Download citation
Download citation
link to html
The sodium salt of a complex anion formed between gadolinium(III) and three variously deprotonated chelidamic acid (4-hydroxy­pyridine-2,6-di­carboxyl­ic acid) ligand moi­eties, assigned as Na5[Gd(C7H2NO5)2(C7H3NO5)]·16H2O, i.e. pentasodium (4-hydroxy­pyridine-2,6-di­carboxyl­ate)­bis(4-oxido­pyridine-2,6-di­carboxyl­ate)­gadolinium(III) hexadecahydrate, forms as colourless monoclinic crystals upon vapour diffusion of ethanol into its aqueous solution. The ligand moieties, assigned as two trianionic and one dianionic chelidamate species, are all tridentate in the complex anion of tricapped trigonal prismatic donor-atom geometry. The geometry of the ligands and that of the primary coordination sphere is very similar to that of the analogous anionic tris­(ligand)-rare earth complexes of the pyridine-2,6-di­carboxyl­ate (dipicolinate) dianion.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199015632/cf1323sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199015632/cf1323Isup2.hkl
Contains datablock I

CCDC reference: 144607

Comment top

The dianion of pyridine-2,6-dicarboxylic acid (dipicolinic acid) is well known to form stable complexes of the rare earth elements, which in the cases of EuIII and TbIII are strongly luminescent (Riehl & Richardson, 1986; Dong & Flint, 1992). Substituted dipicolinic acid, 4-hydroxypyridine-2,6-dicarboxylic acid or chelidamic acid (H3chel; Hall et al., 2000), which may bind in forms up to the trianionic (Bag et al., 1962), has been of interest because of the possibility of using the additional functional group to introduce substituents which may, amongst other things, modify the electronic properties of complexes subsequently formed (Metcalf et al., 1990, 1993). It is necessary to be sure that apparent modifications to such properties are not consequences of changes in the gross physical structure of the complexes and, for this reason, we have conducted a synthetic and structural study of a tris(chelidamate)–rare earth(III) complex, as its sodium salt, to confirm both that tris(chelidamate) complex anions may be isolated as solids and to establish in detail their tris(tridentate) structure. The potential interest in derived materials of the form Mx[Ln(chelidamate)3], where both M and Ln could be photoactive (Brayshaw et al., 1995), was another driving force for this study. In the event, in early trials with a number of Ln and group I elements as counter-cations, small crystals only were obtained for the combination M = Na and Ln = Gd; as it happens, this is a rather unfortunate combination leading to difficulties, in the context of accessible data of modest quality, in assigning sodium cations versus water molecules of solvation, both Na+ and H2O being isoelectronic, and the absolute Na content is difficult of access by other analytical means given a material which desolvates rapidly. Thus, although it has been generally assumed that the species present in solution near neutral pH are hexa-anionic [Ln(chel)3]6- (Metcalf et al., 1990, 1993; Pike et al., 1983), elemental analyses of the material presently isolated were consistent with a Na:Gd ratio of 5:1 and the final structural model adopted, in which H atoms were not resolved, was consistent in stoichiometry and connectivity with a formulation for the solid presently isolated as that of Na5[Gd(chel)2(Hchel)].16H2O, where chel3- is chelidamate, indicative of the triply deprotonated anion of the parent acid, H3chel.

The numbering scheme adopted within the ligand is as follows (there is insufficient space to label all atoms in the figures): atom numbers are of the form Xlmn, where l identifies the ligand (1–3), m the position in the ring and n is used only for the substituent carboxyl groups. Na atoms are numbered 1–5 and water O-atom numbering runs from 1 to 17 (omitting 14 because of its use in a ligand). Ol21 (l = 1–3) lie at the vertices of one triangular face of the Gd coordination environment and Ol61 is at the other.

Relative to dipicolinic acid, a diprotic acid H2dipic, chelidamic acid offers a further degree of acidity by way of dissociation of the phenolic functionality, which, at least in the free acid, might be expected to be facilitated by the formation of the N-protonated keto/pyridine (pyridone) form. Despite studies of its dissociation (Bag et al., 1962), the priority order of deprotonation of the carboxylic and phenolic groups has not been established with any certainty, and the extent of any pyridone formation remains an unknown factor. We have described some rather marked differences between the solid-state forms of dipicolinic and chelidamic acids relating to the distribution of the acidic protons (Hall et al., 2000). Nonetheless, it comes as no surprise to find, in the present structure, in which one formula unit is the asymmetric unit, a complex species in which, as in the tris(dipicolinate)–rare earth(III) arrays, three O,N,O-tridentate ligands disposed about the central metal atom in an array of putative 32 symmetry.

The complex anions are disposed in the structure in layers normal to c*. The projection of a single layer down that axis (Fig. 1) clearly shows the putative 32 symmetry of the anion, with its 3-axis lying quasi-parallel to c*, the angle between being 2.1 (1)°. To date, no tris(dipicolinato)gadolinate(III) arrays have been reported in the literature structurally characterized to the point of providing detailed geometry of the metal-atom environment, although the species has been generically defined by inference from the fact that the series [Cr((NH2)2sar)][Ln(dipic)3].8H2O (sar = 3,6,10,12,16,19-hexaazabicyclo[6.6.6]icosane) is, by implication, an isomorphous array following detailed structure determinations for Ln = La, Ce and Lu (Harrowfield et al., 1995). Interestingly, that structure also exhibits layering similar to the present compound, the cell being shown in that reference in a counterpart projection to the present Fig 1. This motific sheet appears to be a common feature in structures of [Ln(dipic)3]3- derivatives, being evident similarly in Cs3[Eu(dipic)3].9H2O and [Co(sar)][Eu(dipic)3].8H2O (Brayshaw et al., 1995), and is similar to that observed in many chelating heteroaromatic base complexes wherein vertex-to-face heterocycle interactions (the `sextuple aryl embrace') have been proposed as an important factor influencing the lattice assembly (Dance & Scudder, 1998).

For consideration and comparison of the metal-atom environment in the context of related species, the parameters of the present array may be compared with those of the dipicolinate counterpart complex ion as found in [Co(NH3)6][Gd(dipic)3].11H2O (Table 2; Brayshaw et al., 2000), but with credibility enhanced by their close similarity to those of the Ln = Eu counterpart arrays (wherein the metal radius should differ only by ca 0.01 Å) as recorded recently (Brayshaw et al., 1995). Ligand parameters may also be compared with those for other chelidamate species previously structurally characterized in [(chelH)M(OH)(OH2)]2.4H2O (M = Fe, Cr), in which the metal ions are progressively much smaller species (M = Fe: Thich et al., 1976; M = Cr: Cline et al., 1979) and in various macrocyclic ether esters and associated derivatives (Nakatsuji et al., 1985; Bradshaw et al., 1985). Comparison of the [GdL3]n- (L = dipic and chelHx) data of Table 2 shows that, although the two complex species in general are quite similar, the incorporation of the aryloxide in the ring para to the metal atom is not totally without consequence for the geometry about the metal as well as within the ring. The latter changes are largely as expected. At the metal, however, it is clear that in the chelidamate the metal is more tightly bound to the nitrogen than in the dipicolinate, with consequent perturbation in nearby associated ring geometries. Extension of the comparison to consideration of chelidamate dianion in association with smaller trivalent high-spin iron and chromium species shows metal–nitrogen and metal–oxygen distances to remain broadly equivalent, the N,O-chelate components closing around the metal with concomitant substantial changes in the associated angular geometries, the organic esters offering a relaxed paradigm. In respect of the 4-hydroxy/oxido substituents in the present ligand rings, the intra-ring angles are diminished in keeping with a pronounced keto contribution to the C—O bond. With values of 1.329 (9), 1.334 (9) and 1.30 (1) Å for the three ligands, these values hardly differ significantly; it is of interest to note that calculations from the data for the cyclic chelidamate ester derivative ROH.RO- (benzylammonium)+.CH2Cl2 (ROH = 19-hydroxy-3,6,9,12,15-pentaoxa-21-azabicyclo[15.3.1]heneicosa-1(21),- 17,19-triene-2,16-dione; Bradshaw et al., 1985) show that the distance is 1.29 Å in the anionic form and 1.34 Å in the protonated form. However, in these latter and related species (Thich et al., 1976; Cline et al., 1979; Hall et al., 2000), the angular parameters of the ring carbon are usefully diagnostic of protonation or otherwise at the oxygen, the intra-ring angle being more greatly diminished (to 113.7° in this case) from 120° in the deprotonated form with symmetrical exocyclic angles, while in the protonated form the intra-ring angle rises to 117.8° with the exocyclic angles unsymmetrical (118.6 and 123.4°), as is also consistently the case in both of the FeIII and CrIII [(chelH)M(OH)(OH2)]2.4H2O arrays. These data (consistent with the above distance) generally suggest that in the present complex ligand two of the three ligands are protonated at O4. Rather remarkably perhaps, we find no involvement of any of the deprotonated On4 atoms in the coordination sphere of any of the assigned Na atoms. The nature of the Ol4 interactions are of interest; whereas O34 interacts with a pair of nearby water molecules (O9,17), the only interactions evinced by O14,24 are between themselves in adjacent moieties: O14···O24(x - 1, y, z) = 2.470 (8) Å, with a more distant approach to O14 by O5(1 - x, y - 0.5, 0.5 - z) at 2.697 (8) Å, the O14···O24 interaction presumably consequent on a shared protonic hydrogen. The carboxylate planes are reasonably coplanar with the central C5N plane; in the present array, divergences are rather greater than in tris(dipicolinate)–rare earth(III) species, and, concomitantly, the divergences of the Gd atom from the relevant planes are significant and substantial.

Assignment of the protonic and cationic complement of the rest of the structure is fraught with difficulty in consequence of our inability to resolve and refine H atoms, and in the presence of disorder beyond the complex species. Sodium ions and water, being isoelectronic, in their present forms present difficulties in assignment; nevertheless, their behaviour in crystal lattices is such as to inspire some confidence in the present assignment, water oxygen rarely having a coordination environment of other O atoms greater than four, while the coordination number of sodium is rarely as low as that, with, despite its generally higher coordination number, shorter X···O distances. Such is the case here, Na1–5 all having coordination numbers greater than five, with most associated Na···O distances less than 2.5 Å, while O1–17 have coordination numbers of four or less with O···O contact distances as assigned being greater, generally, than 2.4 Å (exceptions: O13,15,16, modelled as disordered, where the situation is less clearcut). Inspection of the sodium environments shows that all of Na1–4 interact with an (uncoordinated) Olm2 of the complex anion and a further similar oxygen of the glide-generated image. At either pole of the principal axis of the quasi-32 coordination environment, we find Ol22 and Ol62, these poles confronting each other in successive units of the one-dimensional polymer strand so generated. In accommodating four sodium ions, Ol22 are disposed with Na1 pendant from O122, Na2,3 bifurcating from O222 and Na4 pendant from O322 (bifurcating with Na5 which plays no part in constructing the polymer in this dimension). At the other pole of the next glide-generated member of the polymer strand, Ol62 interact with Na3,4, bifurcating O262 and Na1,2, bifurcating at O362, i.e. O162 being void of sodium interactions.

The above, we believe, constitutes a prima facie case for the assignment of Na1–4; Na5 playing a different role, but having an environment typically that of a sodium cation, is also eminently plausible as such. As such, the stoichiometry requires triple deprotonation of two of the chelidamate ligands, the other being doubly deprotonated, consistent with the model proposed above. We note that the asymmetry may not be unambiguous in the context of the modelling of three of the water molecules as disordered over pairs of sites, possibly concerted, and conforming to different configurations of protonic soup. Difference-map residues, rather larger than desirable, are found in the regions of the heavy atom and disorder. A more definitive description of this aspect requires access to crystals and instrumentation capable of yielding more extensive and better quality data. In respect of the aqueous hydrogen-bonding array, there is little to be said, the environs of the undisordered species being plausible.

While we have commented above on the layering of the structure normal to c, in terms of the array of complex anions, the interspersing cationic/aqueous layer is not without interest, either. We have drawn attention to the manner in which successive complex anion carboxylates at either pole of the complex cation are linked up the c axis in a manner which incorporates interactions with all Na atoms. However, all sodium ions are also linked by water molecules O1–5,10 into continous strands along the b axis, O6,7,11–13,16 being pendant, albeit hydrogen bonded to neighbouring strands, so that a web is formed of cations, anions and associated water molecules in the bc plane.

Experimental top

The title compound was prepared by a method similar to that used for the synthesis of the Dy and Tm analogues (Pike et al., 1983), with sodium carbonate replacing the lithium hydroxide used in this earlier procedure. Crystals suitable for the X-ray work were grown by diffusion of ethanol into an aqueous solution of the complex.

Refinement top

Available material comprised rather small specimens, giving rise to extensive albeit weak data. In order to optimize the available data, more than a hemisphere was measured, yielding a limited amount of merged data. Solution of the structure was straightforward, with the complication described above of assignment of sodium cations vis-a-vis water molecules, compounded by inability to resolve H atoms, and disorder among certain water molecules, resolved by consideration of cation environments and refinement behaviour at the level described. The possibility of an ethanolic component or slightly different water stoichiometry among the disordered components cannot be ruled out.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: Xtal3.5 GENTAN (Hall et al., 1995); program(s) used to solve structure: Xtal3.5; program(s) used to refine structure: Xtal3.5 CRYLSQ; molecular graphics: Xtal3.5 PIG ORTEP; software used to prepare material for publication: Xtal3.5 BONDLA CIFIO.

Figures top
[Figure 1] Fig. 1. Unit-cell contents with 30% amplitude displacement ellipsoids projected down c. The quasi-32 symmetry of the anions is clearly seen.
[Figure 2] Fig. 2. View of the ···[GdL3]Na4[GdL3]Na4··· polymer strand generated by the glide plane, normal to its propagation axis (c), which lies horizontal in the page.
(I) top
Crystal data top
Na5[Gd(C7H2NO5)2(C7H3NO5)]·16H2OF(000) = 2212
Mr = 1101.74Dx = 1.828 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 12 reflections
a = 12.748 (3) Åθ = 13.0–15.4°
b = 16.508 (9) ŵ = 1.82 mm1
c = 19.190 (16) ÅT = 293 K
β = 97.50 (5)°Hexagonal prism, colourless
V = 4004 (4) Å30.35 × 0.32 × 0.18 mm
Z = 4
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.06
θ–2θ scansθmax = 25.0°, θmin = 1.6°
Absorption correction: gaussian
(Busing & Levy, 1957)
h = 1515
Tmin = 0.567, Tmax = 0.756k = 1915
18620 measured reflectionsl = 2216
7023 independent reflections12 standard reflections every 60 min
6441 reflections with F > 4σ(F) intensity decay: none
Refinement top
Refinement on F0 restraints
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.072H-atom parameters not refined
wR(F2) = 0.068w = 1/σ2(F) + 0.004F2]
S = 1.54(Δ/σ)max = 0.001
6441 reflectionsΔρmax = 1.66 e Å3
577 parametersΔρmin = 1.73 e Å3
Crystal data top
Na5[Gd(C7H2NO5)2(C7H3NO5)]·16H2OV = 4004 (4) Å3
Mr = 1101.74Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.748 (3) ŵ = 1.82 mm1
b = 16.508 (9) ÅT = 293 K
c = 19.190 (16) Å0.35 × 0.32 × 0.18 mm
β = 97.50 (5)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
6441 reflections with F > 4σ(F)
Absorption correction: gaussian
(Busing & Levy, 1957)
Rint = 0.06
Tmin = 0.567, Tmax = 0.75612 standard reflections every 60 min
18620 measured reflections intensity decay: none
7023 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.068H-atom parameters not refined
S = 1.54Δρmax = 1.66 e Å3
6441 reflectionsΔρmin = 1.73 e Å3
577 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Gd0.81882 (3)0.75390 (2)0.47818 (2)0.0208 (2)
Na10.8219 (3)0.5454 (2)0.22740 (17)0.048 (2)
Na21.0647 (3)0.64784 (18)0.25217 (18)0.0434 (19)
Na31.0438 (3)0.84186 (17)0.24316 (17)0.0373 (17)
Na40.7998 (3)0.9341 (2)0.22540 (17)0.050 (2)
Na50.5370 (3)0.8769 (3)0.2288 (3)0.104 (3)
N110.6487 (5)0.6774 (3)0.4586 (3)0.026 (3)
C120.6314 (6)0.6191 (4)0.4094 (4)0.025 (4)
C1210.7246 (6)0.6050 (4)0.3691 (4)0.029 (4)
O1210.8083 (4)0.6444 (3)0.3900 (3)0.028 (3)
O1220.7148 (4)0.5541 (3)0.3206 (3)0.038 (3)
C130.5399 (6)0.5776 (4)0.3970 (4)0.027 (4)
C140.4555 (6)0.5941 (4)0.4352 (4)0.029 (4)
O140.3649 (4)0.5533 (3)0.4248 (3)0.039 (3)
C150.4732 (6)0.6555 (5)0.4873 (5)0.037 (5)
C160.5702 (6)0.6951 (4)0.4969 (4)0.032 (4)
C1610.5947 (7)0.7600 (5)0.5496 (5)0.043 (5)
O1610.6848 (4)0.7938 (3)0.5509 (3)0.036 (3)
O1620.5320 (6)0.7776 (5)0.5917 (5)0.102 (6)
N210.9869 (4)0.6762 (3)0.4958 (3)0.021 (3)
C221.0609 (6)0.6860 (4)0.4530 (4)0.022 (4)
C2211.0313 (6)0.7478 (4)0.3942 (4)0.026 (4)
O2210.9497 (4)0.7898 (3)0.4006 (3)0.031 (3)
O2221.0861 (4)0.7525 (3)0.3454 (3)0.033 (3)
C231.1549 (6)0.6440 (4)0.4606 (4)0.026 (4)
C241.1743 (6)0.5878 (4)0.5139 (4)0.028 (4)
O241.2634 (4)0.5447 (3)0.5258 (3)0.040 (3)
C251.0982 (6)0.5769 (4)0.5600 (4)0.027 (4)
C261.0064 (5)0.6215 (4)0.5478 (4)0.020 (4)
C2610.9176 (6)0.6142 (4)0.5929 (4)0.025 (4)
O2610.8341 (4)0.6535 (3)0.5728 (3)0.029 (3)
O2620.9328 (4)0.5720 (3)0.6477 (3)0.032 (3)
N310.8214 (5)0.9038 (3)0.4782 (3)0.025 (3)
C320.7678 (6)0.9459 (4)0.4254 (4)0.030 (4)
C3210.7168 (6)0.8929 (5)0.3671 (4)0.029 (4)
O3210.7139 (4)0.8171 (3)0.3790 (3)0.034 (3)
O3220.6792 (4)0.9249 (3)0.3098 (3)0.035 (3)
C330.7609 (7)1.0287 (5)0.4234 (4)0.041 (5)
C340.8042 (7)1.0749 (5)0.4833 (5)0.049 (5)
O340.7910 (6)1.1529 (3)0.4878 (4)0.073 (4)
C350.8600 (7)1.0296 (5)0.5382 (5)0.044 (5)
C360.8675 (6)0.9469 (4)0.5329 (4)0.028 (4)
C3610.9245 (6)0.8959 (4)0.5922 (4)0.031 (4)
O3610.9273 (4)0.8197 (3)0.5784 (3)0.031 (3)
O3620.9633 (5)0.9276 (3)0.6482 (3)0.042 (3)
O10.7869 (5)0.4051 (3)0.2303 (3)0.048 (4)
O20.9608 (4)0.5716 (3)0.3178 (3)0.038 (3)
O31.1087 (5)0.7407 (3)0.1658 (3)0.047 (3)
O40.9467 (4)0.9233 (3)0.3137 (3)0.036 (3)
O50.6542 (5)0.9087 (3)0.1409 (3)0.059 (4)
O60.3557 (5)0.8814 (3)0.1678 (3)0.047 (3)
O70.4786 (8)0.7893 (6)0.3239 (5)0.123 (7)
O80.3945 (5)0.6509 (4)0.2356 (3)0.069 (5)
O90.3230 (5)0.7289 (3)0.1094 (3)0.054 (4)
O101.2279 (5)0.5779 (3)0.2913 (3)0.051 (4)
O110.8972 (8)0.7500 (5)0.2246 (6)0.133 (8)
O120.4684 (6)1.0127 (4)0.2731 (4)0.080 (5)
O13a0.6939 (11)0.7568 (7)0.2418 (7)0.081 (9).60000
O13b0.5920 (19)0.7437 (10)0.2611 (11)0.085 (14).40000
O15a0.486 (3)0.9518 (16)0.475 (2)0.21 (3).60000
O15b0.466 (3)1.025 (3)0.437 (3)0.28 (5).40000
O16a0.6919 (11)0.5872 (11)0.1506 (10)0.118 (13).60000
O16b0.7264 (17)0.6538 (13)0.1820 (12)0.089 (16).40000
O171.2944 (6)0.8173 (5)0.3893 (4)0.095 (6)
H130.532190.535380.362230.03800*
H150.418110.669020.515230.04600*
H231.204580.653560.427770.03500*
H251.109020.539770.597790.03600*
H330.724141.055650.381890.05100*
H350.896161.057580.579930.05800*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Gd0.0235 (2)0.0260 (2)0.0129 (2)0.00230 (17)0.00272 (15)0.00034 (17)
Na10.053 (2)0.059 (2)0.033 (2)0.0003 (17)0.0066 (18)0.0036 (16)
Na20.050 (2)0.046 (2)0.035 (2)0.0061 (16)0.0132 (17)0.0046 (16)
Na30.045 (2)0.0400 (17)0.0270 (18)0.0007 (15)0.0051 (16)0.0011 (15)
Na40.040 (2)0.080 (3)0.032 (2)0.0070 (18)0.0100 (17)0.0133 (18)
Na50.062 (3)0.137 (4)0.101 (4)0.038 (3)0.036 (3)0.069 (3)
N110.025 (3)0.029 (3)0.025 (4)0.001 (3)0.009 (3)0.006 (3)
C120.030 (4)0.031 (4)0.016 (4)0.000 (3)0.007 (4)0.002 (3)
C1210.029 (5)0.034 (4)0.028 (5)0.000 (4)0.017 (4)0.002 (4)
O1210.026 (3)0.036 (3)0.024 (3)0.006 (2)0.007 (2)0.009 (2)
O1220.033 (3)0.057 (4)0.026 (3)0.006 (3)0.012 (3)0.025 (3)
C130.022 (4)0.034 (4)0.025 (5)0.001 (3)0.002 (4)0.009 (3)
C140.030 (4)0.033 (4)0.024 (5)0.007 (4)0.009 (4)0.002 (4)
O140.027 (3)0.054 (3)0.038 (4)0.008 (3)0.015 (3)0.015 (3)
C150.026 (4)0.044 (5)0.044 (6)0.002 (4)0.016 (4)0.014 (4)
C160.028 (4)0.034 (4)0.034 (5)0.006 (3)0.007 (4)0.005 (4)
C1610.037 (5)0.051 (5)0.046 (6)0.001 (4)0.019 (4)0.024 (5)
O1610.030 (3)0.041 (3)0.038 (4)0.004 (3)0.007 (3)0.016 (3)
O1620.063 (5)0.145 (7)0.111 (7)0.042 (5)0.056 (5)0.105 (6)
N210.021 (3)0.031 (3)0.011 (3)0.003 (3)0.007 (3)0.004 (3)
C220.032 (4)0.021 (4)0.011 (4)0.005 (3)0.001 (3)0.000 (3)
C2210.028 (4)0.030 (4)0.020 (4)0.008 (4)0.005 (3)0.005 (3)
O2210.032 (3)0.034 (3)0.029 (3)0.001 (2)0.012 (3)0.008 (2)
O2220.036 (3)0.040 (3)0.025 (3)0.004 (3)0.010 (3)0.010 (3)
C230.025 (4)0.036 (4)0.020 (4)0.001 (3)0.015 (3)0.004 (3)
C240.030 (4)0.031 (4)0.023 (5)0.008 (3)0.003 (4)0.003 (3)
O240.033 (3)0.051 (3)0.040 (4)0.017 (3)0.016 (3)0.019 (3)
C250.029 (4)0.034 (4)0.020 (4)0.005 (3)0.015 (4)0.009 (3)
C260.021 (4)0.029 (4)0.012 (4)0.001 (3)0.004 (3)0.004 (3)
C2610.026 (4)0.035 (4)0.016 (4)0.001 (3)0.009 (4)0.001 (3)
O2610.024 (3)0.042 (3)0.024 (3)0.005 (2)0.009 (2)0.005 (2)
O2620.036 (3)0.043 (3)0.019 (3)0.011 (2)0.013 (3)0.013 (2)
N310.028 (3)0.034 (3)0.011 (3)0.002 (3)0.001 (3)0.001 (3)
C320.040 (5)0.036 (4)0.015 (4)0.001 (4)0.006 (4)0.000 (3)
C3210.028 (4)0.047 (5)0.011 (4)0.004 (4)0.006 (4)0.003 (4)
O3210.040 (3)0.034 (3)0.024 (3)0.001 (2)0.008 (3)0.003 (2)
O3220.036 (3)0.046 (3)0.022 (3)0.000 (3)0.001 (3)0.006 (3)
C330.053 (6)0.041 (5)0.025 (5)0.000 (4)0.006 (4)0.011 (4)
C340.061 (6)0.036 (5)0.044 (6)0.007 (4)0.015 (5)0.004 (4)
O340.113 (6)0.026 (3)0.069 (5)0.012 (3)0.036 (5)0.004 (3)
C350.064 (6)0.030 (4)0.033 (5)0.008 (4)0.012 (5)0.001 (4)
C360.032 (4)0.036 (4)0.016 (4)0.002 (3)0.003 (4)0.002 (3)
C3610.029 (5)0.029 (4)0.033 (5)0.001 (3)0.003 (4)0.001 (4)
O3610.041 (3)0.029 (3)0.022 (3)0.001 (2)0.004 (3)0.001 (2)
O3620.060 (4)0.038 (3)0.022 (3)0.003 (3)0.016 (3)0.004 (3)
O10.049 (4)0.051 (4)0.044 (4)0.006 (3)0.008 (3)0.002 (3)
O20.039 (3)0.042 (3)0.035 (4)0.006 (3)0.012 (3)0.003 (3)
O30.071 (4)0.041 (3)0.030 (4)0.007 (3)0.010 (3)0.002 (3)
O40.042 (3)0.042 (3)0.025 (3)0.004 (3)0.006 (3)0.006 (3)
O50.080 (5)0.055 (4)0.035 (4)0.012 (3)0.011 (4)0.005 (3)
O60.049 (4)0.056 (4)0.037 (4)0.006 (3)0.004 (3)0.005 (3)
O70.118 (8)0.124 (7)0.124 (9)0.023 (6)0.003 (7)0.054 (7)
O80.067 (5)0.094 (5)0.047 (5)0.009 (4)0.010 (4)0.009 (4)
O90.065 (4)0.055 (4)0.041 (4)0.011 (3)0.001 (3)0.003 (3)
O100.054 (4)0.060 (4)0.039 (4)0.003 (3)0.008 (3)0.005 (3)
O110.113 (7)0.141 (8)0.125 (9)0.071 (6)0.057 (7)0.072 (6)
O120.074 (5)0.097 (6)0.069 (6)0.003 (4)0.009 (4)0.005 (4)
O13a0.101 (11)0.106 (10)0.036 (8)0.027 (9)0.009 (7)0.003 (7)
O13b0.114 (17)0.072 (13)0.068 (15)0.000 (12)0.002 (14)0.010 (10)
O15a0.18 (3)0.18 (3)0.28 (5)0.04 (2)0.10 (3)0.02 (3)
O15b0.21 (4)0.21 (5)0.40 (8)0.10 (3)0.06 (4)0.18 (6)
O16a0.064 (10)0.158 (15)0.134 (17)0.013 (11)0.019 (10)0.115 (14)
O16b0.084 (16)0.117 (17)0.074 (16)0.043 (14)0.038 (13)0.065 (15)
O170.079 (6)0.123 (7)0.082 (7)0.010 (5)0.010 (5)0.022 (5)
Geometric parameters (Å, º) top
Gd—N112.496 (6)C22—O2222.398 (9)
Gd—O1212.469 (5)C22—C231.377 (10)
Gd—O1612.433 (6)C221—O2211.270 (9)
Gd—N212.482 (5)C221—O2221.242 (10)
Gd—O2212.449 (5)O221—O2222.238 (8)
Gd—O2612.447 (5)O221—O42.761 (7)
Gd—N312.475 (6)O222—O172.885 (9)
Gd—O3212.415 (5)C23—C241.380 (10)
Gd—O3612.470 (5)C23—O242.390 (9)
Na1—O1222.391 (7)C23—H230.962 (8)
Na1—O12.361 (7)C24—O241.334 (9)
Na1—O22.352 (6)C24—C251.408 (11)
Na1—O16a2.181 (16)O24—C252.348 (9)
Na1—O16b2.27 (2)C25—C261.376 (10)
Na1—O3622.544 (7)C25—H250.946 (7)
Na2—O2222.476 (6)C26—C2611.517 (11)
Na2—O22.315 (6)C26—O2612.368 (8)
Na2—O32.378 (7)C26—O2622.385 (9)
Na2—O102.412 (7)C261—O2611.263 (8)
Na2—O112.717 (10)C261—O2621.255 (9)
Na2—O3622.555 (6)O261—O2622.233 (7)
Na3—O2222.457 (6)O261—O3612.987 (7)
Na3—O32.450 (7)O261—O52.968 (8)
Na3—O42.368 (6)O262—O22.769 (7)
Na3—O112.397 (10)N31—C321.341 (9)
Na3—O12.392 (6)N31—C361.338 (9)
Na3—O2622.588 (6)C32—C3211.501 (10)
Na4—O3222.379 (7)C32—O3212.372 (9)
Na4—O42.362 (6)C32—O3222.380 (9)
Na4—O52.338 (7)C32—C331.370 (11)
Na4—O102.415 (7)C321—O3211.273 (9)
Na4—O2622.402 (6)C321—O3221.257 (9)
Na5—O3222.366 (7)O321—O3222.231 (7)
Na5—O52.451 (8)O321—O13a2.796 (14)
Na5—O62.452 (7)O321—O13b2.84 (2)
Na5—O72.516 (12)C33—C341.429 (12)
Na5—O122.590 (9)C33—O342.398 (10)
Na5—O13a2.804 (14)C33—H330.977 (8)
Na5—O13b2.367 (18)C34—O341.303 (10)
N11—C121.345 (9)C34—C351.408 (12)
N11—C161.348 (10)O34—C352.374 (10)
C12—C1211.517 (11)O34—O92.540 (9)
C12—O1212.370 (9)O34—O172.768 (12)
C12—O1222.379 (9)C35—C361.372 (10)
C12—C131.348 (10)C35—H350.985 (8)
C121—O1211.269 (9)C36—C3611.522 (10)
C121—O1221.249 (9)C36—O3612.362 (8)
O121—O1222.236 (7)C36—O3622.406 (9)
O121—O2212.993 (7)C361—O3611.287 (9)
O121—O22.800 (8)C361—O3621.239 (9)
O122—O122.839 (8)O361—O3622.240 (7)
C13—C141.406 (11)O361—O32.853 (7)
C13—O142.395 (9)O362—O42.773 (7)
C13—H130.960 (7)O1—O62.865 (9)
C14—O141.329 (9)O1—O172.797 (10)
C14—C151.421 (11)O6—O92.766 (8)
O14—C152.399 (9)O7—O82.961 (11)
O14—O242.470 (8)O7—O13b2.14 (3)
O14—O102.935 (8)O7—O172.841 (13)
O14—O52.697 (8)O8—O92.788 (9)
C15—C161.390 (10)O8—O13b2.93 (2)
C15—H150.963 (9)O8—O102.774 (9)
C16—C1611.479 (11)O8—O122.892 (10)
C16—O1612.338 (9)O11—O13a2.658 (18)
C16—O1622.374 (12)O11—O16b2.73 (2)
C161—O1611.273 (10)O12—O16a2.934 (19)
C161—O1621.244 (13)O13a—O13b1.41 (3)
O161—O1622.208 (10)O13a—O16b2.12 (3)
O161—O2612.993 (7)O13b—O16b2.85 (3)
O161—O16a2.736 (19)O15a—O15b1.42 (6)
O161—O16b2.65 (2)O15a—O15a1.86 (4)
O162—O92.732 (10)O15a—O15b1.75 (7)
N21—C221.340 (10)O15b—O16a2.66 (5)
N21—C261.345 (9)O15b—O15b2.58 (8)
C22—C2211.532 (10)O16a—O16b1.30 (3)
C22—O2212.363 (8)
N11—Gd—O12163.74 (18)N21—C26—O26185.0 (4)
N11—Gd—O16164.01 (18)N21—C26—O262140.5 (5)
N11—Gd—N21118.47 (18)C25—C26—C261122.8 (6)
N11—Gd—O221132.72 (18)C25—C26—O261151.1 (6)
N11—Gd—O26175.66 (17)C25—C26—O26295.5 (5)
N11—Gd—N31121.16 (18)C261—C26—O26128.5 (3)
N11—Gd—O32173.68 (18)C261—C26—O26227.6 (3)
N11—Gd—O361136.7 (2)O261—C26—O26256.0 (2)
O121—Gd—O161127.72 (16)C26—C261—O261116.6 (6)
O121—Gd—N2171.56 (17)C26—C261—O262118.5 (6)
O121—Gd—O22174.98 (17)O261—C261—O262124.9 (7)
O121—Gd—O26190.25 (17)Gd—O261—O16151.97 (14)
O121—Gd—N31137.07 (18)Gd—O261—C2689.3 (2)
O121—Gd—O32178.54 (17)Gd—O261—C261123.8 (5)
O121—Gd—O361146.23 (16)Gd—O261—O262150.3 (3)
O161—Gd—N21136.03 (18)Gd—O261—O36152.93 (13)
O161—Gd—O221150.22 (16)Gd—O261—O5124.7 (2)
O161—Gd—O26175.63 (17)O161—O261—C26137.2 (3)
O161—Gd—N3174.91 (18)O161—O261—C261159.3 (4)
O161—Gd—O32188.66 (18)O161—O261—O262148.3 (3)
O161—Gd—O36178.36 (17)O161—O261—O36162.40 (17)
N21—Gd—O22164.14 (17)O161—O261—O579.4 (2)
N21—Gd—O26164.21 (18)C26—O261—C26134.9 (4)
N21—Gd—N31120.36 (18)C26—O261—O26262.4 (2)
N21—Gd—O321135.25 (19)C26—O261—O36180.6 (2)
N21—Gd—O36174.67 (17)C26—O261—O5143.4 (3)
O221—Gd—O261128.34 (16)C261—O261—O26227.4 (4)
O221—Gd—N3175.41 (18)C261—O261—O36198.4 (4)
O221—Gd—O32176.57 (17)C261—O261—O5110.9 (5)
O221—Gd—O36190.60 (17)O262—O261—O361110.0 (2)
O261—Gd—N31132.63 (18)O262—O261—O584.9 (2)
O261—Gd—O321149.23 (17)O361—O261—O5128.9 (2)
O261—Gd—O36174.81 (16)C26—O262—C26134.0 (4)
N31—Gd—O32164.80 (17)C26—O262—O26161.6 (2)
N31—Gd—O36163.49 (17)C26—O262—O2104.7 (3)
O321—Gd—O361128.29 (16)C26—O262—Na398.3 (2)
O122—Na1—O185.0 (2)C26—O262—Na4153.7 (3)
O122—Na1—O283.4 (2)C261—O262—O26127.6 (4)
O122—Na1—O16a91.6 (5)C261—O262—O2133.8 (5)
O122—Na1—O16b84.8 (6)C261—O262—Na3107.4 (4)
O122—Na1—O362162.6 (2)C261—O262—Na4119.9 (5)
O1—Na1—O2106.8 (2)O261—O262—O2152.5 (3)
O1—Na1—O16a101.3 (5)O261—O262—Na3109.6 (2)
O1—Na1—O16b133.5 (6)O261—O262—Na492.3 (2)
O1—Na1—O362109.7 (2)O2—O262—Na395.5 (2)
O2—Na1—O16a150.8 (5)O2—O262—Na4100.3 (2)
O2—Na1—O16b116.9 (6)Na3—O262—Na487.1 (2)
O2—Na1—O36283.4 (2)Gd—N31—C32120.9 (4)
O16a—Na1—O16b33.9 (7)Gd—N31—C36122.5 (4)
O16a—Na1—O36294.4 (5)C32—N31—C36116.4 (6)
O16b—Na1—O36291.1 (6)N31—C32—C321112.9 (6)
O222—Na2—O290.2 (2)N31—C32—O32185.0 (4)
O222—Na2—O392.3 (2)N31—C32—O322139.7 (5)
O222—Na2—O1095.7 (2)N31—C32—C33124.3 (7)
O222—Na2—O1173.6 (3)C321—C32—O32128.5 (3)
O222—Na2—O362154.3 (2)C321—C32—O32227.5 (3)
O2—Na2—O3159.0 (2)C321—C32—C33122.8 (7)
O2—Na2—O1095.8 (2)O321—C32—O32256.0 (2)
O2—Na2—O1187.3 (3)O321—C32—C33150.5 (6)
O2—Na2—O36283.9 (2)O322—C32—C3395.7 (5)
O3—Na2—O10104.6 (2)C32—C321—O321117.3 (6)
O3—Na2—O1173.5 (3)C32—C321—O322119.0 (7)
O3—Na2—O36284.9 (2)O321—C321—O322123.7 (7)
O10—Na2—O11168.9 (3)Gd—O321—C3289.3 (2)
O10—Na2—O362109.7 (2)Gd—O321—C321122.7 (4)
O11—Na2—O36281.1 (3)Gd—O321—O322149.4 (3)
O222—Na3—O391.1 (2)Gd—O321—O13a124.2 (3)
O222—Na3—O487.8 (2)Gd—O321—O13b129.2 (4)
O222—Na3—O1179.9 (3)C32—O321—C32134.2 (4)
O222—Na3—O189.7 (2)C32—O321—O32262.2 (3)
O222—Na3—O262159.6 (2)C32—O321—O13a131.2 (4)
O3—Na3—O4167.6 (2)C32—O321—O13b141.4 (4)
O3—Na3—O1178.3 (3)C321—O321—O32227.9 (4)
O3—Na3—O193.4 (2)C321—O321—O13a100.4 (5)
O3—Na3—O26298.2 (2)C321—O321—O13b107.5 (5)
O4—Na3—O1189.4 (3)O322—O321—O13a74.7 (3)
O4—Na3—O198.9 (2)O322—O321—O13b79.7 (4)
O4—Na3—O26279.3 (2)O13a—O321—O13b29.0 (6)
O11—Na3—O1166.4 (3)Na4—O322—Na594.7 (2)
O11—Na3—O26284.2 (3)Na4—O322—C32110.8 (3)
O1—Na3—O262107.8 (2)Na4—O322—C321114.6 (5)
O322—Na4—O491.7 (2)Na4—O322—O321111.1 (3)
O322—Na4—O586.3 (2)Na5—O322—C32153.0 (3)
O322—Na4—O1093.2 (2)Na5—O322—C321127.2 (5)
O322—Na4—O262172.4 (2)Na5—O322—O321101.5 (3)
O4—Na4—O5165.3 (3)C32—O322—C32133.5 (4)
O4—Na4—O10104.9 (2)C32—O322—O32161.8 (3)
O4—Na4—O26283.3 (2)C321—O322—O32128.3 (4)
O5—Na4—O1089.8 (2)C32—C33—C34119.6 (7)
O5—Na4—O26297.1 (2)C32—C33—O34146.5 (6)
O10—Na4—O26293.5 (2)C32—C33—H33119.9 (7)
O322—Na5—O584.1 (2)C34—C33—O3427.2 (4)
O322—Na5—O6153.8 (3)C34—C33—H33120.5 (7)
O322—Na5—O789.4 (3)O34—C33—H3393.4 (5)
O322—Na5—O1275.9 (2)C33—C34—O34122.7 (8)
O322—Na5—O13a72.7 (3)C33—C34—C35115.0 (7)
O322—Na5—O13b87.9 (5)O34—C34—C35122.3 (8)
O5—Na5—O6106.6 (3)C33—O34—C3430.1 (5)
O5—Na5—O7152.5 (3)C33—O34—C3560.2 (3)
O5—Na5—O12107.6 (3)C33—O34—O990.4 (3)
O5—Na5—O13a73.8 (3)C33—O34—O17122.4 (4)
O5—Na5—O13b101.1 (6)C34—O34—C3530.1 (5)
O6—Na5—O790.8 (3)C34—O34—O9120.4 (6)
O6—Na5—O1278.0 (2)C34—O34—O17107.4 (6)
O6—Na5—O13a132.9 (3)C35—O34—O9150.3 (4)
O6—Na5—O13b112.5 (6)C35—O34—O1788.3 (3)
O7—Na5—O1296.6 (3)O9—O34—O17106.7 (3)
O7—Na5—O13a78.7 (4)C34—C35—O3427.7 (4)
O7—Na5—O13b51.8 (6)C34—C35—C36120.4 (7)
O12—Na5—O13a148.2 (3)C34—C35—H35119.7 (7)
O12—Na5—O13b145.1 (6)O34—C35—C36148.0 (6)
O13a—Na5—O13b30.2 (6)O34—C35—H3592.2 (5)
Gd—N11—C12121.8 (5)C36—C35—H35119.8 (7)
Gd—N11—C16120.0 (4)N31—C36—C35124.0 (7)
C12—N11—C16118.2 (6)N31—C36—C361114.2 (6)
N11—C12—C121113.6 (6)N31—C36—O36184.5 (4)
N11—C12—O12185.0 (4)N31—C36—O362140.2 (5)
N11—C12—O122141.1 (5)C35—C36—C361121.7 (7)
N11—C12—C13123.1 (7)C35—C36—O361151.4 (6)
C121—C12—O12128.7 (3)C35—C36—O36295.5 (5)
C121—C12—O12227.5 (3)C361—C36—O36129.8 (3)
C121—C12—C13123.3 (7)C361—C36—O36226.2 (3)
O121—C12—O12256.2 (2)O361—C36—O36256.0 (2)
O121—C12—C13151.8 (6)C36—C361—O361114.2 (6)
O122—C12—C1395.8 (5)C36—C361—O362120.9 (6)
C12—C121—O121116.3 (6)O361—C361—O362124.9 (7)
C12—C121—O122118.4 (6)Gd—O361—O26152.25 (13)
O121—C121—O122125.3 (7)Gd—O361—C3689.0 (2)
Gd—O121—C1289.3 (2)Gd—O361—C361124.2 (4)
Gd—O121—C121124.0 (5)Gd—O361—O362150.0 (3)
Gd—O121—O122150.9 (3)Gd—O361—O3129.2 (2)
Gd—O121—O22152.21 (14)O261—O361—C36134.1 (3)
Gd—O121—O2132.4 (2)O261—O361—C361152.2 (5)
C12—O121—C12135.0 (4)O261—O361—O362143.3 (3)
C12—O121—O12262.1 (3)O261—O361—O389.32 (19)
C12—O121—O221135.0 (3)C36—O361—C36136.0 (4)
C12—O121—O2137.6 (3)C36—O361—O36263.0 (3)
C121—O121—O12227.1 (4)C36—O361—O3136.5 (3)
C121—O121—O221155.0 (4)C361—O361—O36227.0 (4)
C121—O121—O2103.6 (5)C361—O361—O3105.2 (4)
O122—O121—O221147.6 (3)O362—O361—O380.8 (2)
O122—O121—O276.7 (2)C36—O362—C36132.9 (4)
O221—O121—O285.8 (2)C36—O362—O36161.0 (2)
Na1—O122—C12156.2 (3)C36—O362—O4105.5 (3)
Na1—O122—C121126.0 (5)C36—O362—Na1102.2 (3)
Na1—O122—O121100.0 (3)C36—O362—Na2158.0 (3)
Na1—O122—O1290.8 (2)C361—O362—O36128.1 (4)
C12—O122—C12134.1 (4)C361—O362—O4135.1 (5)
C12—O122—O12161.7 (3)C361—O362—Na1111.0 (5)
C12—O122—O1298.9 (3)C361—O362—Na2125.1 (5)
C121—O122—O12127.6 (4)O361—O362—O4155.4 (3)
C121—O122—O12128.9 (5)O361—O362—Na1113.0 (3)
O121—O122—O12150.3 (3)O361—O362—Na297.0 (2)
C12—C13—C14120.8 (7)O4—O362—Na189.3 (2)
C12—C13—O14148.8 (6)O4—O362—Na294.4 (2)
C12—C13—H13120.0 (7)Na1—O362—Na286.8 (2)
C14—C13—O1428.0 (3)Na1—O1—O6106.8 (3)
C14—C13—H13119.1 (7)Na1—O1—Na3105.4 (2)
O14—C13—H1391.1 (5)Na1—O1—O17122.7 (3)
C13—C14—O14122.2 (7)O6—O1—Na3115.5 (3)
C13—C14—C15116.3 (7)O6—O1—O17106.8 (3)
O14—C14—C15121.4 (7)Na3—O1—O17100.1 (3)
C13—O14—C1429.8 (4)Na1—O2—Na297.3 (2)
C13—O14—C1560.1 (3)Na1—O2—O12186.5 (2)
C13—O14—O24141.6 (3)Na1—O2—O262108.5 (2)
C13—O14—O10104.3 (3)Na2—O2—O121121.3 (2)
C13—O14—O594.2 (3)Na2—O2—O262107.4 (2)
C14—O14—C1530.4 (4)O121—O2—O262126.8 (3)
C14—O14—O24116.5 (5)Na2—O3—Na383.5 (2)
C14—O14—O10117.8 (5)Na2—O3—O36186.4 (2)
C14—O14—O5122.8 (5)Na3—O3—O361106.4 (3)
C15—O14—O2488.6 (3)Na3—O4—Na493.3 (2)
C15—O14—O10125.3 (3)Na3—O4—O22185.7 (2)
C15—O14—O5150.1 (3)Na3—O4—O362115.2 (3)
O24—O14—O10112.3 (3)Na4—O4—O221116.1 (2)
O24—O14—O5106.9 (3)Na4—O4—O362112.6 (2)
O10—O14—O573.0 (2)O221—O4—O362125.2 (2)
C14—C15—O1428.2 (4)Na4—O5—Na593.5 (3)
C14—C15—C16119.0 (8)Na4—O5—O14100.4 (3)
C14—C15—H15119.8 (7)Na4—O5—O26177.2 (2)
O14—C15—C16147.2 (6)Na5—O5—O14119.1 (3)
O14—C15—H1591.6 (5)Na5—O5—O261143.6 (3)
C16—C15—H15121.2 (8)O14—O5—O26197.3 (3)
N11—C16—C15122.5 (7)Na5—O6—O9104.4 (3)
N11—C16—C161115.1 (7)Na5—O6—O1108.7 (3)
N11—C16—O16185.9 (4)O9—O6—O1109.0 (3)
N11—C16—O162141.6 (5)Na5—O7—O898.5 (4)
C15—C16—C161122.4 (8)Na5—O7—O13b60.5 (6)
C15—C16—O161151.6 (6)Na5—O7—O17124.5 (4)
C15—C16—O16295.9 (6)O8—O7—O13b68.1 (6)
C161—C16—O16129.3 (4)O8—O7—O1796.9 (3)
C161—C16—O16226.6 (4)O13b—O7—O17165.0 (7)
O161—C16—O16255.9 (3)O7—O8—O9101.1 (3)
C16—C161—O161116.1 (8)O7—O8—O13b42.5 (5)
C16—C161—O162121.2 (8)O7—O8—O10110.6 (3)
O161—C161—O162122.6 (8)O7—O8—O12117.7 (3)
Gd—O161—C1690.1 (3)O9—O8—O13b94.6 (5)
Gd—O161—C161124.7 (5)O9—O8—O10110.8 (3)
Gd—O161—O162152.7 (3)O9—O8—O12116.5 (3)
Gd—O161—O26152.40 (14)O13b—O8—O10147.8 (5)
Gd—O161—O16a129.3 (4)O13b—O8—O1284.8 (4)
Gd—O161—O16b124.3 (5)O10—O8—O12100.3 (3)
C16—O161—C16134.6 (5)O6—O9—O893.1 (3)
C16—O161—O16262.9 (3)O6—O9—O34142.0 (3)
C16—O161—O26182.6 (2)O6—O9—O16289.3 (3)
C16—O161—O16a140.6 (4)O8—O9—O34120.0 (3)
C16—O161—O16b133.3 (6)O8—O9—O16282.9 (3)
C161—O161—O16228.3 (5)O34—O9—O162111.3 (3)
C161—O161—O261102.7 (5)Na2—O10—O14136.8 (3)
C161—O161—O16a106.0 (6)Na2—O10—O8110.2 (3)
C161—O161—O16b103.3 (7)Na2—O10—Na4108.9 (2)
O162—O161—O261115.5 (3)O14—O10—O889.9 (2)
O162—O161—O16a77.8 (4)O14—O10—Na492.3 (2)
O162—O161—O16b77.2 (6)O8—O10—Na4118.8 (3)
O261—O161—O16a119.7 (4)Na2—O11—Na377.7 (3)
O261—O161—O16b94.3 (5)Na2—O11—O13a139.1 (5)
O16a—O161—O16b27.9 (6)Na2—O11—O16b105.8 (5)
C16—O162—C16132.2 (5)Na3—O11—O13a135.1 (5)
C16—O162—O16161.2 (3)Na3—O11—O16b170.9 (7)
C16—O162—O9111.9 (4)O13a—O11—O16b46.4 (6)
C161—O162—O16129.1 (4)Na5—O12—O122106.6 (3)
C161—O162—O9142.3 (6)Na5—O12—O8115.5 (3)
O161—O162—O9165.6 (4)Na5—O12—O16a144.4 (5)
Gd—N21—C22121.2 (4)O122—O12—O8103.1 (3)
Gd—N21—C26121.4 (5)O122—O12—O16a69.3 (4)
C22—N21—C26117.3 (6)O8—O12—O16a99.4 (4)
N21—C22—C221114.0 (6)Na5—O13a—O32179.0 (4)
N21—C22—O22185.2 (4)Na5—O13a—O11135.6 (5)
N21—C22—O222140.2 (5)Na5—O13a—O13b57.5 (8)
N21—C22—C23123.2 (6)Na5—O13a—O16b134.9 (8)
C221—C22—O22129.2 (3)O321—O13a—O1199.3 (5)
C221—C22—O22226.8 (3)O321—O13a—O13b77.4 (10)
C221—C22—C23122.7 (7)O321—O13a—O16b142.6 (8)
O221—C22—O22256.1 (2)O11—O13a—O13b166.1 (11)
O221—C22—C23151.2 (6)O11—O13a—O16b68.7 (7)
O222—C22—C2396.3 (5)O13b—O13a—O16b105.6 (12)
C22—C221—O221114.7 (7)Na5—O13b—O32185.7 (6)
C22—C221—O222119.3 (6)Na5—O13b—O767.7 (6)
O221—C221—O222126.0 (7)Na5—O13b—O8102.9 (8)
Gd—O221—O12152.81 (14)Na5—O13b—O13a92.3 (10)
Gd—O221—C2289.1 (2)Na5—O13b—O16b121.5 (10)
Gd—O221—C221124.0 (4)O321—O13b—O775.0 (6)
Gd—O221—O222148.7 (3)O321—O13b—O8136.3 (9)
Gd—O221—O4127.1 (2)O321—O13b—O13a73.6 (10)
O121—O221—C2276.7 (2)O321—O13b—O16b110.0 (9)
O121—O221—C22192.8 (4)O7—O13b—O869.4 (7)
O121—O221—O222104.2 (2)O7—O13b—O13a143.8 (13)
O121—O221—O4129.7 (2)O7—O13b—O16b169.2 (10)
C22—O221—C22136.1 (4)O8—O13b—O13a146.6 (12)
C22—O221—O22262.7 (3)O8—O13b—O16b101.6 (7)
C22—O221—O4142.7 (3)O13a—O13b—O16b45.8 (9)
C221—O221—O22226.7 (4)O15b—O15a—O15a63 (3)
C221—O221—O4108.9 (5)O15b—O15a—O15b109 (3)
O222—O221—O483.3 (2)O15a—O15a—O15b46 (2)
Na2—O222—Na381.4 (2)O15a—O15b—O16a137 (3)
Na2—O222—C22106.7 (3)O15a—O15b—O15a71 (3)
Na2—O222—C221118.7 (4)O15a—O15b—O15b40 (3)
Na2—O222—O221121.0 (3)O16a—O15b—O15a132 (3)
Na2—O222—O17118.7 (3)O16a—O15b—O15b148 (2)
Na3—O222—C22157.3 (3)O15a—O15b—O15b31.3 (18)
Na3—O222—C221123.6 (4)Na1—O16a—O16b76.8 (12)
Na3—O222—O22196.3 (2)Na1—O16a—O1292.7 (6)
Na3—O222—O1796.2 (2)Na1—O16a—O15b138.8 (14)
C22—O222—C22133.8 (4)Na1—O16a—O161130.7 (7)
C22—O222—O22161.2 (3)O16b—O16a—O12109.8 (14)
C22—O222—O1798.0 (3)O16b—O16a—O15b143.4 (18)
C221—O222—O22127.3 (4)O16b—O16a—O16172.3 (12)
C221—O222—O17112.9 (5)O12—O16a—O15b68.7 (13)
O221—O222—O17120.1 (3)O12—O16a—O161133.5 (6)
C22—C23—C24119.1 (7)O15b—O16a—O16183.1 (13)
C22—C23—O24146.8 (6)Na1—O16b—O1188.7 (7)
C22—C23—H23119.1 (7)Na1—O16b—O13a123.8 (10)
C24—C23—O2427.8 (4)Na1—O16b—O13b122.3 (10)
C24—C23—H23121.8 (7)Na1—O16b—O16a69.2 (12)
O24—C23—H2394.0 (5)Na1—O16b—O161130.8 (10)
C23—C24—O24123.4 (7)O11—O16b—O13a65.0 (7)
C23—C24—C25118.7 (7)O11—O16b—O13b92.8 (8)
O24—C24—C25117.8 (6)O11—O16b—O16a146.9 (16)
C23—O24—C2428.8 (4)O11—O16b—O16198.5 (8)
C23—O24—C2560.8 (3)O13a—O16b—O13b28.5 (6)
C23—O24—O1482.9 (3)O13a—O16b—O16a148.0 (17)
C24—O24—C2532.0 (4)O13a—O16b—O161102.8 (9)
C24—O24—O14110.9 (5)O13b—O16b—O16a119.7 (15)
C25—O24—O14141.9 (3)O13b—O16b—O161106.0 (8)
C24—C25—O2430.2 (4)O16a—O16b—O16179.8 (13)
C24—C25—C26117.7 (6)O222—O17—O7126.3 (4)
C24—C25—H25121.4 (7)O222—O17—O174.0 (2)
O24—C25—C26147.9 (6)O222—O17—O3482.3 (3)
O24—C25—H2591.2 (5)O7—O17—O187.8 (3)
C26—C25—H25120.9 (7)O7—O17—O34147.7 (4)
N21—C26—C25123.8 (7)O1—O17—O34117.6 (3)
N21—C26—C261113.3 (6)

Experimental details

Crystal data
Chemical formulaNa5[Gd(C7H2NO5)2(C7H3NO5)]·16H2O
Mr1101.74
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.748 (3), 16.508 (9), 19.190 (16)
β (°) 97.50 (5)
V3)4004 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.82
Crystal size (mm)0.35 × 0.32 × 0.18
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionGaussian
(Busing & Levy, 1957)
Tmin, Tmax0.567, 0.756
No. of measured, independent and
observed [F > 4σ(F)] reflections
18620, 7023, 6441
Rint0.06
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.068, 1.54
No. of reflections6441
No. of parameters577
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)1.66, 1.73

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, Xtal3.5 GENTAN (Hall et al., 1995), Xtal3.5 CRYLSQ, Xtal3.5 PIG ORTEP, Xtal3.5 BONDLA CIFIO.

Selected geometries (Å,°): the complexed moiety top
(a) Gadolinium and associated ligand parameters
Distances
l = 1l = 2l = 3Average
Gd—Nl12.496 (6)2.482 (6)2.475 (6)2.484
Gd—Ol212.469 (5)2.449 (5)2.415 (5)
Gd—Ol612.434 (6)2.447 (5)2.470 (5)2.45
Angles
Nl—Gd—N(l+1)118.5 (2)120.4 (2)121.2 (2)120.0
Ol21—Gd—O(l+1)2175.0 (2)76.6 (2)78.5 (2)
Ol61—Gd—O(l+1)6175.6 (2)74.8 (2)78.4 (2)76.5
Nl—Gd—Ol2163.7 (2)64.1 (2)64.8 (2)
Nl—Gd—Ol6164.0 (2)64.2 (2)63.5 (2)64.0
Nl—Gd—O(l+1)21132.7 (2)135.3 (2)137.1 (2)
Nl—Gd—O(l-1)61136.7 (2)136.0 (2)132.6 (2)135.1
Nl—Gd—O(l+1)6175.7 (2)74.7 (2)74.7 (2)
Nl—Gd—O(l-1)2173.7 (2)71.6 (2)75.4 (2)74.3
Ol21—Gd—Ol61127.7 (2)128.3 (2)128.3 (2)128.1
Ol21—Gd—O(l+1)6190.3 (3)90.6 (2)88.7 (2)89.9
Ol21—Gd—O(l-1)61146.2 (2)150.2 (2)149.2 (2)148.5
Gd—Ol21—Cl21124.0 (5)124.0 (5)122.7 (4)
Gd—Ol61—Cl61124.7 (5)123.8 (5)124.2 (4)123.9
Intra-ligand interplanar angles
(C5N)l/CCO2l23.8 (3)10.6 (3)12.2 (3)
(C5N)l/CCO2l64.1 (3)7.1 (3)4.2 (3)
Gadolinium deviations from planes
(C5N)l0.05 (1)0.02 (1)0.24 (1)
CCO2l20.26 (1)0.60 (1)0.49 (1)
CCO2l60.18 (1)0.39 (1)0.47 (1)
(b) Intra-ligand geometries
n = 1n = 2n = 3Average
Nl1—Cl21.345 (9)1.34 (1)1.341 (9)
Nl1—Cl61.35 (1)1.345 (9)1.338 (9)1.34
Cl2—Cl31.35 (1)1.38 (1)1.37 (1)
Cl5—Cl61.39 (1)1.38 (1)1.37 (1)1.36
Cl3—Cl41.41 (1)1.38 (1)1.43 (1)
Cl4—Cl51.42 (1)1.41 (1)1.41 (1)1.41
Cl4—Ol41.329 (9)1.334 (9)1.30 (1)1.32
Cl2—Cl211.52 (1)1.53 (1)1.50 (1)
Cl6—Cl611.48 (1)1.52 (1)1.52 (1)1.51
Cl21—Ol211.269 (9)1.270 (9)1.273 (9)
Cl61—Ol611.27 (1)1.263 (8)1.287 (9)1.27
Cl21—Ol221.249 (9)1.24 (1)1.257 (9)
Cl61—Ol621.24 (1)1.255 (9)1.239 (9)1.25
Gdl—Nl1—Cl2121.8 (5)121.2 (4)120.9 (4)
Gdl—Nl1—Cl6120.0 (4)121.5 (5)122.5 (4)121.3
Cl2—Nl1—Cl6118.2 (6)117.3 (6)116.2 (6)117.2
Nl1—Cl2—Cl3123.1 (7)123.2 (6)124.3 (7)
Nl1—Cl6—Cl5122.5 (7)123.8 (7)124.0 (7)123.5
Nl1—Cl2—Cl21113.6 (6)114.1 (6)112.9 (6)
Nl1—Cl6—Cl61115.1 (7)113.4 (6)114.2 (6)113.9
Cl3—Cl2—Cl21123.3 (7)122.7 (7)122.8 (7)
Cl5—Cl6—Cl61122.4 (8)122.8 (6)121.7 (7)122.6
Cl2—Cl21—Ol21116.3 (7)114.7 (7)117.3 (6)
Cl6—Cl61—Ol61116.1 (8)116.6 (6)114.2 (6)115.9
Cl2—Cl21—Ol22118.4 (6)119.3 (6)119.0 (7)
Cl6—Cl61—Ol52121.2 (8)118.5 (6)120.9 (6)119.6
Ol21—Cl21—Ol22125.3 (7)126.0 (7)123.7 (7)
Ol61—Cl61—Cl62122.6 (8)124.9 (7)124.9 (7)124.6
Cl2—Cl3—Cl4120.8 (7)119.1 (7)119.6 (7)
Cl4—Cl5—Cl6119.0 (8)117.8 (6)120.4 (7)119.5
Cl3—Cl4—Ol4122.2 (7)123.4 (7)122.7 (8)
Cl5—Cl4—Ol4121.5 (7)117.8 (6)122.3 (8)121.7
Cl3—Cl4—Cl5116.3 (7)118.7 (7)115.0 (7)116.7
Comparative metal-chelidamate geometries (Å, °) top
Mean parameters are compared for the M(tridentate ligand) arrays in (a) [Gd(dipic)3]3- as found in its [Co(NH3)6]3+ salt (Brayshaw et al., 2000), (b) the present array
[Gd(dipic)3]3-[Gd(chel)3]3-
M—N12.5122.484
M—O21,612.4362.45
N1—O2,61.341.34
C2,6—C3,51.391.36
C4—C3,51.371.41
C4—O4-1.32
C21,61—O21,611.261.27
C21,61—O22,621.231.25
M—N1—C2,6120.3121.3
C2—N1—C6119.4117.2
N1—C2,6—C3,5121.8123.5
N1—C2,6—C21,61114.4113.9
C3,5—C2,6—C21,61123.8122.6
C2,6—C21,61—O22,62118.1119.6
O21,61—C21,61—O22,62126.4124.6
C2,6—C21,61—O21,61115.5115.9
M—O21,61—C21,61125.3123.9
C2,6—C3,5—C4118.5119.5
C3—C4—C5120.0116.7
C3,5—C4—O4121.6
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds