Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The helical structure of amyloid protofilaments of hen egg white lysozyme was analyzed by small-angle neutron scattering (SANS) and atomic force microscopy (AFM). The structure of these formations in bulk solutions was adequately described by SANS in terms of a simplified model of a helix with spherical structural units. The found main helix parameters (pitch and effective diameter) are consistent with the results of AFM analysis for amyloid fibrils adsorbed on a mica surface. Both methods reveal a strong isotope effect on the structure of amyloid fibrils with respect to the substitution of heavy for light water in the solvent. Specific details responsible for the structural differences when comparing SANS and AFM data are discussed from the viewpoint of methodological aspects, the influence of different (native and adsorbed) amyloid states and sample preparation.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds