Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title mononuclear complex, [Ni(NCS)2(C3H4N2)4], the six-coordinate NiII atom assumes an octa­hedral geometry and is located on an inversion centre. The crystal packing is stabilized by N—H...S, N—H...N and C—H...S hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807046211/cf2144sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807046211/cf2144Isup2.hkl
Contains datablock I

CCDC reference: 663650

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.035
  • wR factor = 0.093
  • Data-to-parameter ratio = 17.6

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT230_ALERT_2_C Hirshfeld Test Diff for S1 - C1 .. 6.58 su PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N4 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C1
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Ni1 (2) 2.06
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Metal complexes containing thiocyanate with pyrazole and its derivatives as ligands play a pivotal role in the area of modern coordination chemistry (Zarbaa et al., 2004; Shi et al., 2006). The interest in this area prompted us to synthesize the title complex, and here we report its crystal structure (Fig. 1).

The NiII atom lies on an inversion centre and assumes a slightly distorted octahedral geometry (Table 1). Table 2 and Fig. 2 give information on N—H···S, N—H···N and C—H···S hydrogen bonds, which form a supramolecular three-dimensional structure.

Related literature top

For related crystal structures, see: Zarbaa et al. (2004); Shi et al. (2006).

Experimental top

Pyrazole (0.1053 g, 1.55 mmol), NaNCS (0.0711 g, 0.877 mmol) and Ni(ClO4)2.6H2O (0.1568 g, 0.429 mmol) were dissolved in 3 × 5 ml H2O, and the three solutions were mixed together and stirred for a few minutes. Blue single crystals were obtained after the mixed solution had been allowed to stand at room temperature for two weeks.

Refinement top

H atoms of N—H were located in a difference Fourier map and refined as riding in their as-found positions, with Uiso(H) = 1.2Ueq(N). Other H atoms were placed in calculated positions, and refined as riding, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

Metal complexes containing thiocyanate with pyrazole and its derivatives as ligands play a pivotal role in the area of modern coordination chemistry (Zarbaa et al., 2004; Shi et al., 2006). The interest in this area prompted us to synthesize the title complex, and here we report its crystal structure (Fig. 1).

The NiII atom lies on an inversion centre and assumes a slightly distorted octahedral geometry (Table 1). Table 2 and Fig. 2 give information on N—H···S, N—H···N and C—H···S hydrogen bonds, which form a supramolecular three-dimensional structure.

For related crystal structures, see: Zarbaa et al. (2004); Shi et al. (2006).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL (Bruker, 2001); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom numbering scheme with displacement ellipsoids drawn at the 30% probability level. [Symmetry code: (i) -x + 1/2, -y + 3/2, -z].
[Figure 2] Fig. 2. The hydrogen bonding (dashed lines).
Tetrakis(1H-pyrazole-κN2)bis(thiocyanato-κN)nickel(II) top
Crystal data top
[Ni(NCS)2(C3H4N2)4]F(000) = 920
Mr = 447.20Dx = 1.477 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2696 reflections
a = 14.046 (3) Åθ = 2.5–26.7°
b = 10.863 (2) ŵ = 1.19 mm1
c = 14.862 (3) ÅT = 298 K
β = 117.485 (2)°Bar, blue
V = 2011.6 (7) Å30.48 × 0.26 × 0.21 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
2188 independent reflections
Radiation source: fine-focus sealed tube1867 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 27.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1717
Tmin = 0.598, Tmax = 0.788k = 139
5718 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0523P)2 + 0.6564P]
where P = (Fo2 + 2Fc2)/3
2188 reflections(Δ/σ)max < 0.001
124 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Ni(NCS)2(C3H4N2)4]V = 2011.6 (7) Å3
Mr = 447.20Z = 4
Monoclinic, C2/cMo Kα radiation
a = 14.046 (3) ŵ = 1.19 mm1
b = 10.863 (2) ÅT = 298 K
c = 14.862 (3) Å0.48 × 0.26 × 0.21 mm
β = 117.485 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2188 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1867 reflections with I > 2σ(I)
Tmin = 0.598, Tmax = 0.788Rint = 0.021
5718 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.06Δρmax = 0.37 e Å3
2188 reflectionsΔρmin = 0.34 e Å3
124 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.25000.75000.00000.04033 (14)
S10.45000 (6)0.38423 (6)0.09641 (6)0.0763 (2)
N10.26313 (13)0.71955 (15)0.14564 (13)0.0470 (4)
N30.36411 (14)0.61469 (16)0.02753 (14)0.0539 (4)
N20.20074 (15)0.78111 (17)0.17699 (14)0.0529 (4)
H10.15370.82810.13560.064*
C10.40149 (15)0.51988 (19)0.05644 (14)0.0442 (4)
N40.37288 (14)0.88231 (16)0.05969 (14)0.0519 (4)
C20.32207 (17)0.6455 (2)0.22228 (16)0.0559 (5)
H20.37340.59110.22260.067*
N50.47618 (16)0.8519 (2)0.10443 (19)0.0836 (7)
H80.49160.77810.10160.100*
C50.3738 (2)1.0024 (2)0.0677 (2)0.0794 (8)
H50.31271.05140.04370.095*
C30.2974 (2)0.6598 (2)0.30146 (18)0.0671 (6)
H30.32810.61890.36340.081*
C40.2183 (2)0.7468 (2)0.2695 (2)0.0658 (7)
H40.18350.77640.30530.079*
C70.5409 (2)0.9486 (3)0.1390 (3)0.1087 (12)
H70.61550.94760.17220.130*
C60.4781 (3)1.0467 (3)0.1170 (3)0.1089 (12)
H60.49961.12840.13150.131*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0391 (2)0.0375 (2)0.0467 (2)0.00696 (12)0.02175 (16)0.00747 (13)
S10.0814 (5)0.0640 (4)0.0994 (5)0.0357 (3)0.0553 (4)0.0367 (3)
N10.0448 (9)0.0493 (9)0.0499 (9)0.0059 (7)0.0245 (8)0.0063 (7)
N30.0521 (10)0.0495 (10)0.0652 (11)0.0147 (8)0.0313 (9)0.0107 (8)
N20.0497 (10)0.0582 (10)0.0568 (10)0.0081 (8)0.0295 (9)0.0064 (8)
C10.0416 (10)0.0532 (12)0.0426 (10)0.0075 (8)0.0235 (8)0.0053 (8)
N40.0457 (9)0.0501 (10)0.0572 (10)0.0012 (7)0.0213 (8)0.0070 (8)
C20.0537 (12)0.0603 (13)0.0536 (12)0.0111 (9)0.0246 (10)0.0127 (9)
N50.0479 (11)0.0571 (12)0.120 (2)0.0010 (9)0.0165 (12)0.0125 (12)
C50.0638 (15)0.0527 (14)0.117 (2)0.0021 (11)0.0375 (16)0.0044 (14)
C30.0697 (15)0.0800 (16)0.0511 (12)0.0017 (12)0.0273 (11)0.0135 (11)
C40.0672 (15)0.0827 (18)0.0581 (14)0.0035 (11)0.0379 (13)0.0009 (11)
C70.0530 (15)0.0742 (19)0.160 (3)0.0144 (14)0.0157 (18)0.001 (2)
C60.081 (2)0.0628 (18)0.161 (3)0.0235 (16)0.037 (2)0.015 (2)
Geometric parameters (Å, º) top
Ni1—N3i2.0716 (16)N4—N51.329 (3)
Ni1—N32.0716 (16)C2—C31.381 (3)
Ni1—N4i2.1020 (17)C2—H20.930
Ni1—N42.1020 (17)N5—C71.327 (3)
Ni1—N1i2.1120 (17)N5—H80.8361
Ni1—N12.1120 (17)C5—C61.387 (4)
S1—C11.617 (2)C5—H50.930
N1—C21.326 (2)C3—C41.366 (4)
N1—N21.345 (2)C3—H30.930
N3—C11.146 (2)C4—H40.930
N2—C41.333 (3)C7—C61.324 (4)
N2—H10.8364C7—H70.930
N4—C51.309 (3)C6—H60.930
N3i—Ni1—N3180.0C5—N4—Ni1133.71 (17)
N3i—Ni1—N4i89.54 (8)N5—N4—Ni1122.36 (14)
N3—Ni1—N4i90.46 (8)N1—C2—C3111.2 (2)
N3i—Ni1—N490.46 (8)N1—C2—H2124.4
N3—Ni1—N489.54 (8)C3—C2—H2124.4
N4i—Ni1—N4180.00 (7)C7—N5—N4113.0 (2)
N3i—Ni1—N1i89.59 (7)C7—N5—H8129.1
N3—Ni1—N1i90.41 (7)N4—N5—H8117.5
N4i—Ni1—N1i90.47 (7)N4—C5—C6110.9 (3)
N4—Ni1—N1i89.53 (7)N4—C5—H5124.6
N3i—Ni1—N190.41 (7)C6—C5—H5124.6
N3—Ni1—N189.59 (7)C4—C3—C2105.4 (2)
N4i—Ni1—N189.53 (7)C4—C3—H3127.3
N4—Ni1—N190.47 (7)C2—C3—H3127.3
N1i—Ni1—N1180.00 (9)N2—C4—C3106.6 (2)
C2—N1—N2104.61 (17)N2—C4—H4126.7
C2—N1—Ni1134.41 (15)C3—C4—H4126.7
N2—N1—Ni1120.96 (13)C6—C7—N5106.4 (3)
C1—N3—Ni1152.96 (16)C6—C7—H7126.8
C4—N2—N1112.21 (18)N5—C7—H7126.8
C4—N2—H1129.5C7—C6—C5105.8 (3)
N1—N2—H1117.9C7—C6—H6127.1
N3—C1—S1177.92 (19)C5—C6—H6127.1
C5—N4—N5103.89 (19)
N3i—Ni1—N1—C2178.9 (2)N1—Ni1—N4—C595.1 (3)
N3—Ni1—N1—C21.1 (2)N3i—Ni1—N4—N5172.6 (2)
N4i—Ni1—N1—C291.5 (2)N3—Ni1—N4—N57.4 (2)
N4—Ni1—N1—C288.5 (2)N1i—Ni1—N4—N597.82 (19)
N3i—Ni1—N1—N22.81 (16)N1—Ni1—N4—N582.18 (19)
N3—Ni1—N1—N2177.19 (16)N2—N1—C2—C30.1 (3)
N4i—Ni1—N1—N286.73 (16)Ni1—N1—C2—C3178.42 (16)
N4—Ni1—N1—N293.27 (16)C5—N4—N5—C70.5 (4)
N4i—Ni1—N3—C145.5 (4)Ni1—N4—N5—C7178.5 (2)
N4—Ni1—N3—C1134.5 (4)N5—N4—C5—C60.5 (4)
N1i—Ni1—N3—C1136.0 (4)Ni1—N4—C5—C6178.1 (2)
N1—Ni1—N3—C144.0 (4)N1—C2—C3—C40.5 (3)
C2—N1—N2—C40.7 (3)N1—N2—C4—C31.0 (3)
Ni1—N1—N2—C4178.07 (15)C2—C3—C4—N20.9 (3)
N3i—Ni1—N4—C54.7 (3)N4—N5—C7—C60.4 (4)
N3—Ni1—N4—C5175.3 (3)N5—C7—C6—C50.1 (5)
N1i—Ni1—N4—C584.9 (3)N4—C5—C6—C70.2 (5)
Symmetry code: (i) x+1/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···N3i0.842.402.966 (3)125
N2—H1···S1ii0.842.713.346 (2)134
C6—H6···S1iii0.932.853.686 (3)150
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x1/2, y+1/2, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(NCS)2(C3H4N2)4]
Mr447.20
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)14.046 (3), 10.863 (2), 14.862 (3)
β (°) 117.485 (2)
V3)2011.6 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.19
Crystal size (mm)0.48 × 0.26 × 0.21
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.598, 0.788
No. of measured, independent and
observed [I > 2σ(I)] reflections
5718, 2188, 1867
Rint0.021
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.093, 1.06
No. of reflections2188
No. of parameters124
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.34

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Bruker, 2001).

Selected geometric parameters (Å, º) top
Ni1—N32.0716 (16)Ni1—N12.1120 (17)
Ni1—N42.1020 (17)
N3—Ni1—N489.54 (8)N4—Ni1—N190.47 (7)
N3—Ni1—N189.59 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···N3i0.842.402.966 (3)125
N2—H1···S1ii0.842.713.346 (2)134
C6—H6···S1iii0.932.853.686 (3)150
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x1/2, y+1/2, z; (iii) x, y+1, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds