Download citation
Download citation
link to html
In the title compound, C24H19N4S+·Br·H2O, the thia­zole and indolizine ring systems, together with the connecting NNC chain, form a nearly planar unit (r.m.s. deviation = 0.0786 Å). The component ions and water mol­ecules are linked by N—H...O, N—H...Br and O—H...Br hydrogen bonds and weaker C—H...O, C—H...N and C—H...π inter­actions, forming chains along the a axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807034149/cf2118sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807034149/cf2118Isup2.hkl
Contains datablock I

CCDC reference: 657783

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.009 Å
  • R factor = 0.066
  • wR factor = 0.155
  • Data-to-parameter ratio = 13.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.97 PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT322_ALERT_2_C Check Hybridisation of S1 in Main Residue . ? PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 9
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

It is well known that both 1,3-thiazole and indolizine rings have a wide range of bioactivities. Some compounds with these rings have been used as sphingosine kinase inhibitors (Smith et al., 2007), antitumor agents (Eriksson et al., 2007), antituberculins (Gundersen et al., 2007) and CNS agents (Sabb & Vogel, 2007). Hydrazones have also shown extensive bioactivities. The title compound was prepared to investigate additive properties of the groups.

The molecular structure of (I) is shown in Fig.1. The 1,3-thiazole ring has normal geometric parameters (Seethalakshmi et al., 2006); the C1—S1[1.715 (5) Å] and C3—S1 [1.723 (6) Å] bond lengths are intermediate between typical C—S single- and double-bond distances, indicating significant electron delocalization. The C1—S1—C3 [89.3 (3)°] bond angle in (I) is almost the same as the corresponding value 89.81 (8)° in a related structure (Seethalakshmi et al., 2006). The values of the C1—N2—N3—C10 [-178.4 (5)°] and N2—N3—C10—C11 [179.3 (5)°] torsion angles indicate that the C1—N2—N3—C10—C11 chain is nearly planar. The thiazole ring makes a dihedral angle of 9.5 (1)° with the N4/C11—C18 ring. Thus, a fully extended conjugated system is formed.

The molecular packing (Fig. 2) shows the occurrence of short intermolecular C—H···π interactions between C21—H21 and the pyridine ring (C14—C18/N4; centroid Cg), with a C21···Cg distance of 3.614 (6)Å (Table 1). Thus the two molecules form a centrosymmetric dimeric arrangement. As seen in Fig. 3, the water molecule acts as donor for intermolecular O—H···Br hydrogen bonds, and also acts as acceptor for an intermolecular N—H···O hydrogen bond. The Br- anion acts as acceptor for an intermolecular N—H···Br hydrogen bond. Therefore, a chain is formed along the a axis via a combination of intermolecular N—H···O, N—H···Br and O—H···Br interactions.

Related literature top

For related literature, see: Eriksson et al. (2007); Gundersen et al. (2007); Sabb & Vogel (2007); Seethalakshmi et al. (2006); Smith et al. (2007).

Experimental top

A solution of 3-formyl-2-phenylindozinethiosemicarbazone (0.12 g, 0.40 mmol) and ω-bromoacetophenone (0.085 g, 0.40 mmol) in anhydrous ethanol (10 ml) was stirred at room temperature, until all the thiosemicarbazone had disappeared (monitored by thin-layer chromatography). The resulting mixture was allowed to settle, and the title compound was collected by filtration and dried in vacuo. Dark green single crystals of (I) suitable for X-ray crystallographic analysis were obtained by recrystallization from 95% ethanol.

Refinement top

All of the hydrogen atoms were placed in calculated positions, with C—H = 0.93, N—H = 0.86 and O—H = 0.85 Å, and with Uiso(H) = 1.5Ueq(parent).

Structure description top

It is well known that both 1,3-thiazole and indolizine rings have a wide range of bioactivities. Some compounds with these rings have been used as sphingosine kinase inhibitors (Smith et al., 2007), antitumor agents (Eriksson et al., 2007), antituberculins (Gundersen et al., 2007) and CNS agents (Sabb & Vogel, 2007). Hydrazones have also shown extensive bioactivities. The title compound was prepared to investigate additive properties of the groups.

The molecular structure of (I) is shown in Fig.1. The 1,3-thiazole ring has normal geometric parameters (Seethalakshmi et al., 2006); the C1—S1[1.715 (5) Å] and C3—S1 [1.723 (6) Å] bond lengths are intermediate between typical C—S single- and double-bond distances, indicating significant electron delocalization. The C1—S1—C3 [89.3 (3)°] bond angle in (I) is almost the same as the corresponding value 89.81 (8)° in a related structure (Seethalakshmi et al., 2006). The values of the C1—N2—N3—C10 [-178.4 (5)°] and N2—N3—C10—C11 [179.3 (5)°] torsion angles indicate that the C1—N2—N3—C10—C11 chain is nearly planar. The thiazole ring makes a dihedral angle of 9.5 (1)° with the N4/C11—C18 ring. Thus, a fully extended conjugated system is formed.

The molecular packing (Fig. 2) shows the occurrence of short intermolecular C—H···π interactions between C21—H21 and the pyridine ring (C14—C18/N4; centroid Cg), with a C21···Cg distance of 3.614 (6)Å (Table 1). Thus the two molecules form a centrosymmetric dimeric arrangement. As seen in Fig. 3, the water molecule acts as donor for intermolecular O—H···Br hydrogen bonds, and also acts as acceptor for an intermolecular N—H···O hydrogen bond. The Br- anion acts as acceptor for an intermolecular N—H···Br hydrogen bond. Therefore, a chain is formed along the a axis via a combination of intermolecular N—H···O, N—H···Br and O—H···Br interactions.

For related literature, see: Eriksson et al. (2007); Gundersen et al. (2007); Sabb & Vogel (2007); Seethalakshmi et al. (2006); Smith et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of (I), showing the atom-labelling scheme.Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of (I), viewed along the a axis. Showing the formation of a cyclic C—H···π (dashed lines) interaction.
[Figure 3] Fig. 3. A view down a axis of the unit-cell packing in (I), showing the linear molecular clusters. Hydrogen bonds are indicated by dashed lines.
2-Phenylindolizine-3-carbaldehyde (4-phenylthiazol-2-yl)hydrazone hydrobromide monohydrate top
Crystal data top
C24H19N4S+·Br·H2OF(000) = 1008
Mr = 493.42Dx = 1.459 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.1679 (12) ÅCell parameters from 2831 reflections
b = 11.1657 (18) Åθ = 2.2–22.5°
c = 32.640 (4) ŵ = 1.95 mm1
β = 91.708 (2)°T = 298 K
V = 2246.9 (6) Å3Prism, dark green
Z = 40.42 × 0.36 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3904 independent reflections
Radiation source: fine-focus sealed tube2795 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
φ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 77
Tmin = 0.495, Tmax = 0.697k = 1313
10856 measured reflectionsl = 2838
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.048P)2 + 4.8524P]
where P = (Fo2 + 2Fc2)/3
3904 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
C24H19N4S+·Br·H2OV = 2246.9 (6) Å3
Mr = 493.42Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.1679 (12) ŵ = 1.95 mm1
b = 11.1657 (18) ÅT = 298 K
c = 32.640 (4) Å0.42 × 0.36 × 0.20 mm
β = 91.708 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3904 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2795 reflections with I > 2σ(I)
Tmin = 0.495, Tmax = 0.697Rint = 0.058
10856 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.10Δρmax = 0.52 e Å3
3904 reflectionsΔρmin = 0.61 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.75959 (10)0.38600 (5)0.11839 (2)0.0566 (2)
N10.3347 (7)0.1191 (4)0.18113 (13)0.0385 (10)
H10.29160.18790.17230.046*
N20.6267 (7)0.0997 (4)0.13683 (13)0.0412 (11)
H20.60650.16810.12520.049*
N30.7942 (7)0.0233 (4)0.12601 (14)0.0402 (11)
N41.1713 (7)0.1100 (4)0.09626 (13)0.0404 (10)
O10.2693 (7)0.3484 (4)0.15315 (16)0.0754 (14)
H1A0.37900.36400.13890.091*
H1B0.15480.36390.13900.091*
S10.5445 (3)0.07581 (13)0.18834 (6)0.0568 (5)
C10.5020 (8)0.0612 (4)0.16573 (16)0.0349 (12)
C20.2345 (8)0.0580 (5)0.21305 (16)0.0381 (12)
C30.3310 (10)0.0484 (6)0.2199 (2)0.0588 (17)
H30.28670.10210.23970.071*
C40.0481 (9)0.1089 (5)0.23317 (16)0.0410 (13)
C50.0156 (10)0.0657 (6)0.27091 (18)0.0538 (15)
H50.06860.00780.28430.065*
C60.1995 (11)0.1064 (6)0.2888 (2)0.0657 (19)
H60.24190.07420.31360.079*
C70.3215 (10)0.1950 (6)0.27000 (19)0.0557 (16)
H70.44670.22270.28210.067*
C80.2584 (9)0.2428 (5)0.23340 (18)0.0493 (14)
H80.33930.30390.22110.059*
C90.0750 (8)0.2002 (5)0.21481 (17)0.0408 (13)
H90.03350.23260.19000.049*
C100.9165 (8)0.0641 (5)0.09851 (16)0.0379 (12)
H100.88470.13940.08780.046*
C111.0987 (8)0.0020 (4)0.08310 (16)0.0368 (12)
C121.2477 (8)0.0448 (5)0.05520 (15)0.0367 (12)
C131.4131 (9)0.0377 (5)0.05280 (17)0.0447 (14)
H131.53580.02980.03710.054*
C141.3657 (9)0.1348 (5)0.07770 (16)0.0443 (14)
C151.4690 (10)0.2445 (6)0.08584 (19)0.0545 (16)
H151.60060.26180.07400.065*
C161.3770 (12)0.3254 (6)0.1111 (2)0.0679 (19)
H161.44520.39820.11660.081*
C171.1786 (12)0.2986 (6)0.1288 (2)0.0659 (19)
H171.11530.35470.14580.079*
C181.0774 (10)0.1927 (5)0.12170 (19)0.0543 (16)
H180.94630.17590.13380.065*
C191.2270 (9)0.1601 (5)0.03296 (15)0.0376 (12)
C201.0416 (10)0.1895 (5)0.00987 (17)0.0474 (14)
H200.92690.13550.00820.057*
C211.0248 (10)0.2966 (6)0.01045 (19)0.0555 (16)
H210.90030.31460.02600.067*
C221.1929 (12)0.3774 (6)0.0077 (2)0.0663 (18)
H221.18110.45090.02100.080*
C231.3781 (11)0.3494 (6)0.0146 (2)0.071 (2)
H231.49250.40370.01610.085*
C241.3951 (10)0.2421 (6)0.0346 (2)0.0576 (16)
H241.52170.22400.04950.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0546 (4)0.0407 (3)0.0742 (5)0.0031 (3)0.0020 (3)0.0023 (3)
N10.036 (2)0.030 (2)0.050 (3)0.004 (2)0.002 (2)0.002 (2)
N20.043 (3)0.034 (2)0.046 (3)0.013 (2)0.001 (2)0.003 (2)
N30.035 (3)0.033 (2)0.053 (3)0.0100 (19)0.002 (2)0.004 (2)
N40.035 (2)0.039 (2)0.047 (3)0.008 (2)0.001 (2)0.002 (2)
O10.052 (3)0.059 (3)0.116 (4)0.006 (2)0.007 (3)0.034 (3)
S10.0525 (9)0.0320 (8)0.0862 (12)0.0110 (6)0.0066 (8)0.0112 (7)
C10.027 (3)0.032 (3)0.045 (3)0.004 (2)0.007 (2)0.001 (2)
C20.035 (3)0.037 (3)0.042 (3)0.007 (2)0.004 (2)0.003 (2)
C30.053 (4)0.050 (4)0.074 (4)0.005 (3)0.010 (3)0.022 (3)
C40.040 (3)0.041 (3)0.042 (3)0.009 (3)0.002 (2)0.000 (3)
C50.060 (4)0.052 (4)0.050 (4)0.000 (3)0.001 (3)0.014 (3)
C60.072 (5)0.074 (5)0.052 (4)0.009 (4)0.022 (4)0.001 (4)
C70.046 (4)0.067 (4)0.054 (4)0.006 (3)0.011 (3)0.013 (3)
C80.043 (3)0.050 (3)0.055 (4)0.004 (3)0.003 (3)0.011 (3)
C90.039 (3)0.043 (3)0.041 (3)0.003 (2)0.003 (2)0.003 (2)
C100.037 (3)0.032 (3)0.045 (3)0.003 (2)0.000 (3)0.004 (2)
C110.032 (3)0.034 (3)0.044 (3)0.008 (2)0.004 (2)0.002 (2)
C120.038 (3)0.039 (3)0.033 (3)0.001 (2)0.004 (2)0.003 (2)
C130.029 (3)0.057 (4)0.048 (3)0.008 (3)0.001 (2)0.005 (3)
C140.041 (3)0.048 (3)0.043 (3)0.014 (3)0.003 (3)0.008 (3)
C150.046 (4)0.059 (4)0.058 (4)0.026 (3)0.001 (3)0.010 (3)
C160.071 (5)0.049 (4)0.083 (5)0.033 (3)0.002 (4)0.009 (4)
C170.076 (5)0.043 (4)0.080 (5)0.008 (3)0.013 (4)0.016 (3)
C180.049 (4)0.047 (4)0.068 (4)0.006 (3)0.013 (3)0.006 (3)
C190.041 (3)0.035 (3)0.036 (3)0.000 (2)0.001 (2)0.008 (2)
C200.048 (4)0.036 (3)0.058 (4)0.000 (3)0.002 (3)0.005 (3)
C210.046 (4)0.055 (4)0.065 (4)0.014 (3)0.007 (3)0.003 (3)
C220.079 (5)0.039 (3)0.082 (5)0.008 (3)0.003 (4)0.008 (3)
C230.057 (4)0.046 (4)0.109 (6)0.018 (3)0.011 (4)0.010 (4)
C240.050 (4)0.056 (4)0.066 (4)0.008 (3)0.008 (3)0.011 (3)
Geometric parameters (Å, º) top
N1—C11.329 (6)C9—H90.930
N1—C21.404 (6)C10—C111.424 (7)
N1—H10.860C10—H100.930
N2—C11.308 (6)C11—C121.397 (7)
N2—N31.394 (6)C12—C131.379 (7)
N2—H20.860C12—C191.481 (7)
N3—C101.274 (6)C13—C141.391 (8)
N4—C181.381 (7)C13—H130.930
N4—C141.388 (7)C14—C151.403 (8)
N4—C111.392 (6)C15—C161.358 (9)
O1—H1A0.850C15—H150.930
O1—H1B0.850C16—C171.401 (9)
S1—C11.715 (5)C16—H160.930
S1—C31.723 (6)C17—C181.354 (8)
C2—C31.344 (8)C17—H170.930
C2—C41.456 (7)C18—H180.930
C3—H30.930C19—C241.384 (8)
C4—C51.391 (8)C19—C201.390 (8)
C4—C91.396 (7)C20—C211.369 (8)
C5—C61.369 (9)C20—H200.930
C5—H50.930C21—C221.375 (9)
C6—C71.377 (9)C21—H210.930
C6—H60.930C22—C231.372 (10)
C7—C81.375 (8)C22—H220.930
C7—H70.930C23—C241.367 (9)
C8—C91.384 (7)C23—H230.930
C8—H80.930C24—H240.930
C1—N1—C2114.1 (4)N4—C11—C12107.3 (4)
C1—N1—H1123.0N4—C11—C10125.3 (5)
C2—N1—H1123.0C12—C11—C10127.2 (5)
C1—N2—N3115.9 (4)C13—C12—C11108.1 (5)
C1—N2—H2122.0C13—C12—C19127.3 (5)
N3—N2—H2122.0C11—C12—C19124.6 (5)
C10—N3—N2114.8 (4)C12—C13—C14108.6 (5)
C18—N4—C14120.8 (5)C12—C13—H13125.7
C18—N4—C11130.5 (4)C14—C13—H13125.7
C14—N4—C11108.6 (4)N4—C14—C13107.4 (5)
H1A—O1—H1B108.8N4—C14—C15119.0 (5)
C1—S1—C389.3 (3)C13—C14—C15133.6 (5)
N2—C1—N1126.3 (5)C16—C15—C14120.0 (5)
N2—C1—S1121.2 (4)C16—C15—H15120.0
N1—C1—S1112.4 (4)C14—C15—H15120.0
C3—C2—N1110.5 (5)C15—C16—C17119.6 (6)
C3—C2—C4128.5 (5)C15—C16—H16120.2
N1—C2—C4121.1 (5)C17—C16—H16120.2
C2—C3—S1113.6 (4)C18—C17—C16121.3 (6)
C2—C3—H3123.2C18—C17—H17119.3
S1—C3—H3123.2C16—C17—H17119.3
C5—C4—C9118.0 (5)C17—C18—N4119.2 (5)
C5—C4—C2120.8 (5)C17—C18—H18120.4
C9—C4—C2121.2 (5)N4—C18—H18120.4
C6—C5—C4121.5 (6)C24—C19—C20117.9 (5)
C6—C5—H5119.2C24—C19—C12120.2 (5)
C4—C5—H5119.2C20—C19—C12122.0 (5)
C5—C6—C7119.8 (6)C21—C20—C19121.2 (6)
C5—C6—H6120.1C21—C20—H20119.4
C7—C6—H6120.1C19—C20—H20119.4
C8—C7—C6120.1 (6)C20—C21—C22119.7 (6)
C8—C7—H7120.0C20—C21—H21120.2
C6—C7—H7120.0C22—C21—H21120.2
C7—C8—C9120.3 (6)C23—C22—C21119.9 (6)
C7—C8—H8119.9C23—C22—H22120.0
C9—C8—H8119.9C21—C22—H22120.0
C8—C9—C4120.2 (5)C24—C23—C22120.3 (6)
C8—C9—H9119.9C24—C23—H23119.9
C4—C9—H9119.9C22—C23—H23119.9
N3—C10—C11124.4 (5)C23—C24—C19121.0 (6)
N3—C10—H10117.8C23—C24—H24119.5
C11—C10—H10117.8C19—C24—H24119.5
C1—N2—N3—C10178.4 (5)N4—C11—C12—C132.5 (6)
N3—N2—C1—N1179.3 (5)C10—C11—C12—C13172.3 (5)
N3—N2—C1—S10.3 (6)N4—C11—C12—C19178.1 (5)
C2—N1—C1—N2177.8 (5)C10—C11—C12—C197.2 (8)
C2—N1—C1—S11.9 (5)C11—C12—C13—C142.4 (6)
C3—S1—C1—N2178.4 (5)C19—C12—C13—C14178.2 (5)
C3—S1—C1—N11.3 (4)C18—N4—C14—C13177.3 (5)
C1—N1—C2—C31.5 (7)C11—N4—C14—C130.3 (6)
C1—N1—C2—C4179.7 (5)C18—N4—C14—C151.4 (8)
N1—C2—C3—S10.5 (7)C11—N4—C14—C15179.0 (5)
C4—C2—C3—S1178.5 (4)C12—C13—C14—N41.3 (6)
C1—S1—C3—C20.4 (5)C12—C13—C14—C15177.2 (6)
C3—C2—C4—C519.0 (9)N4—C14—C15—C161.0 (9)
N1—C2—C4—C5163.1 (5)C13—C14—C15—C16177.4 (7)
C3—C2—C4—C9159.4 (6)C14—C15—C16—C170.1 (10)
N1—C2—C4—C918.4 (8)C15—C16—C17—C180.8 (11)
C9—C4—C5—C63.4 (9)C16—C17—C18—N40.4 (11)
C2—C4—C5—C6175.1 (6)C14—N4—C18—C170.7 (9)
C4—C5—C6—C72.3 (10)C11—N4—C18—C17177.7 (6)
C5—C6—C7—C80.2 (10)C13—C12—C19—C2452.9 (8)
C6—C7—C8—C91.5 (9)C11—C12—C19—C24126.5 (6)
C7—C8—C9—C40.3 (8)C13—C12—C19—C20126.8 (6)
C5—C4—C9—C82.1 (8)C11—C12—C19—C2053.8 (7)
C2—C4—C9—C8176.4 (5)C24—C19—C20—C210.4 (8)
N2—N3—C10—C11179.3 (5)C12—C19—C20—C21179.9 (5)
C18—N4—C11—C12175.6 (5)C19—C20—C21—C220.7 (9)
C14—N4—C11—C121.7 (6)C20—C21—C22—C231.3 (10)
C18—N4—C11—C109.5 (9)C21—C22—C23—C240.9 (11)
C14—N4—C11—C10173.2 (5)C22—C23—C24—C190.3 (11)
N3—C10—C11—N41.3 (8)C20—C19—C24—C230.9 (9)
N3—C10—C11—C12175.1 (5)C12—C19—C24—C23179.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.902.744 (6)166
O1—H1A···Br10.852.473.288 (5)161
O1—H1B···Br1i0.852.523.337 (5)161
N2—H2···Br10.862.623.359 (5)144
C9—H9···O10.932.603.399 (7)145
C18—H18···N30.932.422.984 (7)119
C21—H21···Cgii0.932.933.614132
Symmetry codes: (i) x1, y, z; (ii) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC24H19N4S+·Br·H2O
Mr493.42
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)6.1679 (12), 11.1657 (18), 32.640 (4)
β (°) 91.708 (2)
V3)2246.9 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.95
Crystal size (mm)0.42 × 0.36 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.495, 0.697
No. of measured, independent and
observed [I > 2σ(I)] reflections
10856, 3904, 2795
Rint0.058
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.155, 1.10
No. of reflections3904
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.61

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2000), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.902.744 (6)166
O1—H1A···Br10.852.473.288 (5)161
O1—H1B···Br1i0.852.523.337 (5)161
N2—H2···Br10.862.623.359 (5)144
C9—H9···O10.932.603.399 (7)145
C18—H18···N30.932.422.984 (7)119
C21—H21···Cgii0.932.933.614132
Symmetry codes: (i) x1, y, z; (ii) x+2, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds