Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The centrosymmetric title complex, [Cu(C3H4N2)6]Cl2·4H2O, has a distorted octa­hedral coordination geometry. There is extensive hydrogen bonding involving the cations, anions and water mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807022684/cf2104sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807022684/cf2104Isup2.hkl
Contains datablock I

CCDC reference: 651147

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.050
  • wR factor = 0.150
  • Data-to-parameter ratio = 14.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT245_ALERT_2_C U(iso) H1B Smaller than U(eq) O1 by ... 0.01 AngSq PLAT245_ALERT_2_C U(iso) H1C Smaller than U(eq) O1 by ... 0.01 AngSq PLAT245_ALERT_2_C U(iso) H2C Smaller than U(eq) O2 by ... 0.03 AngSq PLAT245_ALERT_2_C U(iso) H2D Smaller than U(eq) O2 by ... 0.03 AngSq PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 7 PLAT417_ALERT_2_C Short Inter D-H..H-D H1C .. H1C .. 2.12 Ang. PLAT417_ALERT_2_C Short Inter D-H..H-D H1C .. H2C .. 2.11 Ang. PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 5 N1 -CU1 -N1 -C1 119.80 0.30 2.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 10 N1 -CU1 -N1 -C3 -55.20 0.30 2.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 11 N3 -CU1 -N3 -C4 6.00 0.00 2.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 16 N3 -CU1 -N3 -C6 13.00 0.00 2.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 23 N5 -CU1 -N5 -C7 131.00 8.00 2.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 28 N5 -CU1 -N5 -C9 -51.00 8.00 2.555 1.555 1.555 1.555
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (2) 1.96 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 48
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 15 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 6 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 6 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Organic compounds containing an imidazole group are widespread in nature. In recent years, many transition metal complexes with imidazole molecules or anions, or their analogues, were reported. They include complexes of copper(II) (Zhu et al., 2000, 1998; Zhu, Hang et al., 1999; Zhu, Tong et al., 1999; Zhu, Bu et al., 1999; Liu et al., 1999), silver(I) (Yang et al., 2000; Liu et al., 2005), zinc(II) (Zhu, Zheng et al., 1999), iron(II) (Yang et al., 2001a), manganese(II) (Yang et al., 2001b) and cobalt(II) (Zhu et al., 2003). We report here the crystal structure of the title copper(II) complex, (I).

The title complex is a mononuclear copper(II) complex, similar to the cobalt(II) complex reported by Zhu et al. (2003). The asymmetric unit consists of half the complex dication, a chloride anion and two water molecules; the cation is centrosymmetric. In the cation, the central copper(II) atom is coordinated by six nitrogen atoms from six imidazole ligands, forming a slightly distorted octahedral geometry around the metal. The average Mn—N bond length is 2.168 (3) Å. The dihedral angles between pairs of imidazole rings in the asymmetric unit are 89.3 (3), 85.0 (3) and 84.4 (3)°, the ligands being almost perpendicular to one another.

All the non-coordinated nitrogen atoms in imidazole ligands, the water molecules and chloride anions participate in the stabilization of the crystal structure by the formation of hydrogen bonds, which form a hydrophilic chain along the a axis, these chains being connected in a two-dimensional layer in the ab plane.

Related literature top

For related literature, see: Liu & Zhu (2005); Liu et al. (1999); Yang et al. (2000, 2001); Zhu et al. (1998, 1999a,b,c, 2000, 2003).

For related literature, see: Bu (1999).

Experimental top

In a similar procedure to that of Zhu et al. (2003) the title complex was prepared as follows. CuCl2.6H2O and six equivalents of imidazole were dissoved in water, with stirring for a few minutes to obtain a clear pale-pink solution. After allowing the resulting solution to stand in air for 3 days, dark blue crystals were formed. These crystals were isolated, washed with water three times and dried in a vacuum desiccator using CaCl2 (yield 56%).

Refinement top

C– and N-bound H atoms were included in the riding model approximation with C—H = 0.93–0.97 Å and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C,N). H atoms of water were located in a difference map and refined as riding in their as-found relative positions, with Uiso(H) = 1.5Ueq(O).

Structure description top

Organic compounds containing an imidazole group are widespread in nature. In recent years, many transition metal complexes with imidazole molecules or anions, or their analogues, were reported. They include complexes of copper(II) (Zhu et al., 2000, 1998; Zhu, Hang et al., 1999; Zhu, Tong et al., 1999; Zhu, Bu et al., 1999; Liu et al., 1999), silver(I) (Yang et al., 2000; Liu et al., 2005), zinc(II) (Zhu, Zheng et al., 1999), iron(II) (Yang et al., 2001a), manganese(II) (Yang et al., 2001b) and cobalt(II) (Zhu et al., 2003). We report here the crystal structure of the title copper(II) complex, (I).

The title complex is a mononuclear copper(II) complex, similar to the cobalt(II) complex reported by Zhu et al. (2003). The asymmetric unit consists of half the complex dication, a chloride anion and two water molecules; the cation is centrosymmetric. In the cation, the central copper(II) atom is coordinated by six nitrogen atoms from six imidazole ligands, forming a slightly distorted octahedral geometry around the metal. The average Mn—N bond length is 2.168 (3) Å. The dihedral angles between pairs of imidazole rings in the asymmetric unit are 89.3 (3), 85.0 (3) and 84.4 (3)°, the ligands being almost perpendicular to one another.

All the non-coordinated nitrogen atoms in imidazole ligands, the water molecules and chloride anions participate in the stabilization of the crystal structure by the formation of hydrogen bonds, which form a hydrophilic chain along the a axis, these chains being connected in a two-dimensional layer in the ab plane.

For related literature, see: Liu & Zhu (2005); Liu et al. (1999); Yang et al. (2000, 2001); Zhu et al. (1998, 1999a,b,c, 2000, 2003).

For related literature, see: Bu (1999).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. [Symmetry code for unlabelled atoms: -x, -y, -z.]
Hexakis(1H-imidazole-κN3)copper(II) dichloride tetrahydrate top
Crystal data top
[Cu(C3H4N2)6]Cl2·4H2OZ = 1
Mr = 615.00F(000) = 319
Triclinic, P1Dx = 1.423 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.783 (4) ÅCell parameters from 718 reflections
b = 9.064 (4) Åθ = 3.4–26.1°
c = 10.576 (5) ŵ = 0.99 mm1
α = 75.156 (5)°T = 298 K
β = 83.105 (6)°Prism, dark blue
γ = 61.848 (5)°0.42 × 0.35 × 0.21 mm
V = 717.6 (5) Å3
Data collection top
Bruker APEX area-detector
diffractometer
2498 independent reflections
Radiation source: fine-focus sealed tube2190 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 109
Tmin = 0.680, Tmax = 0.819k = 106
3756 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.150 w = 1/[σ2(Fo2) + (0.0908P)2 + 0.8952P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.005
2498 reflectionsΔρmax = 0.51 e Å3
170 parametersΔρmin = 0.87 e Å3
48 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.049 (6)
Crystal data top
[Cu(C3H4N2)6]Cl2·4H2Oγ = 61.848 (5)°
Mr = 615.00V = 717.6 (5) Å3
Triclinic, P1Z = 1
a = 8.783 (4) ÅMo Kα radiation
b = 9.064 (4) ŵ = 0.99 mm1
c = 10.576 (5) ÅT = 298 K
α = 75.156 (5)°0.42 × 0.35 × 0.21 mm
β = 83.105 (6)°
Data collection top
Bruker APEX area-detector
diffractometer
2498 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2190 reflections with I > 2σ(I)
Tmin = 0.680, Tmax = 0.819Rint = 0.021
3756 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05048 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.06Δρmax = 0.51 e Å3
2498 reflectionsΔρmin = 0.87 e Å3
170 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.00000.00000.0332 (2)
Cl10.69768 (12)0.79338 (11)0.50423 (8)0.0418 (3)
O10.0404 (4)0.8257 (5)0.5269 (4)0.0714 (10)
O20.6643 (5)0.4581 (5)0.5131 (5)0.0899 (13)
N10.1959 (3)0.1465 (4)0.1260 (3)0.0319 (6)
N20.3870 (4)0.2053 (5)0.2829 (3)0.0519 (9)
H2A0.44610.19020.35140.062*
N30.0032 (4)0.2346 (3)0.1173 (3)0.0332 (6)
N40.0732 (5)0.4703 (4)0.2703 (3)0.0504 (8)
H4A0.12350.55060.33770.061*
N50.2019 (4)0.0357 (4)0.1215 (3)0.0332 (6)
N60.3312 (5)0.0241 (5)0.2801 (3)0.0539 (9)
H6A0.34520.00260.34870.065*
C10.2612 (5)0.0824 (5)0.2301 (3)0.0410 (8)
H1A0.22450.03460.26330.049*
C20.4041 (6)0.3573 (6)0.2089 (5)0.0577 (11)
H2B0.48170.46580.22190.069*
C30.2864 (5)0.3210 (5)0.1122 (4)0.0448 (9)
H30.26930.40210.04630.054*
C40.0987 (5)0.3335 (5)0.2216 (4)0.0414 (8)
H4B0.17500.31030.25690.050*
C50.0465 (7)0.4602 (6)0.1943 (5)0.0612 (12)
H50.09070.53780.20520.073*
C60.0887 (6)0.3155 (5)0.0997 (4)0.0471 (9)
H6B0.16780.27640.03290.057*
C70.1798 (5)0.0280 (5)0.2244 (3)0.0421 (8)
H70.07300.09990.25470.051*
C80.4565 (6)0.1244 (7)0.2111 (5)0.0621 (12)
H80.57450.17820.22760.075*
C90.3774 (5)0.1326 (5)0.1113 (4)0.0483 (10)
H90.43320.19370.04710.058*
H2C0.75830.36680.50130.058*
H2D0.68720.54390.51680.058*
H1B0.05230.81610.50770.058*
H1C0.05800.89510.45350.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0342 (4)0.0354 (4)0.0281 (4)0.0153 (3)0.0008 (2)0.0049 (2)
Cl10.0435 (5)0.0408 (5)0.0364 (5)0.0184 (4)0.0006 (4)0.0030 (4)
O10.060 (2)0.078 (2)0.089 (3)0.0377 (18)0.0101 (18)0.032 (2)
O20.066 (2)0.060 (2)0.149 (4)0.0246 (18)0.017 (2)0.032 (2)
N10.0310 (14)0.0371 (15)0.0268 (14)0.0147 (12)0.0018 (11)0.0087 (11)
N20.0462 (19)0.070 (2)0.0433 (19)0.0285 (18)0.0206 (15)0.0249 (17)
N30.0340 (14)0.0312 (14)0.0311 (15)0.0142 (12)0.0022 (11)0.0044 (11)
N40.056 (2)0.0385 (17)0.0444 (19)0.0190 (16)0.0075 (15)0.0091 (14)
N50.0336 (14)0.0370 (15)0.0293 (14)0.0173 (12)0.0038 (11)0.0043 (12)
N60.063 (2)0.078 (3)0.0386 (18)0.042 (2)0.0065 (16)0.0184 (17)
C10.044 (2)0.049 (2)0.0308 (18)0.0229 (17)0.0067 (15)0.0102 (16)
C20.049 (2)0.051 (2)0.062 (3)0.011 (2)0.014 (2)0.025 (2)
C30.048 (2)0.0379 (19)0.041 (2)0.0154 (17)0.0072 (17)0.0102 (16)
C40.042 (2)0.0377 (19)0.0373 (19)0.0174 (16)0.0045 (15)0.0026 (15)
C50.081 (3)0.047 (2)0.063 (3)0.040 (2)0.008 (2)0.002 (2)
C60.057 (2)0.044 (2)0.044 (2)0.0297 (19)0.0087 (18)0.0009 (17)
C70.048 (2)0.049 (2)0.0325 (19)0.0238 (18)0.0025 (15)0.0122 (16)
C80.043 (2)0.092 (4)0.058 (3)0.032 (2)0.010 (2)0.020 (3)
C90.0352 (19)0.062 (3)0.046 (2)0.0175 (18)0.0042 (16)0.0167 (19)
Geometric parameters (Å, º) top
Cu1—N3i2.159 (3)N4—H4A0.860
Cu1—N32.159 (3)N5—C71.312 (5)
Cu1—N52.167 (3)N5—C91.375 (5)
Cu1—N5i2.167 (3)N6—C81.331 (6)
Cu1—N12.168 (3)N6—C71.338 (5)
Cu1—N1i2.168 (3)N6—H6A0.860
O1—H1B0.9101C1—H1A0.930
O1—H1C0.9139C2—C31.349 (6)
O2—H2C0.8751C2—H2B0.930
O2—H2D0.9011C3—H30.930
N1—C11.309 (5)C4—H4B0.930
N1—C31.371 (5)C5—C61.348 (6)
N2—C11.335 (5)C5—H50.930
N2—C21.347 (6)C6—H6B0.930
N2—H2A0.860C7—H70.930
N3—C41.315 (5)C8—C91.367 (6)
N3—C61.375 (5)C8—H80.930
N4—C41.327 (5)C9—H90.930
N4—C51.354 (6)
N3i—Cu1—N3180C9—N5—Cu1128.2 (2)
N3i—Cu1—N589.82 (11)C8—N6—C7108.4 (3)
N3—Cu1—N590.18 (11)C8—N6—H6A125.8
N3i—Cu1—N5i90.18 (11)C7—N6—H6A125.8
N3—Cu1—N5i89.82 (11)N1—C1—N2111.8 (4)
N5—Cu1—N5i180N1—C1—H1A124.1
N3i—Cu1—N190.37 (11)N2—C1—H1A124.1
N3—Cu1—N189.63 (11)N2—C2—C3106.4 (4)
N5—Cu1—N190.61 (11)N2—C2—H2B126.8
N5i—Cu1—N189.39 (11)C3—C2—H2B126.8
N3i—Cu1—N1i89.63 (11)C2—C3—N1109.6 (4)
N3—Cu1—N1i90.37 (11)C2—C3—H3125.2
N5—Cu1—N1i89.39 (11)N1—C3—H3125.2
N5i—Cu1—N1i90.61 (11)N3—C4—N4111.8 (3)
N1—Cu1—N1i180N3—C4—H4B124.1
H1B—O1—H1C104.9N4—C4—H4B124.1
H2C—O2—H2D111.6C6—C5—N4106.4 (4)
C1—N1—C3104.9 (3)C6—C5—H5126.8
C1—N1—Cu1125.6 (3)N4—C5—H5126.8
C3—N1—Cu1129.4 (2)C5—C6—N3109.4 (4)
C1—N2—C2107.3 (3)C5—C6—H6B125.3
C1—N2—H2A126.4N3—C6—H6B125.3
C2—N2—H2A126.4N5—C7—N6111.0 (3)
C4—N3—C6104.9 (3)N5—C7—H7124.5
C4—N3—Cu1126.5 (3)N6—C7—H7124.5
C6—N3—Cu1128.6 (2)N6—C8—C9106.4 (4)
C4—N4—C5107.4 (3)N6—C8—H8126.8
C4—N4—H4A126.3C9—C8—H8126.8
C5—N4—H4A126.3C8—C9—N5108.8 (4)
C7—N5—C9105.5 (3)C8—C9—H9125.6
C7—N5—Cu1126.3 (2)N5—C9—H9125.6
N3i—Cu1—N1—C11.5 (3)N3—Cu1—N5—C995.5 (3)
N3—Cu1—N1—C1178.5 (3)N5i—Cu1—N5—C951 (8)
N5—Cu1—N1—C188.3 (3)N1—Cu1—N5—C9174.9 (3)
N5i—Cu1—N1—C191.7 (3)N1i—Cu1—N5—C95.1 (3)
N1i—Cu1—N1—C1119.8 (3)C3—N1—C1—N20.1 (4)
N3i—Cu1—N1—C3173.6 (3)Cu1—N1—C1—N2176.1 (2)
N3—Cu1—N1—C36.4 (3)C2—N2—C1—N10.0 (5)
N5—Cu1—N1—C396.6 (3)C1—N2—C2—C30.0 (5)
N5i—Cu1—N1—C383.4 (3)N2—C2—C3—N10.0 (5)
N1i—Cu1—N1—C355.2 (3)C1—N1—C3—C20.1 (5)
N3i—Cu1—N3—C457 (100)Cu1—N1—C3—C2175.9 (3)
N5—Cu1—N3—C4177.5 (3)C6—N3—C4—N40.0 (4)
N5i—Cu1—N3—C42.5 (3)Cu1—N3—C4—N4178.8 (2)
N1—Cu1—N3—C491.9 (3)C5—N4—C4—N30.4 (5)
N1i—Cu1—N3—C488.1 (3)C4—N4—C5—C60.6 (5)
N3i—Cu1—N3—C6125 (100)N4—C5—C6—N30.5 (5)
N5—Cu1—N3—C64.0 (3)C4—N3—C6—C50.3 (5)
N5i—Cu1—N3—C6176.0 (3)Cu1—N3—C6—C5179.1 (3)
N1—Cu1—N3—C686.7 (3)C9—N5—C7—N60.4 (4)
N1i—Cu1—N3—C693.3 (3)Cu1—N5—C7—N6177.6 (2)
N3i—Cu1—N5—C793.0 (3)C8—N6—C7—N50.3 (5)
N3—Cu1—N5—C787.0 (3)C7—N6—C8—C90.1 (5)
N5i—Cu1—N5—C7131 (8)N6—C8—C9—N50.2 (5)
N1—Cu1—N5—C72.6 (3)C7—N5—C9—C80.3 (5)
N1i—Cu1—N5—C7177.4 (3)Cu1—N5—C9—C8177.6 (3)
N3i—Cu1—N5—C984.5 (3)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2D···Cl10.902.283.165 (4)169
O2—H2C···O1ii0.881.872.743 (5)179
O1—H1C···O1iii0.912.312.805 (7)113
O1—H1B···Cl1iv0.912.313.201 (4)168
N6—H6A···Cl1ii0.862.583.383 (4)156
N4—H4A···Cl1v0.862.363.214 (3)170
N2—H2A···Cl1vi0.862.503.320 (4)161
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x, y+2, z+1; (iv) x1, y, z; (v) x1, y, z1; (vi) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C3H4N2)6]Cl2·4H2O
Mr615.00
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.783 (4), 9.064 (4), 10.576 (5)
α, β, γ (°)75.156 (5), 83.105 (6), 61.848 (5)
V3)717.6 (5)
Z1
Radiation typeMo Kα
µ (mm1)0.99
Crystal size (mm)0.42 × 0.35 × 0.21
Data collection
DiffractometerBruker APEX area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.680, 0.819
No. of measured, independent and
observed [I > 2σ(I)] reflections
3756, 2498, 2190
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.150, 1.06
No. of reflections2498
No. of parameters170
No. of restraints48
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.87

Computer programs: SMART (Siemens, 1996), SMART, SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2D···Cl10.902.283.165 (4)169
O2—H2C···O1i0.881.872.743 (5)179
O1—H1C···O1ii0.912.312.805 (7)113
O1—H1B···Cl1iii0.912.313.201 (4)168
N6—H6A···Cl1i0.862.583.383 (4)156
N4—H4A···Cl1iv0.862.363.214 (3)170
N2—H2A···Cl1v0.862.503.320 (4)161
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+2, z+1; (iii) x1, y, z; (iv) x1, y, z1; (v) x, y+1, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds