
Mr = 840.71Dx = 1.467 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3265 reflections
a = 10.9161 (5) Åθ = 3.1–25.0°
b = 9.9986 (5) ŵ = 0.55 mm1
c = 17.7812 (10) ÅT = 293 K
β = 101.291 (2)°Block, blue
V = 1903.18 (17) Å30.43 × 0.28 × 0.22 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3265 independent reflections
Radiation source: fine-focus sealed tube2841 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1212
Tmin = 0.797, Tmax = 0.888k = 1111
10745 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters not refined
S = 1.00 w = 1/[σ2(Fo2) + (0.089P)2 + 1.6075P]
where P = (Fo2 + 2Fc2)/3
3265 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.95 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[V2(C17H17N2O2)2O2]·2C3H7NOV = 1903.18 (17) Å3
Mr = 840.71Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.9161 (5) ŵ = 0.55 mm1
b = 9.9986 (5) ÅT = 293 K
c = 17.7812 (10) Å0.43 × 0.28 × 0.22 mm
β = 101.291 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3265 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2841 reflections with I > 2σ(I)
Tmin = 0.797, Tmax = 0.888Rint = 0.032
10745 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.134H-atom parameters not refined
S = 1.00Δρmax = 0.95 e Å3
3265 reflectionsΔρmin = 0.31 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.50502 (3)0.37734 (4)0.03285 (2)0.0161 (4)
O10.54652 (17)0.43578 (18)0.13786 (10)0.0216 (4)
O20.63819 (17)0.24749 (18)0.05886 (11)0.0231 (4)
N20.4575 (2)0.2833 (2)0.06976 (13)0.0201 (5)
C170.7134 (2)0.2146 (2)0.01051 (16)0.0214 (6)
N10.3655 (2)0.2627 (2)0.06550 (13)0.0211 (5)
C110.5372 (3)0.2249 (2)0.10443 (15)0.0214 (6)
H11A0.50800.19320.15390.026*
C160.8407 (3)0.1822 (3)0.04046 (16)0.0242 (6)
H16A0.87140.18740.09300.029*
C100.3227 (3)0.2801 (3)0.10458 (16)0.0245 (6)
H10A0.31210.25550.15820.029*
H10B0.28710.36840.10170.029*
C50.2591 (3)0.4421 (3)0.22177 (16)0.0276 (6)
H5A0.18240.39900.21690.033*
C70.3077 (2)0.2952 (3)0.12027 (16)0.0233 (6)
H7A0.23860.24440.12580.028*
C10.4629 (2)0.4667 (3)0.18088 (14)0.0201 (6)
C80.3227 (3)0.1436 (3)0.01943 (17)0.0268 (6)
H8A0.26770.09220.04510.032*
H8B0.39440.08810.01610.032*
C150.9199 (3)0.1426 (3)0.00830 (18)0.0276 (6)
H15A1.00290.12290.01240.033*
C90.2529 (3)0.1782 (3)0.06243 (17)0.0311 (7)
H9A0.17150.21440.05960.037*
H9B0.23970.09650.09240.037*
C20.4954 (3)0.5621 (3)0.24014 (16)0.0256 (6)
H2A0.57490.59970.24930.031*
C60.3432 (3)0.4046 (3)0.17318 (16)0.0224 (6)
C40.2908 (3)0.5423 (3)0.27629 (16)0.0285 (6)
H4A0.23450.57010.30620.034*
C120.6699 (3)0.2055 (3)0.07122 (16)0.0226 (6)
C140.8766 (3)0.1315 (3)0.08890 (19)0.0320 (7)
H14A0.93010.10440.12070.038*
C130.7522 (3)0.1622 (3)0.11906 (17)0.0266 (6)
H13A0.72240.15420.17160.032*
C30.4097 (3)0.6008 (3)0.28523 (17)0.0285 (7)
H3A0.43210.66700.32210.034*
N30.9330 (2)0.5321 (3)0.16965 (14)0.0329 (6)
O40.9442 (2)0.6587 (3)0.27878 (13)0.0459 (6)
C180.9720 (3)0.6352 (3)0.2145 (2)0.0376 (8)
H18A1.02460.69600.19700.045*
C190.8517 (3)0.4318 (3)0.1944 (2)0.0375 (7)
H19A0.83650.45530.24410.056*
H19B0.89130.34580.19690.056*
H19C0.77370.42860.15840.056*
C200.9680 (3)0.5130 (4)0.09462 (19)0.0442 (8)
H20A1.02120.58500.08520.066*
H20B0.89410.51180.05520.066*
H20C1.01170.42960.09440.066*
O30.39013 (16)0.50834 (18)0.00318 (10)0.0204 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0171 (9)0.0190 (9)0.0131 (9)0.0006 (7)0.0049 (7)0.0003 (7)
O10.0235 (10)0.0223 (10)0.0197 (10)0.0004 (7)0.0059 (8)0.0003 (8)
O20.0258 (10)0.0210 (9)0.0236 (10)0.0038 (7)0.0076 (8)0.0012 (8)
N20.0218 (11)0.0163 (11)0.0228 (12)0.0016 (8)0.0059 (9)0.0018 (9)
C170.0253 (14)0.0131 (12)0.0271 (15)0.0006 (10)0.0087 (11)0.0021 (10)
N10.0228 (11)0.0200 (11)0.0208 (12)0.0006 (9)0.0052 (9)0.0010 (9)
C110.0314 (15)0.0155 (12)0.0183 (14)0.0023 (10)0.0074 (11)0.0001 (10)
C160.0273 (15)0.0199 (14)0.0264 (15)0.0009 (11)0.0074 (12)0.0025 (11)
C100.0254 (14)0.0231 (14)0.0245 (15)0.0036 (11)0.0034 (11)0.0032 (11)
C50.0294 (15)0.0291 (15)0.0267 (15)0.0021 (12)0.0114 (12)0.0026 (12)
C70.0209 (13)0.0214 (14)0.0286 (15)0.0013 (10)0.0069 (11)0.0046 (11)
C10.0235 (13)0.0206 (13)0.0165 (13)0.0042 (10)0.0048 (10)0.0038 (10)
C80.0273 (15)0.0190 (13)0.0362 (17)0.0053 (11)0.0119 (13)0.0014 (12)
C150.0209 (14)0.0243 (14)0.0385 (18)0.0026 (11)0.0077 (12)0.0030 (13)
C90.0320 (16)0.0331 (16)0.0292 (17)0.0111 (13)0.0085 (13)0.0065 (13)
C20.0312 (15)0.0225 (14)0.0235 (15)0.0021 (11)0.0068 (12)0.0002 (12)
C60.0242 (14)0.0210 (13)0.0224 (15)0.0034 (11)0.0059 (11)0.0028 (11)
C40.0340 (16)0.0300 (15)0.0245 (16)0.0068 (12)0.0128 (12)0.0022 (12)
C120.0288 (15)0.0150 (13)0.0257 (15)0.0005 (10)0.0092 (12)0.0015 (11)
C140.0297 (16)0.0296 (16)0.0423 (19)0.0030 (12)0.0205 (14)0.0019 (13)
C130.0324 (16)0.0236 (14)0.0254 (15)0.0011 (12)0.0097 (12)0.0006 (12)
C30.0391 (17)0.0245 (14)0.0225 (16)0.0021 (12)0.0078 (13)0.0017 (11)
N30.0333 (14)0.0319 (14)0.0324 (15)0.0003 (11)0.0037 (11)0.0008 (11)
O40.0515 (15)0.0464 (14)0.0384 (14)0.0017 (11)0.0051 (11)0.0102 (11)
C180.0338 (17)0.0344 (18)0.043 (2)0.0042 (13)0.0033 (15)0.0017 (14)
C190.0357 (17)0.0321 (17)0.044 (2)0.0005 (13)0.0068 (14)0.0001 (14)
C200.048 (2)0.043 (2)0.042 (2)0.0009 (16)0.0111 (16)0.0048 (16)
O30.0210 (10)0.0190 (9)0.0217 (10)0.0001 (7)0.0053 (7)0.0007 (8)
Geometric parameters (Å, º) top
V1—O31.8187 (18)C8—C91.544 (4)
V1—O3i1.8204 (17)C8—H8A0.970
V1—O11.9240 (18)C8—H8B0.970
V1—O21.9364 (19)C15—C141.423 (5)
V1—N22.028 (2)C15—H15A0.930
V1—N12.078 (2)C9—H9A0.970
V1—V1i2.7098 (7)C9—H9B0.970
O1—C11.337 (3)C2—C31.401 (4)
O2—C171.340 (3)C2—H2A0.930
N2—C111.299 (3)C4—C31.403 (4)
N2—C101.481 (3)C4—H4A0.930
C17—C161.425 (4)C12—C131.420 (4)
C17—C121.441 (4)C14—C131.393 (4)
N1—C71.301 (3)C14—H14A0.930
N1—C81.468 (3)C13—H13A0.930
C11—C121.467 (4)C3—H3A0.930
C11—H11A0.930N3—C181.322 (4)
C16—C151.396 (4)N3—C191.463 (4)
C16—H16A0.930N3—C201.470 (4)
C10—C91.550 (4)O4—C181.261 (4)
C10—H10A0.970C18—H18A0.930
C10—H10B0.970C19—H19A0.960
C5—C41.391 (4)C19—H19B0.960
C5—C61.428 (4)C19—H19C0.960
C5—H5A0.930C20—H20A0.960
C7—C61.446 (4)C20—H20B0.960
C7—H7A0.930C20—H20C0.960
C1—C21.414 (4)O3—V1i1.8204 (17)
C1—C61.430 (4)
O3—V1—O3i83.74 (8)N1—C8—H8A109.0
O3—V1—O194.64 (8)C9—C8—H8A109.0
O3i—V1—O196.08 (8)N1—C8—H8B109.0
O3—V1—O2174.25 (8)C9—C8—H8B109.0
O3i—V1—O290.61 (8)H8A—C8—H8B107.8
O1—V1—O287.06 (8)C16—C15—C14121.6 (3)
O3—V1—N291.86 (8)C16—C15—H15A119.2
O3i—V1—N292.43 (8)C14—C15—H15A119.2
O1—V1—N2169.80 (8)C8—C9—C10113.9 (2)
O2—V1—N287.24 (8)C8—C9—H9A108.8
O3—V1—N188.68 (8)C10—C9—H9A108.8
O3i—V1—N1172.10 (8)C8—C9—H9B108.8
O1—V1—N186.71 (8)C10—C9—H9B108.8
O2—V1—N196.92 (8)H9A—C9—H9B107.7
N2—V1—N185.58 (9)C3—C2—C1120.9 (3)
O3—V1—V1i41.90 (5)C3—C2—H2A119.5
O3i—V1—V1i41.85 (6)C1—C2—H2A119.5
O1—V1—V1i97.21 (6)C5—C6—C1120.8 (3)
O2—V1—V1i132.45 (6)C5—C6—C7118.1 (2)
N2—V1—V1i92.88 (6)C1—C6—C7121.0 (2)
N1—V1—V1i130.54 (7)C5—C4—C3118.6 (3)
C1—O1—V1124.62 (16)C5—C4—H4A120.7
C17—O2—V1122.43 (17)C3—C4—H4A120.7
C11—N2—C10119.7 (2)C13—C12—C17120.1 (3)
C11—N2—V1123.91 (19)C13—C12—C11119.3 (3)
C10—N2—V1116.40 (16)C17—C12—C11120.1 (2)
O2—C17—C16119.4 (2)C13—C14—C15118.5 (3)
O2—C17—C12122.7 (2)C13—C14—H14A120.8
C16—C17—C12117.8 (2)C15—C14—H14A120.8
C7—N1—C8118.2 (2)C14—C13—C12121.3 (3)
C7—N1—V1124.11 (19)C14—C13—H13A119.3
C8—N1—V1117.49 (16)C12—C13—H13A119.3
N2—C11—C12124.7 (2)C2—C3—C4121.8 (3)
N2—C11—H11A117.7C2—C3—H3A119.1
C12—C11—H11A117.7C4—C3—H3A119.1
C15—C16—C17120.6 (3)C18—N3—C19119.7 (3)
C15—C16—H16A119.7C18—N3—C20122.6 (3)
C17—C16—H16A119.7C19—N3—C20117.7 (3)
N2—C10—C9110.7 (2)O4—C18—N3125.9 (3)
N2—C10—H10A109.5O4—C18—H18A117.0
C9—C10—H10A109.5N3—C18—H18A117.0
N2—C10—H10B109.5N3—C19—H19A109.5
C9—C10—H10B109.5N3—C19—H19B109.5
H10A—C10—H10B108.1H19A—C19—H19B109.5
C4—C5—C6120.6 (3)N3—C19—H19C109.5
C4—C5—H5A119.7H19A—C19—H19C109.5
C6—C5—H5A119.7H19B—C19—H19C109.5
N1—C7—C6124.7 (2)N3—C20—H20A109.5
N1—C7—H7A117.7N3—C20—H20B109.5
C6—C7—H7A117.7H20A—C20—H20B109.5
O1—C1—C2118.8 (2)N3—C20—H20C109.5
O1—C1—C6123.9 (2)H20A—C20—H20C109.5
C2—C1—C6117.1 (2)H20B—C20—H20C109.5
N1—C8—C9112.9 (2)V1—O3—V1i96.26 (8)
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[V2(C17H17N2O2)2O2]·2C3H7NO
Mr840.71
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.9161 (5), 9.9986 (5), 17.7812 (10)
β (°) 101.291 (2)
V3)1903.18 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.55
Crystal size (mm)0.43 × 0.28 × 0.22
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.797, 0.888
No. of measured, independent and
observed [I > 2σ(I)] reflections
10745, 3265, 2841
Rint0.032
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.134, 1.00
No. of reflections3265
No. of parameters253
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.95, 0.31

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2001).

 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds