Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The reaction between copper(II) chloride dihydrate and excess tris­(1-pyrazol­yl)methane results in the formation of the title complex, [Cu(C10H10N6)2]Cl2·2CH3OH. The centrosymmetric complex cation is mononuclear with octa­hedral coordination for Cu and two tridentate ligands. Two short and one long Cu—N distances [2.002 (3), 2.011 (2) and 2.413 (2) Å] are found, as expected for Jahn–Teller distortion.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807024671/cf2103sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807024671/cf2103Isup2.hkl
Contains datablock I

CCDC reference: 654810

Key indicators

  • Single-crystal X-ray study
  • T = 150 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.040
  • wR factor = 0.085
  • Data-to-parameter ratio = 10.7

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT223_ALERT_4_B Large Solvent/Anion H Ueq(max)/Ueq(min) ... 4.52 Ratio
Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.96 PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT164_ALERT_4_C Nr. of Refined C-H H-Atoms in Heavy-At Struct... 13 PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.62 Ratio PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 43 C11 -N11 -CU1 -N11 22.00 5.00 1.555 1.555 1.555 3.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 44 N12 -N11 -CU1 -N11 -155.00 5.00 1.555 1.555 1.555 3.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 57 C31 -N31 -CU1 -N31 1.00 0.00 1.555 1.555 1.555 3.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 58 N32 -N31 -CU1 -N31 17.00 0.00 1.555 1.555 1.555 3.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 71 C21 -N21 -CU1 -N21 -1.50 0.40 1.555 1.555 1.555 3.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 72 N22 -N21 -CU1 -N21 163.16 0.15 1.555 1.555 1.555 3.555 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 3 Cl
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (1) 1.25
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 12 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 10 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Copper complexes of tripodal N3-donor ligands are of significance from a bioinorganic point of view since, for example, the N3–1igand coordination can mimic some spectroscopic features of blue copper proteins (Kitajima et al., 1990; Qiu et al., 1994). Compared with the enormous number of synthetic and structural studies of poly(1-pyrazolyl)borate Cu(II) comp1exes, only a few studies have been reported on the analogous poly(1-pyrazolyl)methane derivatives (Astley et al., 1993; Martini et al., 2002). We describe here a copper(II) complex containing tris(1-pyrazolyl)methane ligands, (I).

The structure of (I) (Fig. 1) consists of discrete centrosymmetric octahedral mononuclear CuII species with two tris(1-pyrazolyl)methane ligands, Cl- counter-ions, and methanol of crystallization. The bonding parameters are similar to those of the analogous complexes [Cu{HC(pz)3}2](NO3)2 and [Cu{HC(pz)3}2](ClO4)2 (Martini et al., 2002).

The Cu—N distances are close to those for [Cu{HC(pz)3}2](ClO4)2 (Martini et al., 2002). Two short Cu—N distances, approximately 2.0 Å, and one long, approximately 2.4 Å, are observed in both cases, consistent with Jahn-Teller distortion. All other bond lengths are normal (Allen et al., 1987; Orpen et al., 1989).

Related literature top

For related literature, see: Allen et al. (1987); Astley et al. (1993); Kitajima et al. (1990); Martini et al. (2002); Orpen et al. (1989); Qiu et al. (1994).

Experimental top

The title compound was prepared by the previously published procedure (Martini et al., 2002) using copper(II) chloride dihydrate and tris(1-pyrazolyl)methane as starting materials and a reaction time of 24 h. Suitable crystals for X-ray study were obtained by vapour diffusion of diethyl ether into a methanol solution of (I) at 278 K. Anal. Cal. for CuC22H28N12Cl2O: C, 42.1; H, 4.5; N, 26.8. Found: C, 42.4; H, 4.0; N, 28.4%. IR (KBr pellet): 3092.0 [s, ν (C–H)], 1630.2 and 1518.4 [s, ν (C?C), ν (N?C), HC(pz)3]. EPR (90 K): g = 2.0732; aCu = 168; aN = 12.5. FAB+—MS, m/z: 626 [M]+, 611 [M – O]+, 561 [M – pz]+, 528 [M – 2pz +Cl]+, 493 [M – 2pz]+. FAB-–MS, m/z: 35 [Cl]-–.

Refinement top

All H atoms were located in a difference map and refined freely, giving C—H = 0.86 (3)–0.99 (4)° and O—H = 0.76 (4) Å.

Structure description top

Copper complexes of tripodal N3-donor ligands are of significance from a bioinorganic point of view since, for example, the N3–1igand coordination can mimic some spectroscopic features of blue copper proteins (Kitajima et al., 1990; Qiu et al., 1994). Compared with the enormous number of synthetic and structural studies of poly(1-pyrazolyl)borate Cu(II) comp1exes, only a few studies have been reported on the analogous poly(1-pyrazolyl)methane derivatives (Astley et al., 1993; Martini et al., 2002). We describe here a copper(II) complex containing tris(1-pyrazolyl)methane ligands, (I).

The structure of (I) (Fig. 1) consists of discrete centrosymmetric octahedral mononuclear CuII species with two tris(1-pyrazolyl)methane ligands, Cl- counter-ions, and methanol of crystallization. The bonding parameters are similar to those of the analogous complexes [Cu{HC(pz)3}2](NO3)2 and [Cu{HC(pz)3}2](ClO4)2 (Martini et al., 2002).

The Cu—N distances are close to those for [Cu{HC(pz)3}2](ClO4)2 (Martini et al., 2002). Two short Cu—N distances, approximately 2.0 Å, and one long, approximately 2.4 Å, are observed in both cases, consistent with Jahn-Teller distortion. All other bond lengths are normal (Allen et al., 1987; Orpen et al., 1989).

For related literature, see: Allen et al. (1987); Astley et al. (1993); Kitajima et al. (1990); Martini et al. (2002); Orpen et al. (1989); Qiu et al. (1994).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of the cation of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size. [Symmetry code: (a) -x, -y, -z.]
Bis[tris(1-pyrazolyl)methane-κ3N,N',N'']copper(II) dichloride methanol disolvate top
Crystal data top
[Cu(C10H10N6)2]Cl2·2CH4OF(000) = 646
Mr = 627.00Dx = 1.458 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
a = 8.5069 (13) ÅCell parameters from 829 reflections
b = 10.4307 (16) Åθ = 2.5–22.6°
c = 16.101 (3) ŵ = 1.00 mm1
β = 91.574 (8)°T = 150 K
V = 1428.1 (4) Å3Block, blue
Z = 20.10 × 0.08 × 0.06 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2497 independent reflections
Radiation source: fine-focus sealed tube1871 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
φ and ω scansθmax = 25.3°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 98
Tmin = 0.907, Tmax = 0.943k = 128
6690 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085All H-atom parameters refined
S = 0.97 w = 1/[σ2(Fo2) + (0.0365P)2]
where P = (Fo2 + 2Fc2)/3
2497 reflections(Δ/σ)max = 0.001
234 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Cu(C10H10N6)2]Cl2·2CH4OV = 1428.1 (4) Å3
Mr = 627.00Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.5069 (13) ŵ = 1.00 mm1
b = 10.4307 (16) ÅT = 150 K
c = 16.101 (3) Å0.10 × 0.08 × 0.06 mm
β = 91.574 (8)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2497 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1871 reflections with I > 2σ(I)
Tmin = 0.907, Tmax = 0.943Rint = 0.058
6690 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.085All H-atom parameters refined
S = 0.97Δρmax = 0.33 e Å3
2497 reflectionsΔρmin = 0.34 e Å3
234 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1681 (4)0.2505 (3)0.05452 (19)0.0131 (7)
C100.0476 (7)0.3472 (4)0.2225 (3)0.0405 (11)
C110.2292 (4)0.0536 (3)0.1423 (2)0.0181 (8)
C120.3208 (4)0.1382 (3)0.16536 (19)0.0173 (8)
C130.3323 (4)0.0143 (3)0.1904 (2)0.0198 (8)
C210.2827 (4)0.1359 (3)0.1412 (2)0.0169 (7)
C220.3558 (4)0.2975 (3)0.0643 (2)0.0163 (7)
C230.3904 (4)0.2372 (3)0.1373 (2)0.0200 (8)
C310.2408 (4)0.2123 (3)0.0468 (2)0.0183 (8)
C320.0855 (4)0.3708 (3)0.0796 (2)0.0182 (8)
C330.2401 (4)0.3394 (3)0.0739 (2)0.0209 (8)
N110.1550 (3)0.0229 (2)0.09019 (15)0.0142 (6)
N120.2121 (3)0.1422 (2)0.10577 (15)0.0135 (6)
N210.1868 (3)0.1328 (2)0.07567 (16)0.0154 (6)
N220.2318 (3)0.2345 (2)0.02865 (16)0.0139 (6)
N310.0963 (3)0.1681 (2)0.03537 (16)0.0143 (6)
N320.0001 (3)0.2665 (2)0.05655 (16)0.0141 (6)
O100.0946 (3)0.3534 (2)0.13793 (16)0.0265 (6)
Cl10.38445 (10)0.47169 (6)0.14522 (5)0.0183 (2)
Cu10.00000.00000.00000.01293 (17)
H10.214 (3)0.329 (3)0.0776 (17)0.008 (7)*
H100.170 (5)0.390 (3)0.132 (2)0.031 (13)*
H10A0.138 (8)0.321 (6)0.254 (4)0.14 (3)*
H10B0.018 (5)0.434 (4)0.243 (3)0.050 (12)*
H10C0.036 (7)0.293 (5)0.229 (3)0.11 (2)*
H110.205 (4)0.141 (3)0.1439 (19)0.021 (9)*
H120.366 (4)0.207 (3)0.181 (2)0.020 (9)*
H130.396 (4)0.016 (3)0.2311 (19)0.015 (9)*
H210.280 (4)0.074 (3)0.185 (2)0.021 (9)*
H220.397 (4)0.370 (3)0.0392 (18)0.017 (8)*
H230.468 (4)0.258 (3)0.173 (2)0.029 (10)*
H310.331 (4)0.159 (3)0.038 (2)0.029 (10)*
H320.027 (4)0.444 (3)0.0968 (18)0.010 (8)*
H330.334 (4)0.391 (3)0.0892 (19)0.023 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.013 (2)0.0095 (15)0.0171 (17)0.0023 (13)0.0011 (14)0.0012 (13)
C100.041 (3)0.040 (2)0.040 (3)0.008 (2)0.015 (2)0.006 (2)
C110.018 (2)0.0151 (16)0.0214 (19)0.0027 (14)0.0051 (15)0.0027 (14)
C120.018 (2)0.0179 (17)0.0165 (18)0.0002 (14)0.0068 (15)0.0042 (13)
C130.020 (2)0.0203 (17)0.0194 (18)0.0031 (15)0.0116 (16)0.0001 (15)
C210.018 (2)0.0168 (16)0.0159 (18)0.0037 (14)0.0023 (15)0.0014 (13)
C220.015 (2)0.0128 (16)0.0215 (18)0.0038 (14)0.0059 (15)0.0021 (13)
C230.017 (2)0.0245 (17)0.0189 (19)0.0029 (15)0.0024 (16)0.0042 (15)
C310.014 (2)0.0191 (16)0.0220 (19)0.0024 (15)0.0014 (15)0.0013 (14)
C320.028 (2)0.0092 (15)0.0175 (17)0.0017 (14)0.0008 (15)0.0029 (13)
C330.016 (2)0.0179 (16)0.029 (2)0.0073 (15)0.0013 (16)0.0046 (15)
N110.0165 (17)0.0097 (12)0.0166 (14)0.0024 (11)0.0029 (12)0.0037 (10)
N120.0163 (17)0.0104 (12)0.0140 (14)0.0027 (11)0.0043 (12)0.0015 (10)
N210.0144 (17)0.0157 (13)0.0160 (14)0.0033 (11)0.0015 (12)0.0017 (11)
N220.0144 (16)0.0096 (12)0.0180 (15)0.0020 (11)0.0035 (12)0.0028 (11)
N310.0098 (17)0.0117 (12)0.0216 (15)0.0038 (11)0.0041 (12)0.0020 (11)
N320.0119 (17)0.0114 (12)0.0191 (15)0.0014 (11)0.0029 (12)0.0013 (11)
O100.0262 (18)0.0226 (13)0.0306 (15)0.0054 (12)0.0027 (13)0.0015 (11)
Cl10.0164 (5)0.0161 (4)0.0225 (4)0.0028 (3)0.0027 (4)0.0023 (3)
Cu10.0121 (3)0.0095 (3)0.0174 (3)0.0000 (2)0.0042 (2)0.0027 (2)
Geometric parameters (Å, º) top
C1—N321.438 (4)C22—H220.93 (3)
C1—N221.440 (4)C23—H230.89 (4)
C1—N121.454 (4)C31—N311.321 (4)
C1—H10.99 (3)C31—C331.396 (4)
C10—O101.411 (5)C31—H310.96 (3)
C10—H10A0.98 (7)C32—N321.355 (4)
C10—H10B0.99 (4)C32—C331.361 (5)
C10—H10C0.91 (6)C32—H320.96 (3)
C11—N111.329 (4)C33—H330.98 (3)
C11—C131.382 (5)N11—N121.362 (3)
C11—H110.93 (3)N11—Cu12.002 (3)
C12—N121.352 (4)N21—N221.364 (3)
C12—C131.358 (4)N21—Cu12.413 (2)
C12—H120.86 (3)N31—N321.363 (3)
C13—H130.92 (3)N31—Cu12.011 (2)
C21—N211.316 (4)O10—H100.76 (4)
C21—C231.401 (4)Cu1—N11i2.002 (3)
C21—H210.95 (3)Cu1—N31i2.011 (2)
C22—N221.357 (4)Cu1—N21i2.413 (2)
C22—C231.357 (5)
N32—C1—N22112.5 (3)C32—C33—H33128.9 (18)
N32—C1—N12110.4 (2)C31—C33—H33125.7 (18)
N22—C1—N12110.0 (2)C11—N11—N12104.7 (2)
N32—C1—H1107.5 (17)C11—N11—Cu1136.0 (2)
N22—C1—H1107.7 (16)N12—N11—Cu1119.17 (18)
N12—C1—H1108.6 (16)C12—N12—N11110.9 (2)
O10—C10—H10A108 (4)C12—N12—C1128.2 (2)
O10—C10—H10B110 (2)N11—N12—C1120.5 (2)
H10A—C10—H10B106 (4)C21—N21—N22104.4 (2)
O10—C10—H10C110 (4)C21—N21—Cu1143.5 (2)
H10A—C10—H10C113 (5)N22—N21—Cu1110.92 (18)
H10B—C10—H10C109 (4)C22—N22—N21111.6 (3)
N11—C11—C13111.5 (3)C22—N22—C1127.3 (3)
N11—C11—H11120 (2)N21—N22—C1120.1 (2)
C13—C11—H11129 (2)C31—N31—N32105.5 (2)
N12—C12—C13107.3 (3)C31—N31—Cu1135.5 (2)
N12—C12—H12121 (2)N32—N31—Cu1118.98 (19)
C13—C12—H12132 (2)C32—N32—N31110.5 (3)
C12—C13—C11105.6 (3)C32—N32—C1128.8 (3)
C12—C13—H13126.0 (19)N31—N32—C1120.7 (2)
C11—C13—H13128.4 (19)C10—O10—H10112 (3)
N21—C21—C23111.9 (3)N11—Cu1—N11i180.00 (14)
N21—C21—H21123 (2)N11—Cu1—N3187.82 (10)
C23—C21—H21125 (2)N11i—Cu1—N3192.18 (10)
N22—C22—C23106.8 (3)N11—Cu1—N31i92.18 (10)
N22—C22—H22120.5 (19)N11i—Cu1—N31i87.82 (10)
C23—C22—H22132.6 (19)N31—Cu1—N31i180.00 (15)
C22—C23—C21105.2 (3)N11—Cu1—N2181.95 (9)
C22—C23—H23126 (2)N11i—Cu1—N2198.05 (9)
C21—C23—H23129 (2)N31—Cu1—N2184.24 (9)
N31—C31—C33111.3 (3)N31i—Cu1—N2195.76 (9)
N31—C31—H31121 (2)N11—Cu1—N21i98.05 (9)
C33—C31—H31127 (2)N11i—Cu1—N21i81.95 (9)
N32—C32—C33107.6 (3)N31—Cu1—N21i95.76 (9)
N32—C32—H32116.0 (18)N31i—Cu1—N21i84.24 (9)
C33—C32—H32136.4 (18)N21—Cu1—N21i180.00 (14)
C32—C33—C31105.2 (3)
N12—C12—C13—C111.2 (4)C31—N31—N32—C1177.7 (3)
N11—C11—C13—C120.6 (4)Cu1—N31—N32—C10.6 (3)
N22—C22—C23—C211.0 (4)N22—C1—N32—C32114.0 (3)
N21—C21—C23—C220.2 (4)N12—C1—N32—C32122.7 (3)
N32—C32—C33—C310.2 (4)N22—C1—N32—N3167.7 (3)
N31—C31—C33—C320.8 (4)N12—C1—N32—N3155.6 (3)
C13—C11—N11—N120.2 (4)C11—N11—Cu1—N11i22 (5)
C13—C11—N11—Cu1177.0 (2)N12—N11—Cu1—N11i155 (5)
C13—C12—N12—N111.4 (4)C11—N11—Cu1—N31145.0 (3)
C13—C12—N12—C1174.0 (3)N12—N11—Cu1—N3138.1 (2)
C11—N11—N12—C121.0 (3)C11—N11—Cu1—N31i35.0 (3)
Cu1—N11—N12—C12176.8 (2)N12—N11—Cu1—N31i141.9 (2)
C11—N11—N12—C1174.2 (3)C11—N11—Cu1—N21130.5 (3)
Cu1—N11—N12—C13.5 (4)N12—N11—Cu1—N2146.4 (2)
N32—C1—N12—C12129.8 (3)C11—N11—Cu1—N21i49.5 (3)
N22—C1—N12—C12105.5 (3)N12—N11—Cu1—N21i133.6 (2)
N32—C1—N12—N1158.3 (3)C31—N31—Cu1—N11137.2 (3)
N22—C1—N12—N1166.4 (3)N32—N31—Cu1—N1140.4 (2)
C23—C21—N21—N220.6 (3)C31—N31—Cu1—N11i42.8 (3)
C23—C21—N21—Cu1164.7 (3)N32—N31—Cu1—N11i139.6 (2)
C23—C22—N22—N211.4 (4)C31—N31—Cu1—N31i14 (25)
C23—C22—N22—C1169.9 (3)N32—N31—Cu1—N31i169 (25)
C21—N21—N22—C221.2 (3)C31—N31—Cu1—N21140.7 (3)
Cu1—N21—N22—C22169.5 (2)N32—N31—Cu1—N2141.7 (2)
C21—N21—N22—C1170.6 (3)C31—N31—Cu1—N21i39.3 (3)
Cu1—N21—N22—C10.0 (3)N32—N31—Cu1—N21i138.3 (2)
N32—C1—N22—C22131.0 (3)C21—N21—Cu1—N11118.9 (4)
N12—C1—N22—C22105.5 (3)N22—N21—Cu1—N1145.76 (19)
N32—C1—N22—N2161.4 (3)C21—N21—Cu1—N11i61.1 (4)
N12—C1—N22—N2162.1 (4)N22—N21—Cu1—N11i134.24 (19)
C33—C31—N31—N321.0 (4)C21—N21—Cu1—N31152.5 (4)
C33—C31—N31—Cu1178.9 (2)N22—N21—Cu1—N3142.85 (19)
C33—C32—N32—N310.5 (4)C21—N21—Cu1—N31i27.5 (4)
C33—C32—N32—C1178.0 (3)N22—N21—Cu1—N31i137.15 (19)
C31—N31—N32—C320.9 (3)C21—N21—Cu1—N21i1.5 (4)
Cu1—N31—N32—C32179.2 (2)N22—N21—Cu1—N21i163.16 (15)
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C10H10N6)2]Cl2·2CH4O
Mr627.00
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)8.5069 (13), 10.4307 (16), 16.101 (3)
β (°) 91.574 (8)
V3)1428.1 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.00
Crystal size (mm)0.10 × 0.08 × 0.06
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.907, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
6690, 2497, 1871
Rint0.058
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.085, 0.97
No. of reflections2497
No. of parameters234
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.33, 0.34

Computer programs: SMART (Bruker, 2000), SMART, SAINT (Bruker, 2000), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds