Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The success of the ab initio phasing process mainly depends on two parameters: data resolution and structural complexity. In agreement with the Sheldrick rule, the presence of heavy atoms can also play a nonnegligible role in the success of direct methods. The increased efficiency of the Patterson methods and the advent of new phasing techniques based on extrapolated reflections have changed the state of the art. In particular, it is not clear how much the resolution limit and the structural complexity may be pushed in the presence of heavy atoms. In this paper, it is shown that the limits fixed by the Sheldrick rule may be relaxed if the structure contains heavy atoms and that ab initio techniques can succeed even when the data resolution is about 2 Å, a limit unthinkable a few years ago. The method is successful in solving a structure with 7890 non-H atoms in the asymmetric unit at a resolution of 1.65 Å, a considerable advance on the previous record of 6319 atoms at atomic resolution.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds